1932

Abstract

Understanding the physics of behavior in animals is a challenging and fascinating area of research that has gained increasing attention in recent years. In this review, we delve into the intricate temporal and spatial scales of animal behavior for both individuals and collectives. We explore the experimental and theoretical approaches used to study behavior, highlighting the importance of feedback loops, emergent behavior, and environmental factors in shaping the actions of creatures great and small. The emergence of novel technologies, such as high-speed imaging and tracking, has provided unparalleled insight into the captivating nuances of animal behavior, and we review how these insights have been used to validate physics-based models of animal behavior. We also consider the potential applications of this research in robotics and artificial intelligence, identify new areas for exploration, and envision the possibility of further breakthroughs that will illuminate the complex dynamics of animal behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040821-120442
2024-03-11
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-040821-120442.html?itemId=/content/journals/10.1146/annurev-conmatphys-040821-120442&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Berman GJ. 2018. Neuron 100:61275–77
    [Google Scholar]
  2. 2.
    Gorb SN, Gorb EV 2018. Functional Surfaces in Biology III: Diversity of the Physical Phenomena 10 Biologically-Inspired Systems Cham, Switz.: Springer
    [Google Scholar]
  3. 3.
    Bozek K, Hebert L, Portugal Y, Mikheyev AS, Stephens GJ. 2021. Nat. Commun. 12:1733
    [Google Scholar]
  4. 4.
    Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B et al. 2006. PNAS 103:5119320–25
    [Google Scholar]
  5. 5.
    Autumn K, Niewiarowski PH, Puthoff JB. 2014. Annu. Rev. Ecol. Evol. Syst. 45:445–70
    [Google Scholar]
  6. 6.
    Baum MJ, Kovalev AE, Michels J, Gorb SN. 2014. Tribol. Lett. 54:2139–50
    [Google Scholar]
  7. 7.
    Hensel R, Neinhuis C, Werner C. 2016. Chem. Soc. Rev. 45:2323–41
    [Google Scholar]
  8. 8.
    Bhushan B, Jung YC. 2011. Prog. Mater. Sci. 56:1–108
    [Google Scholar]
  9. 9.
    Hensel R, Helbig R, Aland S, Voigt A, Neinhuis C, Werner C. 2013. NPG Asia Mater. 5:2e37
    [Google Scholar]
  10. 10.
    Vukusic P, Sambles JR. 2003. Nature 424:852–55
    [Google Scholar]
  11. 11.
    Butt H, Yetisen AK, Mistry D, Khan SA, Hassan MU, Yun SH. 2016. Adv. Opt. Mater. 4:4489
    [Google Scholar]
  12. 12.
    Vukusic P, Sambles JR, Lawrence CR, Wootton RJ. 1999. Proc. R. Soc. Ser. B: Biol. Sci. 266:14271403–11
    [Google Scholar]
  13. 13.
    Das S, Shanmugam N, Kumar A, Jose S. 2017. Bioinspired, Biomimet. Nanobiomater. 6:4224–35
    [Google Scholar]
  14. 14.
    Kinoshita S, Yoshioka S, Kawagoe K. 2002. Proc. R. Soc. Ser. B: Biol. Sci. 269:14991417–21
    [Google Scholar]
  15. 15.
    Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR et al. 2002. PNAS 99:1912252–56
    [Google Scholar]
  16. 16.
    Büscher TH, Gorb SN. 2021. Beilstein J. Nanotechnol. 12:725–43
    [Google Scholar]
  17. 17.
    Williams E, Peterson J. 1982. Science 215:45391509–11
    [Google Scholar]
  18. 18.
    Huber G, Gorb S, Hosoda N, Spolenak R, Arzt E. 2007. Acta Biomater. 3:4607–10
    [Google Scholar]
  19. 19.
    Matloff LY, Chang E, Feo TJ, Jeffries L, Stowers AK et al. 2020. Science 367:6475293–97
    [Google Scholar]
  20. 20.
    Anderson C, Theraulaz G, Deneubourg JL. 2002. Insectes Sociaux 49:299–110
    [Google Scholar]
  21. 21.
    Desmond K, Franklin SV. 2006. Phys. Rev. E 73:3031306
    [Google Scholar]
  22. 22.
    Gravish N, Franklin SV, Hu DL, Goldman DI. 2012. Phys. Rev. Lett. 108:20208001
    [Google Scholar]
  23. 23.
