1932

Abstract

Defining the age of the Moon has proven to be an elusive task because it requires reliably dating lunar samples using radiometric isotopic systems that record fractionation of parent and daughter elements during events that are petrologically associated with planet formation. Crystallization of the magma ocean is the only event that unambiguously meets this criterion because it probably occurred within tens of millions of years of Moon formation. There are three dateable crystallization products of the magma ocean: mafic mantle cumulates, felsic crustal cumulates, and late-stage crystallization products known as urKREEP (uniform residuum K, rare earth elements, and P). Although ages for these materials in the literature span 200 million years, there is a preponderance of reliable ages around 4.35 billion years recorded in all three lunar rock types. This age is also observed in many secondary crustal rocks, indicating that they were produced contemporaneously (within uncertainty of the ages), possibly during crystallization and overturn of the magma ocean.

  • ▪  The duration of planet formation is key information in understanding the mechanisms by which the terrestrial planets formed.
  • ▪  Ages of the oldest lunar rocks range widely, reflecting either the duration of Moon formation or disturbed ages caused by impact metamorphism.
  • ▪  Ages determined for compositionally distinct crust and mantle materials produced by lunar magma ocean differentiation cluster near 4.35 Gyr.
  • ▪  The repeated occurrence of 4.35 Gyr ages implies that Moon formation occurred late in Solar System history, likely by giant impact into Earth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-060538
2023-05-31
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-060538.html?itemId=/content/journals/10.1146/annurev-earth-031621-060538&mimeType=html&fmt=ahah

Literature Cited

  1. Alibert C, Norman MD, McCulloch MT. 1994.. An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. . Geochim. Cosmochim. Acta 58::292126
    [Google Scholar]
  2. Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA. 2002.. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. . Science 297::167883
    [Google Scholar]
  3. Barboni M, Boehnke P, Keller B, Kohl IE, Schoene B, et al. 2017.. Early formation of the Moon 4.51 billion years ago. . Sci. Adv. 3::e1602365
    [Google Scholar]
  4. Bonnand P, Williams HM, Parkinson IJ, Wood BJ, Halliday AN. 2016.. Stable chromium isotopic composition of meteorites and metal-silicate experiments: implications for fractionation during core formation. . Earth Planet. Sci. Lett. 435::1421
    [Google Scholar]
  5. Borg LE, Brennecka GA, Kruijer TS. 2022.. The origin of volatile elements in the Earth–Moon system. . PNAS 119::e2115726119
    [Google Scholar]
  6. Borg LE, Brennecka GA, Symes SJ. 2016.. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. . Geochim. Cosmochim. Acta 175::15067
    [Google Scholar]
  7. Borg LE, Cassata WS, Wimpenny J, Gaffney AM, Shearer CK. 2020.. The formation and evolution of the Moon's crust inferred from the Sm-Nd isotopic systematics of highlands rocks. . Geochim. Cosmochim. Acta 290::31232
    [Google Scholar]
  8. Borg LE, Connelly JN, Boyet M, Carlson RW. 2011.. Chronological evidence that the Moon is either young or did not have a global magma ocean. . Nature 477::7072
    [Google Scholar]
