1932

Abstract

Life evolved organisms to adapt dynamically to their environment and autonomously exhibit behaviors. Although complex behaviors in organisms are typically associated with the capability of neurons to process information, the unicellular organism disabuses us by solving complex tasks despite being just a single although gigantic cell shaped into a mesmerizing tubular network. In , smart behaviors arise as network tubes grow or shrink due to the mechanochemical coupling of contractile tubes, fluid flows, and transport across the network. Here, from a physicist's perspective, we introduce the biology and active chemomechanics of this living matter network. We review 's global response in migration and dynamic state to its environment before revisiting its network architecture and flow and transport patterns. Finally, we summarize recent studies on storing and processing information to mount well-informed behaviors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040821-115312
2024-03-11
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-040821-115312.html?itemId=/content/journals/10.1146/annurev-conmatphys-040821-115312&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kauffman S, Wille JJ 1975. J. Theor. Biol. 55:47–93
    [Google Scholar]
  2. 2.
    Kjellin J, Avesson L, Reimegård J, Liao Z, Eichinger L, et al. 2021. Genome Res. 31(3):gr.272856.120
  3. 3.
    Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW et al. 2016. Genome Biol. Evol. 8:109–25
    [Google Scholar]
  4. 4.
    von Schweinitz LD 1822. Synopsis fungorum Carolinae superioris secundum obervationes Ludovici Davidis de Scweinitz Leipzig, Ger.: Johan Ambrosius Barth Verlag
    [Google Scholar]
  5. 5.
    Sauer HW 1982. Developmental Biology of Physarum Vol. 11. New York: Cambridge Univ. Press
    [Google Scholar]
  6. 6.
    Rusch HP, Sachsenmaier W, Behrens K, Gruter V 1966. J. Cell Biol. 31:204–9
    [Google Scholar]
  7. 7.
    Raub TJ, Aldrich HC. 1982. In Cell Biology of Physarum and DidymiumVol. II, Differentiation, Metabolism, and Methodology, ed. HC Aldrich, JW Daniel, pp. 21–75. New York: Academic
  8. 8.
    Alim K, Andrew N, Pringle A 2013. Curr. Biol. 23:24R1082–83
    [Google Scholar]
  9. 9.
    Nakagaki T, Yamada H, Tóth A 2000. Nature 407:470
    [Google Scholar]
  10. 10.
    Tero A, Takagi S, Saigusa T, Ito K, Bebber DP et al. 2010. Science 327:439–42
    [Google Scholar]
  11. 11.
    Fiore-Donno AM, Nikolaev SI, Nelson M, Pawlowski J, Cavalier-Smith T, Baldauf SL 2010. Protist 161:55–70
    [Google Scholar]
  12. 12.
    Glöckner G, Golderer G, Werner-Felmayer G, Meyer S, Marwan W 2008. BMC Genom. 9:6
    [Google Scholar]
  13. 13.
    Marwan W. 2001. In Comprehensive Series in Photosciences, Vol. 1, ed. D-P Häder, M Lebert, pp. 561–87. Amsterdam: Elsevier Sci. Technol.
  14. 14.
    Gerber T, Loureiro C, Schramma N, Chen S, Jain A et al. 2022. eLife 11:e69745
    [Google Scholar]
  15. 15.
    Hara S, Ohta J 1981. Bot. Mag. Tokyo 94:283–89
    [Google Scholar]
  16. 16.
    Stockem W, Brix K. 1994. In International Review of Cytology, Vol. 149, ed. KW Jeon, J Jarvik, pp. 145–215. New York: Elsevier
  17. 17.
    Oettmeier C, Lee J, Döbereiner HG 2018. J. Phys. D: Appl. Phys. 51:13134006
    [Google Scholar]
  18. 18.
    Glöckner G, Marwan W 2017. Sci. Rep. 7:12304
    [Google Scholar]
  19. 19.
    Patterson MA, Scheetz RW 1977. Protoplasma 92:3–4253–61
    [Google Scholar]
  20. 20.
    Ogawa K, Sato M, Ashihara H, Kaneko TS 2010. Cytologia 75:4397–407
    [Google Scholar]
  21. 21.
    Oettmeier C, Brix K, Döbereiner HG 2017. J. Phys. D: Appl. Phys. 50:413001
    [Google Scholar]
  22. 22.
    Alexopoulos CJ, Mims CW 1979. Introductory Mycology New York: John Wiley and Sons. 3rd ed.
    [Google Scholar]
  23. 23.
    Isenberg G, Wohlfarth-Bottermann KE 1976. Cell Tissue Res. 173:4495–528
    [Google Scholar]
  24. 24.
    Sesaki H, Ogihara S 1997. Cell Struct. 22:2279–89
    [Google Scholar]
  25. 25.
    Reid CR, Latty T, Dussutour A, Beekman M 2012. PNAS 109:4317490–94
    [Google Scholar]
  26. 26.
    Reid CR, Beekman M, Latty T, Dussutour A 2013. Behav. Ecol. 24:4812–18
    [Google Scholar]
  27. 27.
    Huynh TT, Phung TV, Stephenson SL, Tran HT 2017. BMC Biotechnol. 17:76
    [Google Scholar]
  28. 28.