    Athanassiadis AG, Miskin MZ, Kaplan P, Rodenberg N, Lee SH et al. 2014. Soft Matter 10:48–59
    [Google Scholar]
  24. 24.
    Gravish N, Goldman DI. 2016. Fluids, Colloids and Soft Materials: An Introduction Soft Matter Physics A Fernandez-Nieves, AM Puertas 341–54 Hoboken, NJ: Wiley
    [Google Scholar]
  25. 25.
    Popova E, Popov VL. 2015. Friction 3:183–90
    [Google Scholar]
  26. 26.
    Bhushan B, Israelachvili JN, Landman U. 1995. Nature 374:6523607–16
    [Google Scholar]
  27. 27.
    Carpick RW, Salmeron M. 1997. Chem. Rev. 97:41163–94
    [Google Scholar]
  28. 28.
    Carpick RW. 2018. Science 359:637138
    [Google Scholar]
  29. 29.
    Jacobs TD, Greiner C, Wahl KJ, Carpick RW. 2019. MRS Bull. 44:6478–86
    [Google Scholar]
  30. 30.
    Meng Y, Xu J, Jin Z, Prakash B, Hu Y. 2020. Friction 8:221–300
    [Google Scholar]
  31. 31.
    Bhushan B 2012. Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales 10 NATO Science Series II: Mathematics, Physics and Chemistry Dordrecht, Neth.: Springer Science & Business Media
    [Google Scholar]
  32. 32.
    Hazel J, Stone M, Grace M, Tsukruk V. 1999. J. Biomech. 32:5477–84
    [Google Scholar]
  33. 33.
    Schmidt CV, Gorb SN. 2012. Zoologica 157:1–106
    [Google Scholar]
  34. 34.
    Hu DL, Nirody J, Scott T, Shelley MJ. 2009. PNAS 106:2510081–85
    [Google Scholar]
  35. 35.
    Rieser JM, Li TD, Tingle JL, Goldman DI, Mendelson JRIII 2021. PNAS 118:6e2018264118
    [Google Scholar]
  36. 36.
    Style RW, Jagota A, Hui CY, Dufresne ER. 2017. Annu. Rev. Condens. Matter Phys. 8:99–118
    [Google Scholar]
  37. 37.
    Schatz MF, Neitzel GP. 2001. Annu. Rev. Fluid Mech. 33:93–127
    [Google Scholar]
  38. 38.
    Craster RV, Matar OK. 2009. Rev. Mod. Phys. 81:31131–98
    [Google Scholar]
  39. 39.
    Quéré D. 2008. Annu. Rev. Mater. Res. 38:71–99
    [Google Scholar]
  40. 40.
    Cassie A, Baxter S. 1944. Trans. Faraday Soc. 40:546–51
    [Google Scholar]
  41. 41.
    Malik FT, Clement RM, Gethin DT, Krawszik W, Parker AR. 2014. Bioinspir. Biomimet. 9:3031002
    [Google Scholar]
  42. 42.
    Gurera D, Bhushan B. 2020. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 378:216720190444
    [Google Scholar]
  43. 43.
    Wagner T, Neinhuis C, Barthlott W. 1996. Acta Zool. 77:3213–25
    [Google Scholar]
  44. 44.
    Spinner M, Gorb SN, Balmert A, Bleckmann H, Westhoff G. 2014. PLOS ONE 9:3e91087
    [Google Scholar]
  45. 45.
    Cully SM, Seeley TD. 2004. Insectes Sociaux 51:4317–24
    [Google Scholar]
  46. 46.
    Mlot NJ, Tovey CA, Hu DL. 2011. PNAS 108:197669–73
    [Google Scholar]
  47. 47.
    Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G et al. 2017. Science 357:6350eaan0221
    [Google Scholar]
  48. 48.
    Srinivasarao M. 1999. Chem. Rev. 99:71935–62
    [Google Scholar]
  49. 49.
    Brunner R, Förster E 2015. Tunable Micro-optics H Zappe, C Duppé 38–64 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  50. 50.
    Jiao Y, Lau T, Hatzikirou H, Meyer-Hermann M, Corbo JC, Torquato S. 2014. Phys. Rev. E 89:2022721
    [Google Scholar]
  51. 51.