  9. Borg LE, Connelly JN, Cassata WS, Gaffney AM, Bizzarro M. 2017.. Chronologic implications for slow cooling of troctolite 76535 and temporal relationships between the Mg-suite and the ferroan anorthosite suite. . Geochim. Cosmochim. Acta 201::37791
    [Google Scholar]
  10. Borg LE, Gaffney AM, Kruijer TS, Marks NA, Sio CK, Wimpenny J. 2019.. Isotopic evidence for a young lunar magma ocean. . Earth Planet. Sci. Lett. 523::115706
    [Google Scholar]
  11. Borg LE, Gaffney AM, Shearer CK. 2015.. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. . Meteorit. Planet. Sci. 50::71532
    [Google Scholar]
  12. Borg LE, Norman M, Nyquist L, Bogard D, Snyder G, et al. 1999.. Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. . Geochim. Cosmochim. Acta 63::267991
    [Google Scholar]
  13. Borg LE, Nyquist LE, Taylor LA, Wiesmann H, Shih CY. 1997.. Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. . Geochim. Cosmochim. Acta 61::491531
    [Google Scholar]
  14. Borg LE, Shearer CK, Asmerom Y, Papike JJ. 2004.. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. . Nature 432::20911
    [Google Scholar]
  15. Bouvier A, Vervoort JD, Patchett PJ. 2008.. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. . Earth Planet. Sci. Lett. 273::4857
    [Google Scholar]
  16. Boyet M, Carlson RW. 2007.. A highly depleted moon or a non-magma ocean origin for the lunar crust?. Earth Planet. Sci. Lett. 262::50516
    [Google Scholar]
  17. Boyet M, Carlson RW, Borg LE, Horan M. 2015.. Sm–Nd systematics of lunar ferroan anorthositic suite rocks: constraints on lunar crust formation. . Geochim. Cosmochim. Acta 148::20318
    [Google Scholar]
  18. Brandon AD, Lapen TJ, Debaille V, Beard BL, Rankenburg K, Neal C. 2009.. Re-evaluating 142Nd/144Nd in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon. . Geochim. Cosmochim. Acta 73::642145
    [Google Scholar]
  19. Brown GM, Emeleus CH, Holland JG. Peckett A, Phillips R. 1972.. Mineral-chemical variations in Apollo 14 and Apollo 15 basalts and granitic fractions. . Proc. Lunar Planet. Sci. Conf. 3::14157
    [Google Scholar]
  20. Burkhardt C, Borg LE, Brennecka GA, Shollenberger QR, Dauphas N, Kleine T. 2016.. A nucleosynthetic origin for the Earth's anomalous 142Nd composition. . Nature 537::39498
    [Google Scholar]
  21. Carlson RW, Borg LE, Gaffney AM, Boyet M. 2014.. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. . Philos. Trans. R. Soc. A 372:(2024):20130246
    [Google Scholar]
  22. Carlson RW, Boyet M, O'Neil J, Rizo H, Walker RJ. 2015.. Early differentiation and its long-term consequences for Earth evolution. . In The Early Earth: Accretion and Differentiation, ed. J Badro, M Walter , pp. 14372. Washington, DC:: Am. Geophys. Union
    [Google Scholar]
  23. Carlson RW, Lugmair GW. 1979.. Sm–Nd constraints on early lunar differentiation and the evolution of KREEP. . Earth Planet. Sci. Lett. 45::12332
    [Google Scholar]
  24. Carlson RW, Lugmair GW. 1981.. Time and duration of lunar highlands crust formation. . Earth Planet. Sci. Lett. 52::22738
    [Google Scholar]
  25. Carlson RW, Lugmair GW. 1988.. The age of ferroan anorthosite 60025: oldest crust on a young Moon?. Earth Planet. Sci. Lett. 90::11930
    [Google Scholar]
  26. Cavosie AJ, Erickson TM, Timms NE, Reddy SM, Talavera C, et al. 2015.. A terrestrial perspective on using ex situ shocked zircons to date lunar impacts. . Geology 43::9991002
    [Google Scholar]
  27. Chambers JE. 2004.. Planetary accretion in the inner Solar System. . Earth Planet. Sci. Lett. 223::24152
    [Google Scholar]