    McCormick JJ, Blomquist JC, Rusch HP 1970. J. Bacteriol. 104:31110–18
    [Google Scholar]
  29. 29.
    Wolf KV, Hoffmann HU, Stockem W 1981. Protoplasma 107:3–4345–59
    [Google Scholar]
  30. 30.
    Patino-Ramirez F, Boussard A, Arson C, Dussutour A 2019. Sci. Rep. 9:15444
    [Google Scholar]
  31. 31.
    Wohlfarth-Bottermann KE 1974. J. Cell. Sci. 16:23–37
    [Google Scholar]
  32. 32.
    Achenbach F, Naib-Majani W, Wohlfarth-Bottermann K 1979. J. Cell. Sci. 36:355–59
    [Google Scholar]
  33. 33.
    Wohlfarth-Bottermann KE, Stockem W 1970. Wilhelm Roux Arch. Entwicklungsmechanik Organismen 164:4321–40
    [Google Scholar]
  34. 34.
    Hasegawa T, Sho T, Hiroshi H, Sadashi H 1980. Biochemistry 19:122677–83
    [Google Scholar]
  35. 35.
    Ozaki K, Hatano S 1984. J. Cell Biol. 98:61919–25
    [Google Scholar]
  36. 36.
    Brix K, Stockem W 1987. Cell Biol. Int. Rep. 11:7529–36
    [Google Scholar]
  37. 37.
    Ishigami M, Kuroda K, Hatano S 1987. J. Cell Biol. 105:381–86
    [Google Scholar]
  38. 38.
    Wohlfarth-Bottermann KE, Fleischer M 1976. Cell Tissue Res. 165:3327–44
    [Google Scholar]
  39. 39.
    Kukulies J, Stockem W, Achenbach F 1984. Eur. J. Cell Biol. 35:2235–45
    [Google Scholar]
  40. 40.
    Gawlitta W, Wolf K, Hoffmann HU, Stockem W 1980. Cell Tissue Res. 209:72–76
    [Google Scholar]
  41. 41.
    Salles-Passador I, Moisand A, Planques V, Wright M 1991. J. Cell. Sci. 100:3509–20
    [Google Scholar]
  42. 42.
    Steffan B, Praemassing M, Steglich W 1987. Tetrahedron Lett. 28:323667–70
    [Google Scholar]
  43. 43.
    Eisenbarth S, Steffan B 2000. Tetrahedron 56:3363–65
    [Google Scholar]
  44. 44.
    Schreckenbach T, Walckhoff B, Verfuerth C 1981. PNAS 78:21009–13
    [Google Scholar]
  45. 45.
    Mela AP, Rico-Ramírez AM, Glass NL 2020. Cells 9:102255
    [Google Scholar]
  46. 46.
    Wohlfarth-Bottermann KE. 1983. In The Application of Laser Light Scattering to the Study of Biological Motion, ed. JC Earnshaw, MW Steer, pp. 501–17. Boston: Springer
  47. 47.
    Howard FL. 1932. Ann. Bot. os-46(3):461–77
  48. 48.
    Goodman EM. 1982. In Cell Biology of Physarum and Didymium, Vol. II, Differentiation, Metabolism, and Methodology, ed. HC Aldrich, JW Daniel, pp. 101–28. New York: Academic
  49. 49.
    Bekers AG, Gijzen HJ, Taalman RDFM, Wanka F 1981. J. Ultrastruct. Res. 75:3352–62
    [Google Scholar]
  50. 50.
    Lachapelle M, Lafontaine JG 1987. J. Electron Microsc. Tech. 5:3227–41
    [Google Scholar]
  51. 51.
    Tanaka K 1973. J. Cell Biol. 57:220–24
    [Google Scholar]
  52. 52.
    Guttes E, Guttes S, Rusch HP 1961. Dev. Biol. 3:5588–614
    [Google Scholar]
  53. 53.
    Kubbies M, Pierron G 1983. Exp. Cell Res. 149:57–67
    [Google Scholar]
  54. 54.
    Haupt M, Hauser MJB 2020. New J. Phys. 22:053007
    [Google Scholar]
  55. 55.
    Mogilner A, Manhart A 2018. Annu. Rev. Fluid Mech. 50:347–70
    [Google Scholar]
  56. 56.
    Burla F, Mulla Y, Vos BE, Aufderhorst-Roberts A, Koenderink GH 2019. Nat. Rev. Phys. 1:4249–63
    [Google Scholar]
  57. 57.
    Banerjee S, Gardel ML, Schwarz US 2020. Annu. Rev. Condens. Matter Phys. 11:421–39
    [Google Scholar]
  58. 58.
    Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K 2005. Eur. Phys. J. E Soft Matter 16:5–16
    [Google Scholar]
  59. 59.
    Joanny JF, Prost J 2009. HFSP J. 3:294–104
    [Google Scholar]
  60. 60.
    Radszuweit M, Alonso S, Engel H, Bär M 2013. Phys. Rev. Lett. 110:13138102
    [Google Scholar]
  61. 61.
    Oster GF, Odell GM 1984. Cell Motil. 4:6469–503
    [Google Scholar]
  62. 62.
    Tero A, Kobayashi R, Nakagaki T 2005. Physica D 205:1–4125–35
    [Google Scholar]
  63. 63.
    Smith DA 1994. Protoplasma 177:3–4171–80
    [Google Scholar]
  64. 64.