    Prum RO, Quinn T, Torres RH. 2006. J. Exp. Biol. 209:4748–65
    [Google Scholar]
  52. 52.
    Johansen VE, Onelli OD, Steiner LM, Vignolini S. 2017. Funct. Surf. Biol. III: Divers. Phys. Phenom. 10:53–89
    [Google Scholar]
  53. 53.
    Gerlotto F, Bertrand S, Bez N, Gutierrez M. 2006. ICES J. Mar. Sci. 63:81405–17
    [Google Scholar]
  54. 54.
    Treherne JE, Foster WA. 1981. Anim. Behav. 29:3911–17
    [Google Scholar]
  55. 55.
    Kastberger G, Schmelzer E, Kranner I. 2008. PLOS ONE 3:9e3141
    [Google Scholar]
  56. 56.
    Schmelzer E, Kastberger G. 2009. Naturwissenschaften 96:121431–41
    [Google Scholar]
  57. 57.
    Procaccini A, Orlandi A, Cavagna A, Giardina I, Zoratto F et al. 2011. Anim. Behav. 82:4759–65
    [Google Scholar]
  58. 58.
    Williams TL, Senft SL, Yeo J, Martín-Martínez FJ, Kuzirian AM et al. 2019. Nat. Commun. 10:1004
    [Google Scholar]
  59. 59.
    Teyssier J, Saenko SV, Van Der Marel D, Milinkovitch MC. 2015. Nat. Commun. 6:6368
    [Google Scholar]
  60. 60.
    Walton BM, Bennett AF. 1993. Physiol. Zool. 66:2270–87
    [Google Scholar]
  61. 61.
    Nishikawa K, Biewener AA, Aerts P, Ahn AN, Chiel HJ et al. 2007. Integr. Comp. Biol. 47:16–54
    [Google Scholar]
  62. 62.
    Cowan NJ, Ankarali MM, Dyhr JP, Madhav MS, Roth E et al. 2014. Am. Zool. 54:2223–37
    [Google Scholar]
  63. 63.
    Aguilar J, Goldman DI. 2016. Nat. Phys. 12:3278–83
    [Google Scholar]
  64. 64.
    Wang ZJ. 2016. Annu. Rev. Condens. Matter Phys. 7:281–300
    [Google Scholar]
  65. 65.
    Sfakiotakis M, Lane DM, Davies JBC. 1999. IEEE J. Ocean. Eng. 24:2237–52
    [Google Scholar]
  66. 66.
    Thandiackal R, White CH, Bart-Smith H, Lauder GV. 2021. Proc. R. Soc. B: Biol. Sci. 288:194520202726
    [Google Scholar]
  67. 67.
    Zhang T, Goldman DI. 2014. Phys. Fluids 26:10101308
    [Google Scholar]
  68. 68.
    Maladen RD, Umbanhowar PB, Ding Y, Masse A, Goldman DI. 2011. 2011 IEEE International Conference on Robotics and Automation1398–403 Shanghai, China: IEEE
    [Google Scholar]
  69. 69.
    Saranli U, Rizzi AA, Koditschek DE. 2004. Int. J. Robot. Res. 23:9903–18
    [Google Scholar]
  70. 70.
    Sane SP. 2003. J. Exp. Biol. 206:234191–208
    [Google Scholar]
  71. 71.
    Bush JW, Hu DL. 2006. Annu. Rev. Fluid Mech. 38:339–69
    [Google Scholar]
  72. 72.
    Godon S, Kruusmaa M, Ristolainen A. 2023. Front. Robot. AI 10:1113881
    [Google Scholar]
  73. 73.
    Wang ZJ. 2005. Annu. Rev. Fluid Mech. 37:183–210
    [Google Scholar]
  74. 74.
    Wu TY. 2011. Annu. Rev. Fluid Mech. 43:25–58
    [Google Scholar]
  75. 75.
    Brunton SL, Noack BR, Koumoutsakos P. 2020. Annu. Rev. Fluid Mech. 52:477–508
    [Google Scholar]
  76. 76.
    Sane SP, Dickinson MH. 2002. J. Exp. Biol. 205:81087–96
    [Google Scholar]
  77. 77.
    Hedrick TL, Cheng B, Deng X. 2009. Science 324:5924252–55
    [Google Scholar]
  78. 78.