  28. Che X, Nemchin A, Liu D, Long T, Wang C, et al. 2021.. Age and composition of young basalts on the Moon, measured from samples returned by Chang'e-5. . Science 374::88790
    [Google Scholar]
  29. Compston W, Berry H, Vernon MJ, Chappell BW, Kaye MJ. 1971.. Rubidium-strontium chronology and chemistry of lunar material from the Ocean of Storms. . Proc. Lunar Planet. Sci. Conf. 2::147185
    [Google Scholar]
  30. Connelly JN, Bizzarro M. 2016.. Lead isotope evidence for a young formation age of the Earth–Moon system. . Earth Planet. Sci. Lett. 452::3643
    [Google Scholar]
  31. Connelly JN, Bizzarro M, Krot AN, Nordlund A, Wielandt D, Ivanova MA. 2012.. The absolute chronology and thermal processing of solids in the Solar protoplanetary disk. . Science 338::65155
    [Google Scholar]
  32. Edmunson J, Borg LE, Nyquist LE, Asmerom Y. 2009.. A combined Sm–Nd, Rb–Sr, and U–Pb isotopic study of Mg-suite norite 78238: further evidence for early differentiation of the Moon. . Geochim. Cosmochim. Acta 73::51427
    [Google Scholar]
  33. Elardo SM, Draper DS, Shearer CK. 2011.. Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. . Geochim. Cosmochim. Acta 75::302445
    [Google Scholar]
  34. Elkins-Tanton LT, Burgess S, Yin QZ. 2011.. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. . Earth Planet. Sci. Lett. 304::32636
    [Google Scholar]
  35. Elkins-Tanton LT, Van Orman JA, Hager BH, Grove TL. 2002.. Re-examination of the lunar magma ocean cumulate overturn hypothesis: Melting or mixing is required. . Earth Planet. Sci. Lett. 196::23949
    [Google Scholar]
  36. Gaffney AM, Borg LE. 2014.. A young solidification age for the lunar magma ocean. . Geochim. Cosmochim. Acta 140::22740
    [Google Scholar]
  37. Gaffney AM, Borg LE, Shearer CK, Burger PV. 2015.. Chronology of 15445 Norite clast B and implication for Mg-suite magmatism. . Proc. Lunar Planet. Sci. Conf. 2015::1443 ( Abstr.
    [Google Scholar]
  38. Grange ML, Nemchin AA, Pidgeon RT, Muhling JR, Kennedy AK. 2009.. Thermal history recorded by the Apollo 17 impact melt breccia 73217. . Geochim. Cosmochim. Acta 73::3093107
    [Google Scholar]
  39. Grange ML, Nemchin AA, Timms N, Pidgeon RT, Meyer C. 2011.. Complex magmatic and impact history prior to 4.1 Ga recorded in zircon from Apollo 17 South Massif aphanitic breccia 73235. . Geochim. Cosmochim. Acta 75::221332
    [Google Scholar]
  40. Grange ML, Pidgeon RT, Nemchin AA, Timms NE, Meyer C. 2013.. Interpreting U–Pb data from primary and secondary features in lunar zircon. . Geochim. Cosmochim. Acta 101::11232
    [Google Scholar]
  41. Halliday AN, Porcelli D. 2001.. In search of lost planets—the paleocosmochemistry of the inner solar system. . Earth Planet. Sci. Lett. 192::54559
    [Google Scholar]
  42. Hanan BB, Tilton GR. 1987.. 60025:: Relict of primitive lunar crust?. Earth Planet. Sci. Lett. 84::1521
    [Google Scholar]
  43. Hans U, Kleine T, Bourdon B. 2013.. Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. . Earth Planet. Sci. Lett. 374::20414
    [Google Scholar]
  44. Hartmann WK, Davis DR. 1975.. Satellite-sized planetesimals and lunar origin. . Icarus 24::50415
    [Google Scholar]
  45. Hess PC. 1994.. The petrogenesis of lunar troctolites. . J. Geophys. Res. 99:(E9):1908393
    [Google Scholar]
  46. Jahn B-M, Gruau G, Glickson AY. 1982.. Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. . Contrib. Minerol. Petrol. 80::2540
    [Google Scholar]
  47. James OB. 1980.. Rocks of the early lunar crust. . Proc. Lunar Planet. Sci. Conf. 11::36593
    [Google Scholar]