    Teplov VA, Romanovsky YM, Latushkin OA 1991. BioSystems 24:4269–89
    [Google Scholar]
  65. 65.
    Romanovskii YM, Teplov V 1995. Uspekhi Fizicheskih Nauk 165:5555
    [Google Scholar]
  66. 66.
    Alonso S, Radszuweit M, Engel H, Bär M 2017. J. Phys. D: Appl. Phys. 50:43434004
    [Google Scholar]
  67. 67.
    Fessel A, Oettmeier C, Wechsler K, Döbereiner HG 2018. J. Phys. D: Appl. Phys. 51:2024005
    [Google Scholar]
  68. 68.
    Sato M, Wong TZ, Allen RD 1983. J. Cell Biol. 97:41089–97
    [Google Scholar]
  69. 69.
    Dembo M, Harlow F 1986. Biophys. J. 50:109–21
    [Google Scholar]
  70. 70.
    Radszuweit M, Engel H, Bär M 2011. Eur. Phys. J. Spec. Top. 191:159–72
    [Google Scholar]
  71. 71.
    Radszuweit M, Engel H, Bär M 2014. PLOS ONE 9:6e99220
    [Google Scholar]
  72. 72.
    Lewis OL, Zhang S, Guy RD, Del Álamo JC 2015. J. R. Soc. Interface 12:10620141359
    [Google Scholar]
  73. 73.
    Kulawiak DA, Löber J, Bär M, Engel H 2018. J. Phys. D: Appl. Phys. 52:014004
    [Google Scholar]
  74. 74.
    Kulawiak DA, Löber J, Bär M, Engel H 2019. PLOS ONE 14:8e0217447
    [Google Scholar]
  75. 75.
    Bois JS, Jülicher F, Grill SW 2011. Phys. Rev. Lett. 106:2028103
    [Google Scholar]
  76. 76.
    Kohama K, Oosawa M, Ito T, Maruyama K 1988. J. Biochem. 104:6995–98
    [Google Scholar]
  77. 77.
    Joanny JF, Kruse K, Prost J, Ramaswamy S 2013. Eur. Phys. J. E Soft Matter 36:552
    [Google Scholar]
  78. 78.
    Guy RD, Nakagaki T, Wright GB 2011. Phys. Rev. E 84:016310
    [Google Scholar]
  79. 79.
    Brix K, Kukulies J, Stockem W 1987. Protoplasma 137:2–3156–67
    [Google Scholar]
  80. 80.
    Sherratt JA, Lewis J 1993. Bull. Math. Biol. 55:3637–54
    [Google Scholar]
  81. 81.
    Carafoli E, Krebs J 2016. J. Biol. Chem. 291:4020849–57
    [Google Scholar]
  82. 82.
    Berridge MJ, Lipp P, Bootman MD 2000. Nat. Rev. Mol. 1:11–21
    [Google Scholar]
  83. 83.
    Carafoli E 2002. PNAS 99:31115–22
    [Google Scholar]
  84. 84.
    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS 2004. Am. J. Physiol. Cell Physiol. 287:4C817–33
    [Google Scholar]
  85. 85.
    Hepler PK 2016. Plant Physiol. 170:3–22
    [Google Scholar]
  86. 86.
    Wohlfarth-Bottermann KE 1979. J. Exp. Biol. 81:15–32
    [Google Scholar]
  87. 87.
    Teplov VA 2017. J. Phys. D: Appl. Phys. 50:213002
    [Google Scholar]
  88. 88.
    Kato T, Tonomura Y 1977. J. Biochem. 81:207–13
    [Google Scholar]
  89. 89.
    Yoshiyama S, Ishigami M, Nakamura A, Kohama K 2009. Cell Biol. Int. 34:35–40
    [Google Scholar]
  90. 90.
    Ridgway EB, Durham AC 1976. J. Cell Biol. 69:223–26
    [Google Scholar]
  91. 91.
    Yoshimoto Y, Matsumura F, Kamiya N 1981. Cell Motil. 1:4433–43
    [Google Scholar]
  92. 92.
    Kato T, Tonomura Y 1975. J. Biochem. 77:61127–34
    [Google Scholar]
  93. 93.
    Kuroda R, Kuroda H 1982. J. Cell. Sci. 53:37–48
    [Google Scholar]
  94. 94.
    Kohama K, Kobayashi K, Mitani S 1980. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 56:9591–96
    [Google Scholar]
  95. 95.
    Kawamichi H, Zhang Y, Hino M, Nakamura A, Tanaka H, et al. 2007. In Regulatory Mechanisms of Striated Muscle Contraction, Vol. 592, ed. S Ebashi, I Ohtsuki, pp. 265–72. Tokyo: Springer
  96. 96.
    Kohama K 2016. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 92:10478–98
    [Google Scholar]
  97. 97.
    Yoshimoto Y, Sakai T, Kamiya N 1981. Protoplasma 109:1–2159–68
    [Google Scholar]
  98. 98.
    Yoshimoto Y, Kamiya N 1984. Cell Struct. 9:2135–41
    [Google Scholar]
  99. 99.
    Kamiya N 1981. Annu. Rev. Plant Physiol. 32:205–36
    [Google Scholar]
  100. 100.