    Leishman JG. 2006. Principles of Helicopter Aerodynamics with CD Extra Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  79. 79.
    Aiello BR, Sikandar UB, Minoguchi H, Bhinderwala B, Hamilton CA et al. 2021. J. R. Soc. Interface 18:18520210632
    [Google Scholar]
  80. 80.
    Dickinson MH, Lehmann FO, Sane SP. 1999. Science 284:54221954–60
    [Google Scholar]
  81. 81.
    Gravish N, Peters JM, Combes SA, Wood RJ. 2015. Phys. Rev. Lett. 115:18188101
    [Google Scholar]
  82. 82.
    Peters JM, Peleg O, Mahadevan L. 2019. J. R. Soc. Interface 16:15020180561
    [Google Scholar]
  83. 83.
    Reppert SM, de Roode JC. 2018. Curr. Biol. 28:17R1009–22
    [Google Scholar]
  84. 84.
    Wotton KR, Gao B, Menz MH, Morris RK, Ball SG et al. 2019. Curr. Biol. 29:132167–73
    [Google Scholar]
  85. 85.
    Duerr AE, Miller TA, Lanzone M, Brandes D, Cooper J et al. 2012. PLOS ONE 7:4e35548
    [Google Scholar]
  86. 86.
    Reddy G, Celani A, Sejnowski TJ, Vergassola M. 2016. PNAS 113:33E4877–84
    [Google Scholar]
  87. 87.
    Flack A, Nagy M, Fiedler W, Couzin ID, Wikelski M. 2018. Science 360:6391911–14
    [Google Scholar]
  88. 88.
    Portugal SJ, Hubel TY, Fritz J, Heese S, Trobe D et al. 2014. Nature 505:7483399–402
    [Google Scholar]
  89. 89.
    Usherwood JR, Stavrou M, Lowe JC, Roskilly K, Wilson AM. 2011. Nature 474:7352494–97
    [Google Scholar]
  90. 90.
    Gordon MS, Blickhan R, Dabiri JO, Videler JJ. 2017. Animal Locomotion: Physical Principles and Adaptations Boca Raton, FL: CRC Press
    [Google Scholar]
  91. 91.
    Lighthill MJ. 1971. Proc. R. Soc. Ser. B: Biol. Sci. 179:1055125–38
    [Google Scholar]
  92. 92.
    Walker JA, Westneat MW. 2000. Proc. R. Soc. Ser. B: Biol. Sci. 267:14551875–81
    [Google Scholar]
  93. 93.
    Fish F, Lauder GV. 2006. Annu. Rev. Fluid Mech. 38:193–224
    [Google Scholar]
  94. 94.
    Oeffner J, Lauder GV. 2012. J. Exp. Biol. 215:5785–95
    [Google Scholar]
  95. 95.
    Weihs D. 1973. Nature 241:5387290–91
    [Google Scholar]
  96. 96.
    Partridge BL, Pitcher TJ. 1979. Nature 279:5712418–19
    [Google Scholar]
  97. 97.
    Thandiackal R, Lauder G. 2023. eLife 12:e81392
    [Google Scholar]
  98. 98.
    Li L, Nagy M, Graving JM, Bak-Coleman J, Xie G, Couzin ID. 2020. Nat. Commun. 11:5408
    [Google Scholar]
  99. 99.
    Gray J, Hancock G. 1955. J. Exp. Biol. 32:4802–14
    [Google Scholar]
  100. 100.
    Maladen RD, Ding Y, Li C, Goldman DI. 2009. Science 325:5938314–18
    [Google Scholar]
  101. 101.
    Albert R, Pfeifer M, Barabási AL, Schiffer P. 1999. Phys. Rev. Lett. 82:205
    [Google Scholar]
  102. 102.
    Sharpe SS, Koehler SA, Kuckuk RM, Serrano M, Vela PA et al. 2015. J. Exp. Biol. 218:3440–50
    [Google Scholar]
  103. 103.
    Schiebel PE, Astley HC, Rieser JM, Agarwal S, Hubicki C et al. 2020. eLife 9:e51412
    [Google Scholar]
  104. 104.
    Rieser JM, Gong C, Astley HC, Schiebel PE, Hatton RL et al. 2019. arXiv:1906.11374v2
  105. 105.
    Askari H, Kamrin K. 2016. Nat. Mater. 15:121274–79
    [Google Scholar]
  106. 106.