  48. Keays RR, Ganapathy R, Laul JC, Anders E, Herzog GF, Jeffery PM. 1970.. Trace elements and radioactivity in lunar rocks: implications for meteorite infall, solar-wind flux and formation conditions of Moon. . Science 167::49093
    [Google Scholar]
  49. Kinoshita N, Paul M, Kashiv Y, Collon P, Deibel CM, et al. 2012.. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system. . Science 335::161417
    [Google Scholar]
  50. Kleine T, Palme H, Mezger K, Halliday AN. 2005.. Hf-W chronometry of lunar metals and the age and early differentiation of the Moon. . Science 310::167174
    [Google Scholar]
  51. Kruijer TS, Archer GJ, Kleine T. 2021.. No 182W evidence for early Moon formation. . Nat. Geosci. 14::71415
    [Google Scholar]
  52. Kruijer TS, Kleine T. 2017.. Tungsten isotopes and the origin of the Moon. . Earth Planet. Sci. Lett. 475::1524
    [Google Scholar]
  53. Kruijer TS, Kleine T, Fischer-Godde M, Sprung P. 2015.. Lunar tungsten isotopic evidence for the late veneer. . Nature 520::53437
    [Google Scholar]
  54. Laneuville M, Wieczorek MA, Breuer D, Tosi N. 2013.. Asymmetric thermal evolution of the Moon. . J. Geophys. Res. Planets 118::143552
    [Google Scholar]
  55. Lee D-C, Halliday AN, Leya I, Wieler R, Wiechert U. 2002.. Cosmogenic tungsten and the origin and earliest differentiation of the Moon. . Earth Planet. Sci. Lett. 198::26774
    [Google Scholar]
  56. Lee D-C, Halliday AN, Snyder GA, Taylor LA. 1997.. Age and origin of the Moon. . Science 278::1098103
    [Google Scholar]
  57. Levison HF, Kretke KA, Walsh KJ, Bottke WF. 2015.. Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. . PNAS 112::1418085
    [Google Scholar]
  58. Leya I, Wieler R, Halliday AN. 2000.. Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf–W cosmochemistry. . Earth Planet. Sci. Lett. 175::112
    [Google Scholar]
  59. Li QL, Zhou Q, Liu Y, Xiao Z, Lin Y, et al. 2021.. Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts. . Nature 600::5458
    [Google Scholar]
  60. Lin Y, Tronche EJ, Steenstra ES, van Westrenen W. 2017.. Experimental constraints on the solidification of a nominally dry lunar magma ocean. . Earth Planet. Sci. Lett. 471::10416
    [Google Scholar]
  61. Longhi J. 1977.. Magma oceanography 2: chemical evolution and crustal formation. . Proc. Lunar Planet. Sci. Conf. 8::60121
    [Google Scholar]
  62. Longhi J, Boudreau AE. 1979.. Complex igneous processes and the formation of the primitive lunar crustal rocks. . Proc. Lunar Planet. Sci. Conf. 10::2085105
    [Google Scholar]
  63. Lugmair GW, Carlson RW. 1978.. The Sm-Nd history of KREEP. . Proc. Lunar Planet. Sci. Conf. 9::689704
    [Google Scholar]
  64. Lugmair GW, Marti K, Kurtz JP, Scheinin NB. 1976.. History and genesis of lunar troctolite 76535 or: How old is old?. Proc. Lunar Planet. Sci. Conf. 7::200933
    [Google Scholar]
  65. Lugmair GW, Shukolyukov A. 1998.. Early solar system timescales according to 53Mn-53Cr systematics. . Geochim. Cosmochim. Acta 62::286386
    [Google Scholar]
  66. Markowski A, Quitte G, Kleine T, Halliday A, Bizzarro M, Irving A. 2007.. Hafnium–tungsten chronometry of angrites and the earliest evolution of planetary objects. . Earth Planet. Sci. Lett. 262::21429
    [Google Scholar]
  67. Marks NE, Borg LE, Hutcheon ID, Jacobsen B, Clayton RN. 2014.. Samarium–neodymium chronology and rubidium–strontium systematics of an Allende calcium–aluminum-rich inclusion with implications for 146Sm half-life. . Earth Planet. Sci. Lett. 405::1524
    [Google Scholar]