    Sugino H, Matsumura F 1983. J. Cell Biol. 96:199–203
    [Google Scholar]
  101. 101.
    Hirose T, Ueda T, Kobatake Y 1980. Microbiology 121:175–80
    [Google Scholar]
  102. 102.
    Swaminathan R, Hoang CP, Verkman AS 1997. Biophys. J. 72:41900–7
    [Google Scholar]
  103. 103.
    Oettmeier C, Döbereiner HG 2019. PLOS ONE 14:4e0215622
    [Google Scholar]
  104. 104.
    Alim K 2018. Philos. Trans. R. Soc. B Biol. Sci. 373:174720170112
    [Google Scholar]
  105. 105.
    Kamiya N 1950. Cytologia 15:3–4183–93
    [Google Scholar]
  106. 106.
    Bykov AV, Priezzhev AV, Lauri J, Myllylä R 2009. J. Biophoton. 2:8–9540–47
    [Google Scholar]
  107. 107.
    Stewart PA, Stewart BT 1959. Exp. Cell Res. 17:44–58
    [Google Scholar]
  108. 108.
    Lewis OL, Guy RD 2017. J. Phys. D: Appl. Phys. 50:284001
    [Google Scholar]
  109. 109.
    Alim K, Amselem G, Peaudecerf F, Brenner MP, Pringle A 2013. PNAS 110:3313306–11
    [Google Scholar]
  110. 110.
    Alim K, Andrew N, Pringle A, Brenner MP 2017. PNAS 114:205136–41
    [Google Scholar]
  111. 111.
    Julien JD, Alim K 2018. PNAS 115:4210612–17
    [Google Scholar]
  112. 112.
    Kramar M, Alim K 2021. PNAS 118:10e2007815118
    [Google Scholar]
  113. 113.
    Kessler D. 1982. In Cell Biology of Physarum and DidymiumVol. I, Organisms, Nucleus, and Cell Cycle, ed. HC Aldrich, JW Daniel, pp. 145–208. New York: Academic
  114. 114.
    Rieu JP, Delanoë-Ayari H, Takagi S, Tanaka Y, Nakagaki T 2015. J. R. Soc. Interface 12:10620150099
    [Google Scholar]
  115. 115.
    Rodiek B, Takagi S, Ueda T, Hauser MJ 2015. Eur. Biophys. J. 44:5349–58
    [Google Scholar]
  116. 116.
    Takagi S, Ueda T 2008. Physica D 237:3420–27
    [Google Scholar]
  117. 117.
    Zhang S, Lasheras JC, del Álamo JC 2019. J. Phys. D: Appl. Phys. 52:49494004
    [Google Scholar]
  118. 118.
    Zhang S, Guy RD, Lasheras JC, Del Álamo JC 2017. J. Phys. D: Appl. Phys. 50:204004
    [Google Scholar]
  119. 119.
    Hato M, Ueda T, Kurihara K, Kobatake Y 1976. Cell Struct. 1:3269–78
    [Google Scholar]
  120. 120.
    Matsumoto K, Takagi S, Nakagaki T 2008. Biophys. J. 94:72492–504
    [Google Scholar]
  121. 121.
    Ueda KI, Takagi S, Nishiura Y, Nakagaki T 2011. Phys. Rev. E 83:2021916
    [Google Scholar]
  122. 122.
    Maruyama K 1964. J. Biol. Chem. 55:3277–86
    [Google Scholar]
  123. 123.
    Tanaka Y, Ito K, Nakagaki T, Kobayashi R 2012. J. R. Soc. Interface 9:67222–33
    [Google Scholar]
  124. 124.
    Sesaki H, Ogihara S 1997. J. Cell. Sci. 110:7809–18
    [Google Scholar]
  125. 125.
    Charras G, Paluch E 2008. Nat. Rev. Mol. 9:9730–36
    [Google Scholar]
  126. 126.
    Yoshida K, Soldati T 2006. J. Cell. Sci. 119:183833–44
    [Google Scholar]
  127. 127.
    Kukulies J, Stockem WS, Wohlfarth-Bottermann KE 1983. Z. Naturforsch. C J. Biosci. 38:7–8589–99
    [Google Scholar]
  128. 128.
    Kuroda S, Takagi S, Nakagaki T, Ueda T 2015. J. Exp. Biol. 218:233729–38
    [Google Scholar]
  129. 129.
    Iima M, Nakagaki T 2012. Math. Med. Biol. 29:3263–81
    [Google Scholar]
  130. 130.
    Iima M, Kori H, Nakagaki T 2017. J. Phys. D: Appl. Phys. 50:15154004
    [Google Scholar]
  131. 131.
    Jones J 2010. Artif. Life 16:2127–53
    [Google Scholar]
  132. 132.
    Baumgarten W, Jones J, Hauser MJ 2015. Acta Phys. Pol. B 46:61201–18
    [Google Scholar]
  133. 133.
    Schenz D, Shima Y, Kuroda S, Nakagaki T, Ueda KI 2017. J. Phys. D: Appl. Phys. 50:434001
    [Google Scholar]
  134. 134.
    Rodiek B, Hauser MJ 2015. Eur. Phys. J. Spec. Top. 224:71199–214
    [Google Scholar]
  135. 135.