    Guo Y, Curtis JS. 2015. Annu. Rev. Fluid Mech. 47:21–46
    [Google Scholar]
  107. 107.
    Mazouchova N, Umbanhowar PB, Goldman DI. 2013. Bioinspir. Biomimet. 8:2026007
    [Google Scholar]
  108. 108.
    McInroe B, Astley HC, Gong C, Kawano SM, Schiebel PE et al. 2016. Science 353:6295154–58
    [Google Scholar]
  109. 109.
    Crête M, Larivière S. 2003. Can. J. Zool. 81:111808–14
    [Google Scholar]
  110. 110.
    Lundmark C, Ball JP. 2008. Arct. Antarct. Alp. Res. 40:111–18
    [Google Scholar]
  111. 111.
    Cavagna GA, Heglund NC, Taylor CR. 1977. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 233:5R243–61
    [Google Scholar]
  112. 112.
    Blickhan R, Full R. 1993. J. Comp. Physiol. A 173:509–17
    [Google Scholar]
  113. 113.
    Schmitt J, Garcia M, Razo R, Holmes P, Full RJ. 2002. Biol. Cybernet. 86:5343–53
    [Google Scholar]
  114. 114.
    Goldman DI, Chen TS, Dudek DM, Full RJ. 2006. J. Exp. Biol. 209:152990–3000
    [Google Scholar]
  115. 115.
    Saranli U, Buehler M, Koditschek DE. 2001. Int. J. Robot. Res. 20:7616–31
    [Google Scholar]
  116. 116.
    Spagna JC, Goldman DI, Lin PC, Koditschek DE, Full RJ. 2007. Bioinspir. Biomimet. 2:9
    [Google Scholar]
  117. 117.
    Collins S, Ruina A, Tedrake R, Wisse M. 2005. Science 307:57121082–85
    [Google Scholar]
  118. 118.
    Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR. 2008. IEEE Trans. Robot. 24:65–74
    [Google Scholar]
  119. 119.
    Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC. 2015. Science 348:62411358–61
    [Google Scholar]
  120. 120.
    Zuriguel I, Parisi DR, Hidalgo RC, Lozano C, Janda A et al. 2014. Sci. Rep. 4:1–8
    [Google Scholar]
  121. 121.
    Greene HW. 1997. Snakes: The Evolution of Mystery in Nature Berkeley: Univ. Calif. Press
    [Google Scholar]
  122. 122.
    Jayne BC. 2020. Integr. Comp. Biol. 60:156–70
    [Google Scholar]
  123. 123.
    Marvi H, Gong C, Gravish N, Astley H, Travers M et al. 2014. Science 346:6206224–29
    [Google Scholar]
  124. 124.
    Astley HC, Gong C, Dai J, Travers M, Serrano MM et al. 2015. PNAS 112:196200–5
    [Google Scholar]
  125. 125.
    Marvi H, Hu DL. 2012. J. R. Soc. Interface 9:763067–80
    [Google Scholar]
  126. 126.
    Marvi H, Bridges J, Hu DL. 2013. J. R. Soc. Interface 10:8420130188
    [Google Scholar]
  127. 127.
    Tanaka Y, Ito K, Nakagaki T, Kobayashi R. 2012. J. R. Soc. Interface 9:67222–33
    [Google Scholar]
  128. 128.
    Murphy RR. 2014. Disaster Robotics Cambridge, MA: MIT Press
    [Google Scholar]
  129. 129.
    Ozkan-Aydin Y, Goldman DI, Bhamla MS. 2021. PNAS 118:6e2010542118
    [Google Scholar]
  130. 130.
    Hu DL, Phonekeo S, Altshuler E, Brochard-Wyart F. 2016. Eur. Phys. J. Spec. Top. 225:4629–49
    [Google Scholar]
  131. 131.
    Nguyen C, Ozkan-Aydin Y, Tuazon H, Goldman DI, Bhamla MS, Peleg O. 2021. Front. Phys. 9:734499
    [Google Scholar]
  132. 132.
    Winkler RG, Gompper G. 2020. J. Chem. Phys. 153:4040901
    [Google Scholar]
  133. 133.
    Doody JS, James H, Colyvas K, Mchenry CR, Clulow S. 2015. Biol. J. Linn. Soc. 116:13–26
    [Google Scholar]
  134. 134.