  68. Marks NE, Borg LE, Shearer CK, Cassata WS. 2019.. Geochronology of an Apollo 16 clast provides evidence for a basin-forming impact 4.3 billion years ago. . J. Geophys. Res. Planets 124::246581
    [Google Scholar]
  69. Maurice M, Tosi N, Schwinger S, Breuer D, Kleine T. 2020.. A long-lived magma ocean on a young Moon. . Sci. Adv. 6::eaba8949
    [Google Scholar]
  70. McCallum IS, Domeneghetti MC, Schwartz JM, Mullen EK, Zema M, et al. 2006.. Cooling history of lunar Mg-suite gabbronorite 76255, troctolite 76535 and Stillwater pyroxenite SC-936: the record in exsolution and ordering in pyroxenes. . Geochim. Cosmochim. Acta 70::606878
    [Google Scholar]
  71. McDonough WF, Sun S-S. 1995.. The composition of the Earth. . Chem. Geol. 120::22353
    [Google Scholar]
  72. McLeod CL, Brandon AD, Armytage RMG. 2014.. Constraints on the formation age and evolution of the Moon from 142Nd–143Nd systematics of Apollo 12 basalts. . Earth Planet. Sci. Lett. 396::17989
    [Google Scholar]
  73. Meissner F, Schmidt-Ott WD, Ziegeler L. 1987.. Half-life and α-ray energy of 146Sm. . Z. Phys. A Atom. Nuclei 327::17174
    [Google Scholar]
  74. Meyer C, Williams IS, Compston W. 1996.. Uranium-lead ages for lunar zircons: evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. . Meteorit. Planet. Sci. 31::37087
    [Google Scholar]
  75. Morrison GH, Gerard JT, Kashuba AT, Gangadharam EV, Rothenburg AM, et al. 1970.. Multielement analysis of lunar soils and rocks. . Science 167::5057
    [Google Scholar]
  76. Nemchin A, Timms N, Pidgeon R, Geisler T, Reddy S, Meyer C. 2009a.. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. . Nat. Geosci. 2::13336
    [Google Scholar]
  77. Nemchin AA, Pidgeon RT, Healy D, Grange ML, Whithouse MJ, Vaughan J. 2009b.. The comparative behavior of apatite-zircon U-Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. . Meteorit. Planet. Sci. 44::171734
    [Google Scholar]
  78. Nemchin AA, Pidgeon RT, Whitehouse MJ, Vaughan JP, Meyer C. 2008.. SIMS U–Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP. . Geochim. Cosmochim. Acta 72::66889
    [Google Scholar]
  79. Nemchin AA, Whitehouse MJ, Pidgeon RT, Meyer C. 2006.. Oxygen isotopic signature of 4.4–3.9 Ga zircons as a monitor of differentiation processes on the Moon. . Geochim. Cosmochim. Acta 70::186472
    [Google Scholar]
  80. Newsom HE. 1995.. Composition of the solar system, planets, meteorites, and major terrestrial reservoirs. . In Global Earth Physics: A Handbook of Physical Constants, ed. TJ Ahrens, pp. 15989. Washington, DC:: Am. Geophys. Union
    [Google Scholar]
  81. Norman MD, Borg LE, Nyquist LE, Bogard DD. 2003.. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. . Meteorit. Planet. Sci. 38::64561
    [Google Scholar]
  82. Nyquist LE, Bansal BM, Wiesmann H, Jahn B-M. 1974.. Taurus-Littrow chronology: some constraints on early lunar crustal development. . Proc. Lunar Planet. Sci. Conf. 5::151539
    [Google Scholar]
  83. Nyquist LE, Bogard DD, Shih CY. 2001.. Radiometric chronology of the Moon and Mars. . In The Century of Space Science, ed. J Bleeker, J Geiss, M Huber , pp. 132576. Dordrecht, Neth.:: Kluwer
    [Google Scholar]
  84. Nyquist LE, Bogard DD, Yamaguchi A, Shih CY, Karouji Y, et al. 2006.. Feldspathic clasts in Yamato-86032: remnants of the lunar crust with implications for its formation and impact history. . Geochim. Cosmochim. Acta 70::59906015
    [Google Scholar]