    Satoh H, Ueda T, Kobatake Y 1985. Exp. Cell Res. 156:79–90
    [Google Scholar]
  136. 136.
    Chet I, Mitchell R 1976. Annu. Rev. Microbiol. 30:221–39
    [Google Scholar]
  137. 137.
    Jakuszeit T, Lindsey-Jones J, Peaudecerf FJ, Croze OA 2021. Eur. Phys. J. E Soft Matter 44:332
    [Google Scholar]
  138. 138.
    Coman D 1940. Arch. Pathol. 29:220–28
    [Google Scholar]
  139. 139.
    Carlile MJ 1970. J. Gen. Microbiol. 63:2221–26
    [Google Scholar]
  140. 140.
    Ueda T, Terayama K, Kurihara K, Kobatake Y 1975. J. Physiol. 65:2223–34
    [Google Scholar]
  141. 141.
    Durham AC, Ridgway EB 1976. J. Cell Biol. 69:218–23
    [Google Scholar]
  142. 142.
    Terayama K, Ueda T, Kurihara K, Kobatake Y 1977. J. Membr. 34:369–81
    [Google Scholar]
  143. 143.
    Hato M, Ueda T, Kurihara K, Kobatake Y 1976. Biochim. Biophys. Acta 426:73–80
    [Google Scholar]
  144. 144.
    Chet I, Naveh A, Henis Y 1977. J. Gen. Microbiol. 102:145–48
    [Google Scholar]
  145. 145.
    Kincaid RL, Mansour TE 1978. Exp. Cell Res. 116:2377–85
    [Google Scholar]
  146. 146.
    Knowles DJC, Carlile MJ 1978. J. Gen. Microbiol. 108:9–15
    [Google Scholar]
  147. 147.
    McClory A, Coote JG 1985. FEMS Microbiol. Lett. 26:2195–200
    [Google Scholar]
  148. 148.
    Ueda T, Kobatake Y. 1982. In Cell Biology of Physarum and Didymium, Vol. I, Organisms, Nucleus, and Cell Cycle, ed. HC Aldrich, JW Daniel, pp. 111–43. New York: Academic
  149. 149.
    Denbo JR, Miller DM 1976. Comp. Biochem. Physiol. 55:5–12
    [Google Scholar]
  150. 150.
    Kincaid RL, Mansour TE 1978. Exp. Cell Res. 116:2365–75
    [Google Scholar]
  151. 151.
    Knowles DJ, Carlile MJ 1978. J. Gen. Microbiol. 108:17–25
    [Google Scholar]
  152. 152.
    Ueda T, Muratsugu M, Kurihara K, Kobatake Y 1976. Exp. Cell Res. 100:2337–44
    [Google Scholar]
  153. 153.
    Ueda T, Hasumoto M, Akitaya T, Kobatake Y 1985. Protoplasma 124:3219–23
    [Google Scholar]
  154. 154.
    Denbo JR, Miller DM 1978. Comp. Biochem. Physiol. 60:3269–72
    [Google Scholar]
  155. 155.
    Ueda T, Matsumoto K, Akitaya T, Kobatake Y 1986. Exp. Cell Res. 162:2486–94
    [Google Scholar]
  156. 156.
    Natsume K, Miyake Y, Yano M, Shimizu H 1992. Protoplasma 166:1–255–60
    [Google Scholar]
  157. 157.
    Chen S, Alim K 2023. Phys. Biol. 20:4046003
    [Google Scholar]
  158. 158.
    Miyake Y, Tada H, Yano M, Shimizu H 1994. Cell Struct. 19:6363–70
    [Google Scholar]
  159. 159.
    Reserva RL, Micompal MTMM, Mendoza KC, Confesor MNP 2021. Biochem. Biophys. Res. Commun. 550:171–76
    [Google Scholar]
  160. 160.
    Nakagaki T, Yamada H, Ueda T 2000. Biophys. Chem. 84:3195–204
    [Google Scholar]
  161. 161.
    Takamatsu A, Takaba E, Takizawa G 2009. J. Theor. Biol. 256:29–44
    [Google Scholar]
  162. 162.
    Latty T, Beekman M 2011. Proc. Royal Soc. B. Proc. Biol. Sci. 278:1705539–45
    [Google Scholar]
  163. 163.
    Kamiya N 1940. Science 92:2394462–63
    [Google Scholar]
  164. 164.
    Mori Y, Matsumoto K, Ueda T, Kobatake Y 1986. Protoplasma 135:31–37
    [Google Scholar]
  165. 165.
    Nakagaki T, Iima M, Ueda T, Nishiura Y, Saigusa T et al. 2007. Phys. Rev. Lett. 99:6068104
    [Google Scholar]
  166. 166.
    Baüerle FK, Karpitschka S, Alim K 2020. Phys. Rev. Lett. 124:998102
    [Google Scholar]
  167. 167.
    Block I, Wohlfarth-Bottermann KE 1981. Cell Biol. Int. Rep. 5:73–81
    [Google Scholar]
  168. 168.
    Baranowkski Z, Shraideh Z, Wohlfarth-Bottermann K 1982. Cell Biol. Int. Rep. 6:9859–65
    [Google Scholar]
  169. 169.
    Takamatsu A, Takahashi K, Nagao M, Tsuchiya Y 1997. J. Phys. Soc. Jpn. 66:61638–46
    [Google Scholar]
  170. 170.