    Shenbrot G, Krasnov B, Khokhlova I, Demidova T, Fielden L. 2002. J. Arid Environ. 51:2265–79
    [Google Scholar]
  135. 135.
    Bollazzi M, Forti LC, Roces F. 2012. Insectes Sociaux 4:487–98
    [Google Scholar]
  136. 136.
    King H, Ocko S, Mahadevan L. 2015. PNAS 112:3711589–93
    [Google Scholar]
  137. 137.
    Sane SP, Ramaswamy SS, Raja SV. 2020. Curr. Opin. Insect Sci. 42:39–46
    [Google Scholar]
  138. 138.
    Dawkins R. 2016. The Extended Phenotype: The Long Reach of the Gene Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  139. 139.
    Hansell M. 2000. Bird Nests and Construction Behaviour Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  140. 140.
    Mainwaring MC, Hartley IR, Lambrechts MM, Deeming DC. 2014. Ecol. Evol. 4:203909–28
    [Google Scholar]
  141. 141.
    Weiner N, Bhosale Y, Gazzola M, King H. 2020. J. Appl. Phys. 127:5050902
    [Google Scholar]
  142. 142.
    Larsen A, Larsen JR, Lane SN. 2021. Earth-Sci. Rev. 218:103623
    [Google Scholar]
  143. 143.
    Keller S, Jaeger HM. 2016. Granul. Matter 18:1–11
    [Google Scholar]
  144. 144.
    Murphy K, Roth L, Peterman D, Jaeger H. 2017. Archit. Des. 87:474–81
    [Google Scholar]
  145. 145.
    Dierichs K, Menges A. 2021. Bioinspir. Biomimet. 16:6065010
    [Google Scholar]
  146. 146.
    Withers PC. 1978. Am. Nat. 112:9881101–12
    [Google Scholar]
  147. 147.
    Wilson K, Kilgore D Jr. 1978. J. Theor. Biol. 71:73–101
    [Google Scholar]
  148. 148.
    White CR, Seymour RS. 2021. J. Comp. Physiol. B 191:61047–58
    [Google Scholar]
  149. 149.
    Vogel S, Ellington CP, Kilgore DL. 1973. J. Comp. Physiol. 85:1–14
    [Google Scholar]
  150. 150.
    Brickner-Braun I, Zucker-Milwerger D, Braun A, Turner JS, Pinshow B, Berliner P. 2014. J. Exp. Biol. 217:234141–48
    [Google Scholar]
  151. 151.
    Doody JS, McHenry C, Brown M, Canning G, Vas G, Clulow S. 2018. J. Zool. 305:288–95
    [Google Scholar]
  152. 152.
    Espinoza DN, Santamarina JC. 2010. Granul. Matter 12:6607–16
    [Google Scholar]
  153. 153.
    Monaenkova D, Gravish N, Rodriguez G, Kutner R, Goodisman MAD, Goldman DI. 2015. J. Exp. Biol. 218:91295–305
    [Google Scholar]
  154. 154.
    Korb J 2011. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 349–73 Dordrecht, Neth: Springer
    [Google Scholar]
  155. 155.
    O'Brien MJ, Bentley RA. 2015. Environ. Archaeol. 20:4364–78
    [Google Scholar]
  156. 156.
    Tschinkel WR. 2004. J. Insect Sci. 4:21
    [Google Scholar]
  157. 157.
    Ocko SA, King H, Andreen D, Bardunias P, Turner JS et al. 2017. J. Exp. Biol. 220:183260–69
    [Google Scholar]
  158. 158.
    Ocko SA, Heyde A, Mahadevan L. 2019. PNAS 116:93379–84
    [Google Scholar]
  159. 159.
    Korb J. 2003. Naturwissenschaften 90:5212–19
    [Google Scholar]
  160. 160.
    Grassé PP. 1959. Insectes Sociaux 6:41–80
    [Google Scholar]
  161. 161.
    Heylighen F. 2016. Cogn. Syst. Res. 38:4–13
    [Google Scholar]
  162. 162.
    Perna A, Theraulaz G. 2017. J. Exp. Biol. 220:83–91
    [Google Scholar]
  163. 163.
    Hangartner W. 1969. Psyche: J. Entomol. 76:58–67
    [Google Scholar]
  164. 164.