  85. Nyquist LE, Reimold WU, Bogard DD, Wooden JL, Bansal BM, et al. 1981.. A comparative Rb–Sr, Sm–Nd, and K–Ar study of shocked norite 78236: evidence of slow cooling in the lunar crust?. Proc. Lunar Planet. Sci. Conf. 12::6797
    [Google Scholar]
  86. Nyquist LE, Shih CY. 1992.. The isotopic record of lunar volcanism. . Geochim. Cosmochim. Acta 56::221334
    [Google Scholar]
  87. Nyquist LE, Wiesmann H, Bansal B, Shih C-Y, Keith JE, Harper CL. 1995.. 146Sm-142Nd formation interval for the lunar mantle. . Geochim. Cosmochim. Acta 59::281737
    [Google Scholar]
  88. Nunes PD, Tatsumoto M, Knight RJ, Unruh DM, Doe BR. 1973.. U-Th-Pb systematics of some Apollo 16 lunar samples. . Proc. Lunar Planet. Sci. Conf. 4::1797822
    [Google Scholar]
  89. Palme H. 1977.. On the age of KREEP. . Geochim. Cosmochim. Acta 41::1791801
    [Google Scholar]
  90. Palme H, O'Neill HSC. 2014.. Cosmochemical estimates of mantle composition. . In Treatise on Geochemistry, ed. RW Carlson , pp. 139. Amsterdam:: Elsevier
    [Google Scholar]
  91. Papanastassiou DA, Wasserburg GJ, Burnett DS. 1970.. Rb-Sr ages of lunar rocks from the Sea of Tranquility. . Earth Planet. Sci. Lett. 8::119
    [Google Scholar]
  92. Papike JJ, Ryder G, Shearer CK. 2018.. Lunar samples. . In Planetary Materials, ed. JJ Papike , pp. 719952. Boston:: De Gruyter
    [Google Scholar]
  93. Parmentier EM, Zhong S, Zuber MT. 2002.. Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP?. Earth Planet. Sci. Lett. 201::47380
    [Google Scholar]
  94. Perera V, Jackson AP, Elkins-Tanton LT, Asphaug E. 2018.. Effect of reimpacting debris on the solidification of the lunar magma ocean. . J. Geophys. Res. Planets 123::116891
    [Google Scholar]
  95. Pidgeon RT, Nemchin AA, Van Bronswijk W, Geisler T, Meyer C, et al. 2007.. Complex history of a zircon aggregate from lunar breccia 73235. . Geochim. Cosmochim. Acta 71::137081
    [Google Scholar]
  96. Premo WR, Tatsumoto M, Wang JW. 1989.. Pb isotopes in anorthositic breccias 67075 and 62237: a search for primitive lunar lead. . Proc. Lunar Planet. Sci. Conf. 19::6171
    [Google Scholar]
  97. Prissel TC, Gross J. 2020.. On the petrogenesis of lunar troctolites: new insights into cumulate mantle overturn and mantle exposures in impact basins. . Earth Planet. Sci. Lett. 551::116531
    [Google Scholar]
  98. Prissel TC, Parman SW, Head JW. 2016.. Formation of the lunar highlands Mg-suite as told by spinel. . Am. Mineral. 101::162435
    [Google Scholar]
  99. Qin L, Alexander CMOD, Carlson RW, Horan MF, Yokoyama T. 2010.. Contributors to chromium isotope variation in meteorites. . Geochim. Cosmochim. Acta 74::112245
    [Google Scholar]
  100. Quillen AC, Martini L, Nakajima M. 2019.. Near/far side asymmetry in the tidally heated Moon. . Icarus 329::18296
    [Google Scholar]
  101. Raedeke LD, McCallum IS. 1980.. A comparison of the fractionation trends in the lunar crust and the Stillwater Complex. . In Proceedings of the Conference on the Lunar Highlands Crust, pp. 13353. New York:: Pergamon Press
    [Google Scholar]
  102. Rankenburg K, Brandon AD, Neal CR. 2006.. Neodymium isotope evidence for a chondritic composition of the Moon. . Science 312::136972
    [Google Scholar]
  103. Rapp JF, Draper DS. 2018.. Fractional crystallization of the lunar magma ocean: updating the dominant paradigm. . Meteorit. Planet. Sci. 53::143255
    [Google Scholar]
  104. Ringwood AE, Kesson SE. 1976.. A dynamic model for mare basalt petrogenesis. . Proc. Lunar Planet. Sci. Conf. 7::1697722
    [Google Scholar]