    Nakagaki T, Yamada H, Ueda T 1999. Biophys. Chem. 82:23–28
    [Google Scholar]
  171. 171.
    Ueda T, Mori Y, Nakagaki T, Kobatake Y 1988. Photochem. Photobiol. 47:2271–75
    [Google Scholar]
  172. 172.
    Schreckenbach T. 1984. In Blue Light Effects in Biological Systems, ed. H Senger, pp. 463–75. Berlin: Springer-Verlag
  173. 173.
    Starostzik C, Marwan W 2008. Photochem. Photobiol. 62:5930–33
    [Google Scholar]
  174. 174.
    Starostzik C, Marwan W 1995. FEBS Lett. 370:1–2146–48
    [Google Scholar]
  175. 175.
    Nakagaki T, Umemura S, Kakiuchi Y, Ueda T 1996. Photochem. Photobiol. 64:5859–62
    [Google Scholar]
  176. 176.
    Lamparter T, Marwan W 2001. Photochem. Photobiol. 73:6697
    [Google Scholar]
  177. 177.
    Rätzel V, Ebeling B, Hoffmann XK, Tesmer J, Marwan W 2013. Dev. Growth Differ. 55:2247–59
    [Google Scholar]
  178. 178.
    Tasaki I, Kamiya N 1950. Protoplasma 39:3333–43
    [Google Scholar]
  179. 179.
    Kishimoto U 1958. J. Gen. Physiol. 41:61205–22
    [Google Scholar]
  180. 180.
    Kishimoto U 1958. J. Gen. Physiol. 41:61223–44
    [Google Scholar]
  181. 181.
    Anderson JD 1951. J. Physiol. 35:1–16
    [Google Scholar]
  182. 182.
    Fingerle J, Gradmann D 1982. J. Membr. 68:67–77
    [Google Scholar]
  183. 183.
    Grigoriev PA, Matveeva NB, Teplov VA 2016. Biophys. (Russ. Fed.) 61:5748–54
    [Google Scholar]
  184. 184.
    Kuroda H, Kuroda R 1981. J. Physiol. 78:6637–55
    [Google Scholar]
  185. 185.
    Kuroda H, Kuroda R, Sakai T 1989. Biochim. Biophys. Acta Biomembr. 987:2154–64
    [Google Scholar]
  186. 186.
    Iwamura T 1949. Shokubutsugaku Zasshi 62:735–736126–31
    [Google Scholar]
  187. 187.
    Meyer R, Stockem W 1979. Cell Biol. Int. Rep. 3:4321–30
    [Google Scholar]
  188. 188.
    Zheng Y, Jia R, Qian Y, Ye Y, Liu C 2015. BioSystems 132–133:13–19
    [Google Scholar]
  189. 189.
    Korohoda W, Mycielska M, Janda E, Madeja Z 2000. Cell Motil. Cytoskelet. 45:10–26
    [Google Scholar]
  190. 190.
    Ogawa N, Oku H, Hashimoto K, Ishikawa M 2006. J. Theor. Biol. 242:2314–28
    [Google Scholar]
  191. 191.
    Daul A, Lemloh ML, Hörning M 2022. New J. Phys. 24:053040
    [Google Scholar]
  192. 192.
    Allen GM, Mogilner A, Theriot JA 2013. Curr. Biol. 23:7560–68
    [Google Scholar]
  193. 193.
    Yang HY, Charles RP, Hummler E, Baines DL, Isseroff RR 2013. J. Cell. Sci. 126:91942–51
    [Google Scholar]
  194. 194.
    De la Fuente IM, Bringas C, Malaina I, Fedetz M, Carrasco-Pujante J et al. 2019. Nat. Commun. 10:3690
    [Google Scholar]
  195. 195.
    Tso WW, Mansour TE 1975. Behav. Biol. 14:4499–504
    [Google Scholar]
  196. 196.
    Achenbach U, Wohlfarth-Bottermann KE 1980. Planta 150:2180–88
    [Google Scholar]
  197. 197.
    Wolf R, Niemuth J, Sauer H 1997. Protoplasma 197:1–2121–31
    [Google Scholar]
  198. 198.
    Wohlfarth-Bottermann KE 1977. J. Exp. Biol. 67:49–59
    [Google Scholar]
  199. 199.
    Hejnowicz Z, Wohlfarth-Bottermann KE 1980. Planta 150:2144–52
    [Google Scholar]
  200. 200.
    Halvorsrud R, Laane MM, Giaever I 1995. Biol. Rhythm Res. 26:3316–30
    [Google Scholar]
  201. 201.
    Takamatsu A, Yamamoto T, Fujii T 2004. BioSystems 76:1–3133–40
    [Google Scholar]
  202. 202.
    Kamiya N 1959. Protoplasmic Streaming Vienna: Springer
    [Google Scholar]
  203. 203.
    Tawada K, Oasawa F 1972. J. Protozool. Res. 19:53–57
    [Google Scholar]
  204. 204.
    Nakaoka Y, Oosawa F 1977. J. Protozool. Res. 24:4575–80
    [Google Scholar]
  205. 205.
    Poff KL, Skokut M 1977. PNAS 74:52007–10
    [Google Scholar]
  206. 206.