    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. 1995. Phys. Rev. Lett. 75:61226–29
    [Google Scholar]
  165. 165.
    Perna A, Jost C, Couturier E, Valverde S, Douady S, Theraulaz G. 2008. Naturwissenschaften 95:9877–84
    [Google Scholar]
  166. 166.
    Pinter-Wollman N. 2015. Biol. Lett. 11:1020150695
    [Google Scholar]
  167. 167.
    Pinter-Wollman N, Fiore SM, Theraulaz G. 2017. Nat. Ecol. Evol. 1:50111
    [Google Scholar]
  168. 168.
    Peleg O, Peters JM, Salcedo MK, Mahadevan L. 2018. Nat. Phys. 14:121193–98
    [Google Scholar]
  169. 169.
    Khuong A, Gautrais J, Perna A, Sbaï C, Combe M et al. 2016. PNAS 113:51303–8
    [Google Scholar]
  170. 170.
    Toner J, Tu Y. 1998. Phys. Rev. E 58:44828–58
    [Google Scholar]
  171. 171.
    Shishkov O, Peleg O. 2022. Collect. Intel. 1:2263391372211237
    [Google Scholar]
  172. 172.
    Tennenbaum M, Liu Z, Hu D, Fernandez-Nieves A. 2016. Nat. Mater. 15:54–59
    [Google Scholar]
  173. 173.
    Anderson C, Goldsztein G, Fernandez-Nieves A. 2023. Sci. Adv. 9:3eadd0635
    [Google Scholar]
  174. 174.
    Reid CR, Lutz MJ, Powell S, Kao AB, Couzin ID, Garnier S. 2015. PNAS 112:4915113–18
    [Google Scholar]
  175. 175.
    Garnier S, Murphy T, Lutz M, Hurme E, Leblanc S, Couzin ID. 2013. PLOS Comput. Biol. 9:3e1002984
    [Google Scholar]
  176. 176.
    Phonekeo S, Mlot N, Monaenkova D, Hu DL, Tovey C. 2017. R. Soc. Open Sci. 4:7170475
    [Google Scholar]
  177. 177.
    Peters JM, Peleg O, Mahadevan L. 2022. J. Exp. Biol. 225:5jeb242234
    [Google Scholar]
  178. 178.
    Neil TR, Shen Z, Robert D, Drinkwater BW, Holderied MW. 2020. PNAS 117:4931134–41
    [Google Scholar]
  179. 179.
    Lauder GV, Wainwright DK, Domel AG, Weaver JC, Wen L, Bertoldi K. 2016. Phys. Rev. Fluids 1:6060502
    [Google Scholar]
  180. 180.
    Whitesides GM. 2018. Angew. Chem. Int. Ed. 57:164258–73
    [Google Scholar]
  181. 181.
    Attanasi A, Cavagna A, Del Castello L, Giardina I, Melillo S et al. 2014. PLOS Comput. Biol. 10:7e1003697
    [Google Scholar]
  182. 182.
    Attanasi A, Cavagna A, Del Castello L, Giardina I, Melillo S et al. 2014. Phys. Rev. Lett. 113:23238102
    [Google Scholar]
  183. 183.
    Ni R, Ouellette N. 2015. Eur. Phys. J. Spec. Top. 224:173271–77
    [Google Scholar]
  184. 184.
    van der Vaart K, Sinhuber M, Reynolds AM, Ouellette NT. 2020. J. R. Soc. Interface 17:16420200018
    [Google Scholar]
  185. 185.
    Weitz S, Blanco S, Fournier R, Gautrais J, Jost C, Theraulaz G. 2012. PLOS ONE 7:61–16
    [Google Scholar]
  186. 186.
    Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM. 2007. Science 315:58171416–20
    [Google Scholar]
  187. 187.
    Shubin NH, Daeschler EB, Jenkins FA Jr. 2006. Nature 440:7085764–71
    [Google Scholar]
  188. 188.
    Falkingham PL, Gatesy SM. 2014. PNAS 111:5118279–84
    [Google Scholar]
  189. 189.
    Hasiotis ST, Platt BF, Hembree DI, Everhart MJ. 2007. Trace Fossils: Concepts, Problems, Prospects W Miller III 196–218 Amsterdam: Elsevier
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040821-120442
Loading
/content/journals/10.1146/annurev-conmatphys-040821-120442
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error