  105. Sedaghatpour F, Teng FZ, Liu Y, Sears DW, Taylor LA. 2013.. Magnesium isotopic composition of the Moon. . Geochim. Cosmochim. Acta 120::116
    [Google Scholar]
  106. Shearer CK, Elardo SM, Petro NE, Borg LE, McCubbin FM. 2015.. Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. . Am. Minerol. 100::294325
    [Google Scholar]
  107. Shearer CK, Hess PC, Wieczorek MA, Pritchard ME, Parmentier EM, et al. 2006.. Thermal and magmatic evolution of the Moon. . Rev. Mineral. Geochem. 60::365518
    [Google Scholar]
  108. Shervais JW, McGee JJ. 1999.. KREEP cumulates in the western lunar highlands: ion and electron microprobe study of alkali-suite anorthosites and norites from Apollo 12 and 14. . Am. Minerol. 84::80620
    [Google Scholar]
  109. Shih CY, Nyquist LE, Dasch EJ, Bogard DD, Bansal BM, Wiesmann H. 1993.. Ages of pristine noritic clasts from lunar breccias 15445 and 15455. . Geochim. Cosmochim. Acta 57::91531
    [Google Scholar]
  110. Sio CK, Borg LE, Cassata WS. 2020.. The timing of lunar solidification and mantle overturn recorded in ferroan anorthosite 62237. . Earth Planet. Sci. Lett. 538::116219
    [Google Scholar]
  111. Smith JV, Anderson AT, Newton RC, Olsen EJ, Wyllie PJ. 1970.. Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. . Goechim. Cosmochim. Acta 11:(Supp.):897925
    [Google Scholar]
  112. Snape JF, Nemchin AA, Bellucci JJ, Whitehouse MJ, Tartese R, et al. 2016.. Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. . Earth Planet. Sci. Lett. 451::14958
    [Google Scholar]
  113. Snyder GA, Borg LE, Nyquist LE, Taylor LA. 2000.. Chronology and isotopic constraints on lunar evolution. . In Origin of the Earth and Moon, ed. R Canup, K Righter , pp. 36195. Tucson:: University of Arizona Press
    [Google Scholar]
  114. Snyder GA, Neal CR, Taylor LA, Halliday AN. 1995a.. Processes involved in the formation of the magnesian-suite plutonic rocks from the highlands of the Earth's Moon. . J. Geophys. Res. 100:(E5):936588
    [Google Scholar]
  115. Snyder GA, Taylor LA, Jerde EA, Halliday AN. 1995b.. Chronology and petrogenesis of the lunar highlands alkali suite: cumulates of KREEP basalt crystallization. . Geochim. Cosmochim. Acta 59::1185203
    [Google Scholar]
  116. Snyder GA, Taylor LA, Neal CR. 1992.. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. . Geochim. Cosmochim. Acta 56::380923
    [Google Scholar]
  117. Solomon SC, Longhi J. 1977.. Magma oceanography: 1. Thermal evolution. . Proc. Lunar Planet. Sci. Conf. 8::58399
    [Google Scholar]
  118. Sprung P, Kleine T, Scherer EE. 2013.. Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon. . Earth Planet. Sci. Lett. 380::7787
    [Google Scholar]
  119. Stacey JS, Kramers JD. 1975.. Approximation of terrestrial lead isotope evolution by a two-stage model. . Earth Planet. Sci. Lett. 26::20721
    [Google Scholar]
  120. Taylor DJ, McKeegan KD, Harrison TM. 2009.. Lu–Hf zircon evidence for rapid lunar differentiation. . Earth Planet. Sci. Lett. 279::15764
    [Google Scholar]
  121. Taylor SR, Norman MD. 1990.. Accretion of differentiated planetesimals to the Earth. . In Origin of the Earth, ed. HE Newsom, JH Jones, pp. 2943. Houston, TX:: Lunar Planet. Inst
    [Google Scholar]
  122. Taylor SR, Norman MD, Esat TM. 1993.. The Mg-suite and the highland crust: an unsolved enigma. . Proc. Lunar Planet. Sci. Conf. 24::141314 ( Abstr
    [Google Scholar]
  123. Tera F, Papanastassiou DA, Wasserburg GJ. 1974.. Isotopic evidence for a terminal lunar cataclysm. . Earth Planet. Sci. Lett. 22::121
    [Google Scholar]