    Bahat A, Tur-Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M 2003. Nat. Med 9:2149–50
    [Google Scholar]
  207. 207.
    Demir M, Salman H 2012. Biophys. J. 103:81683–90
    [Google Scholar]
  208. 208.
    Umedachi T, Ito K, Kobayashi R, Ishiguro A, Nakagaki T 2017. J. Phys. D: Appl. Phys. 50:25254002
    [Google Scholar]
  209. 209.
    Murugan NJ, Kaltman DH, Jin PH, Chien M, Martinez R et al. 2021. Adv. Mater. 33:342008161
    [Google Scholar]
  210. 210.
    Roca-Cusachs P, Sunyer R, Trepat X 2013. Curr. Opin. Cell Biol. 25:5543–49
    [Google Scholar]
  211. 211.
    Sunyer R, Trepat X 2020. Curr. Biol. 30:9R383–87
    [Google Scholar]
  212. 212.
    Plant TD 2014. Handb. Exp. Pharmacol. 223:743–66
    [Google Scholar]
  213. 213.
    Achenbach U 1982. Cell Biol. Int. Rep. 6:111005–11
    [Google Scholar]
  214. 214.
    Block I, Wolke A, Briegleb W, Wohlfarth-Bottermann KE, Merbold U et al. 1994. Life Sci. Space Res. (Amst.) 366:August43
    [Google Scholar]
  215. 215.
    Häder DP 1999. Adv. Space Res. 24:6843–50
    [Google Scholar]
  216. 216.
    Baumgarten W, Ueda T, Hauser MJB 2010. Phys. Rev. E 82:4046113
    [Google Scholar]
  217. 217.
    Fessel A, Oettmeier C, Bernitt E, Gauthier N, Döbereiner HG 2012. Phys. Rev. Lett. 109:7078103
    [Google Scholar]
  218. 218.
    Fricker MD, Akita D, Heaton LL, Jones N, Obara B, Nakagaki T 2017. J. Phys. D: Appl. Phys. 50:25254005
    [Google Scholar]
  219. 219.
    Marbach S, Alim K, Andrew N, Pringle A, Brenner MP 2016. Phys. Rev. Lett. 117:17178103
    [Google Scholar]
  220. 220.
    Akita D, Kunita I, Fricker MD, Kuroda S, Sato K, Nakagaki T 2016. J. Phys. D: Appl. Phys. 50:2024001
    [Google Scholar]
  221. 221.
    Murray CD 1926. PNAS 12:3207–14
    [Google Scholar]
  222. 222.
    West GB, Brown JH, Enquist BJ 1997. Science 276:5309122–26
    [Google Scholar]
  223. 223.
    Kassab GS, Fung YCB 1995. Ann. Biomed. Eng. 23:13–20
    [Google Scholar]
  224. 224.
    McCulloh KA, Sperry JS, Adler FR 2003. Nature 421:6926939–42
    [Google Scholar]
  225. 225.
    Bohn S, Magnasco MO 2007. Phys. Rev. Lett. 98:8088702
    [Google Scholar]
  226. 226.
    Durand M 2006. Phys. Rev. E 73:016116
    [Google Scholar]
  227. 227.
    Durand M 2007. Phys. Rev. Lett. 98:8088701
    [Google Scholar]
  228. 228.
    Corson F 2010. Phys. Rev. Lett. 104:4048703
    [Google Scholar]
  229. 229.
    Katifori E, Szöllősi GJ, Magnasco MO 2010. Phys. Rev. Lett. 104:4048704
    [Google Scholar]
  230. 230.
    Ronellenfitsch H, Katifori E 2019. Phys. Rev. Lett. 123:24248101
    [Google Scholar]
  231. 231.
    Tero A, Kobayashi R, Nakagaki T 2006. Physica A 363:115–19
    [Google Scholar]
  232. 232.
    Gräwer J, Modes CD, Magnasco MO, Katifori E 2015. Phys. Rev. E 92:012801
    [Google Scholar]
  233. 233.
    Tero A, Kobayashi R, Nakagaki T 2007. J. Theor. Biol. 244:4553–64
    [Google Scholar]
  234. 234.
    Tero A, Yumiki K, Kobayashi R, Saigusa T, Nakagaki T 2008. Theory Biosci. 127:289–94
    [Google Scholar]
  235. 235.
    Gao C, Chen S, Li X, Huang J, Zhang Z 2017. Appl. Soft Comput. 61:239–55
    [Google Scholar]
  236. 236.
    Gao C, Liu C, Schenz D, Li X, Zhang Z et al. 2019. Phys. Life Rev. 29:51–54
    [Google Scholar]
  237. 237.
    Busson V, Saiseau R, Durand M 2022. J. Phys. D: Appl. Phys. 55:41415401
    [Google Scholar]
  238. 238.
    Takamatsu A, Gomi T, Endo T, Hirai T, Sasaki T 2017. J. Phys. D: Appl. Phys. 50:15154003
    [Google Scholar]
  239. 239.
    Marbach S, Ziethen N, Bastin L, Bäuerle FK, Alim K 2023. eLife 12:e78100
    [Google Scholar]
  240. 240.
    Mori Y, Koaze A 2013. Mycoscience 54:6426–28
    [Google Scholar]
  241. 241.
    Li M, Brasseur JG 1993. J. Fluid Mech. 248:129–51
    [Google Scholar]
  242. 242.
    Fleig P, Kramar M, Wilczek M, Alim K 2022. eLife 11:e62863
    [Google Scholar]
  243. 243.
    Wilkinson R, Koziol M, Alim K, Roper M 2023. Fungal Ecol. 65:101283 https://dx.doi.org/10.2139/ssrn.4267724
    [Google Scholar]
  244. 244.
    Yoshimoto Y, Kamiya N 1978. Protoplasma 95:1–2123–33
    [Google Scholar]
  245. 245.
    Hejnowicz Z, Hinz I, Wohlfarth-Bottermann KE 1984. J. Interdiscip. Cycle Res. 15:4251–66
    [Google Scholar]
  246. 246.
    Yoshimoto Y, Kamiya N 1978. Protoplasma 95:1–289–99
    [Google Scholar]
  247. 247.
    Samans KE, Hinz I, Hejnowicz Z, Wohlfarth-Bottermann KE 1984. J. Interdiscip. Cycle Res. 15:4241–50
    [Google Scholar]
  248. 248.
    Wohlfarth-Bottermann K, Vonolenhusen K 1977. Cell Biol. Int. Rep. 1:3239–47
    [Google Scholar]
  249. 249.
    Proskurin SG, Avsievich TI 2014. Biophys. 59:6928–34
    [Google Scholar]
  250. 250.
    Avsievich TI, Frolov SV, Proskurin SG 2017. J. Phys. D: Appl. Phys. 50:22224003
    [Google Scholar]
  251. 251.
    Korohoda W, Shraideh Z, Baranowski Z, Wohlfarth-Bottermann KE 1983. Cell Tissue Res. 231:3675–91
    [Google Scholar]
  252. 252.
    Taylor GI 1953. Proc. R. Soc. A 219:1137186–203
    [Google Scholar]
  253. 253.
    Aris R 1956. Proc. R. Soc. A 235:120067–77
    [Google Scholar]
  254. 254.
    Natsume K, Miyake Y, Yano M, Shimizu H 1993. Cell Struct. 18:2111–15
    [Google Scholar]
  255. 255.
    Dussutour A, Latty T, Beekman M, Simpson SJ 2010. PNAS 107:104607–11
    [Google Scholar]
  256. 256.
    Reid CR, MacDonald H, Mann RP, Marshall JAR, Latty T, Garnier S 2016. J. R. Soc. Interface 13:11920160030–38
    [Google Scholar]
  257. 257.
    Keim NC, Paulsen JD, Zeravcic Z, Sastry S, Nagel SR 2019. Rev. Mod. Phys. 91:335002
    [Google Scholar]
  258. 258.
    Saigusa T, Tero A, Nakagaki T, Kuramoto Y 2008. Phys. Rev. Lett. 100:018101
    [Google Scholar]
  259. 259.
    Vogel D, Dussutour A 2016. Proc. R. Soc. B 283:184520162382–6
    [Google Scholar]
  260. 260.
    Boussard A, Delescluse J, Pérez-Escudero A, Dussutour A 2019. Philos. Trans. R. Soc. 374:177420180368–10
    [Google Scholar]
  261. 261.
    Bhattacharyya K, Zwicker D, Alim K 2022. Phys. Rev. Lett. 129:2028101
    [Google Scholar]
  262. 262.
    Bhattacharyya K, Zwicker D, Alim K 2022. Phys. Rev. E 3:21–16
    [Google Scholar]
  263. 263.
    Shannon CE 1948. Bell Syst. Tech. J. 27:4623–56
    [Google Scholar]
  264. 264.
    Ray SK, Valentini G, Shah P, Haque A, Reid CR et al. 2019. Front. Ecol. Evol. 7:13306–11
    [Google Scholar]
  265. 265.
    Latty T, Beekman M 2009. Behav. Ecol. 20:61160–67
    [Google Scholar]
  266. 266.
    Kim SJ, Aono M, Hara M 2010. BioSystems 101:29–36
    [Google Scholar]
  267. 267.
    Sutton R, Barto A 1998. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press
    [Google Scholar]
  268. 268.
    Boisseau RP, Vogel D, Dussutour A 2016. Proc. R. Soc. B 283:182920160446
    [Google Scholar]
  269. 269.
    Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF et al. 2009. Neurobiol. Learn. Mem. 92:2135–38
    [Google Scholar]
  270. 270.
    Dussutour A 2021. Biochem. Biophys. Res. Commun. 564:92–102
    [Google Scholar]
  271. 271.
    Shirakawa T, Gunji YP 2007. Biophys. Chem. 128:2–3253–60
    [Google Scholar]
  272. 272.
    Kunita I, Ueda KI, Akita D, Kuroda S, Nakagaki T 2017. J. Phys. D: Appl. Phys. 50:35354002
    [Google Scholar]
  273. 273.
    Lee J, Oettmeier C, Döbereiner H-G 2018. J. Phys. D: Appl. Phys. 51:24244002
    [Google Scholar]
  274. 274.
    Boussard A, Fessel A, Oettmeier C, Briard L, Döbereiner HG, Dussutour A 2021. Philos. Trans. R. Soc. 376:182020190757
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040821-115312
Loading
/content/journals/10.1146/annurev-conmatphys-040821-115312
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error