  124. Tera F, Wasserburg GJ. 1972.. U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions. . Earth Planet. Sci. Lett. 17::3651
    [Google Scholar]
  125. Tera F, Wasserburg GJ. 1974.. U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the moon. . Proc. Lunar Planet. Sci. Conf. 5::157199
    [Google Scholar]
  126. Thiemens MM, Sprung P, Fonseca ROC, Leitzke FP, Munker C. 2019.. Early Moon formation inferred from hafnium–tungsten systematics. . Nat. Geosci. 12::696700
    [Google Scholar]
  127. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. 2007.. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. . Nature 450::12069
    [Google Scholar]
  128. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. 2009.. Tungsten isotopes in ferroan anorthosites: implications for the age of the Moon and lifetime of its magma ocean. . Icarus 199::24549
    [Google Scholar]
  129. Touboul M, Puchtel IS, Walker RJ. 2015.. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. . Nature 520::53033
    [Google Scholar]
  130. Urey HC. 1951.. The origin and development of the earth and other terrestrial planets. . Geochim. Cosmochim. Acta 1::20977
    [Google Scholar]
  131. Walker D, Longhi J, Hays JF. 1975.. Differentiation of a very thick magma body and implications for the source regions of mare basalts. . Proc. Lunar Planet. Sci. Conf. 6::110320
    [Google Scholar]
  132. Warren PH. 1985.. The magma ocean concept and lunar evolution. . Annu. Rev. Earth Planet. Sci. 13::20140
    [Google Scholar]
  133. Warren PH. 1989.. KREEP: major-element diversity, trace-element uniformity (almost). . In Workshop on Moon in Transition: Apollo 14, KREEP, and Evolved Lunar Rocks, ed. GJ Taylor, PH Warren, pp. 14953. Houston, TX:: Lunar Planet. Inst.
    [Google Scholar]
  134. Warren PH. 1993.. A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. . Am. Minerol. 78::36076
    [Google Scholar]
  135. Warren PH, Wasson JT. 1979.. The origin of KREEP. . Rev. Geophys. 17::7388
    [Google Scholar]
  136. Warren PH, Wasson JT. 1980.. Further foraging for pristine nonmare rocks: correlations between geochemistry and longitude. . Proc. Lunar Planet. Sci. Conf. 11::43170
    [Google Scholar]
  137. Wieczorek MA, Phillips RJ. 2000.. The “Procellarum KREEP Terrane”: implications for mare volcanism and lunar evolution. . J. Geophys. Res. Planets 105::2041730
    [Google Scholar]
  138. Wood JA. 1975.. Lunar petrogenesis in a well-stirred magma ocean. . Proc. Lunar Planet. Sci. Conf. 6::1087102
    [Google Scholar]
  139. Wood JA, Dickey JS Jr., Marvin UB, Powell BN. 1970.. Lunar anorthosites and a geophysical model of the moon. . Geochim. Cosmochim. Acta 11:(Supp.):96588
    [Google Scholar]
  140. Yu S, Tosi N, Schwinger S, Maurice M, Breuer D, Xiao L. 2019.. Overturn of ilmenite-bearing cumulates in a rheologically weak lunar mantle. . J. Geophys. Res. Planets 124::41836
    [Google Scholar]
  141. Zhang A-C, Taylor LA, Wang R-C, Li Q-L, Li X-H, et al. 2012.. Thermal history of Apollo 12 granite and KREEP-rich rock: clues from Pb/Pb ages of zircon in lunar breccia 12013. . Geochim. Cosmochim. Acta 95::114
    [Google Scholar]
  142. Zhang B, Lin Y, Moser DE, Warren PH, Hao J, et al. 2021.. Timing of lunar Mg-suite magmatism constrained by SIMS U-Pb dating of Apollo norite 78238. . Earth Planet. Sci. Lett. 569::117046
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-060538
Loading
/content/journals/10.1146/annurev-earth-031621-060538
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error