1932

Abstract

Mimas, the smallest and innermost of Saturn's mid-sized moons, has a heavily cratered surface devoid of the intricate fracture systems of its neighbor, Enceladus. However, Cassini measurements identified a signature of an ocean under Mimas’ ice shell, although a frozen ice shell over a rocky interior could not be ruled out. The Mimas ocean hypothesis has stimulated inquiry into Mimas’ geologic history and orbital evolution. Here, we summarize the results of these investigations, which (perhaps surprisingly) are consistent with an ocean-bearing Mimas as long as it is geologically young. In that case, a ring origin for Mimas is favored over primordial accretion. An independently developed model for the formation of a gap in Saturn's rings provides a potential mechanism for generating a late-stage ocean within Mimas and may have assisted in the development of Enceladus’ ocean and associated geologic activity. Rather than a battered relic, Mimas may be the youngest ocean moon in the Saturn system, destined to join Enceladus as an active world in the future. The presence of oceans within Saturn's mid-sized moons also has implications for the habitability of Uranus’ moons; the Uranus system was chosen as the highest priority target for the next NASA Flagship-class mission.

  • ▪  Models of Mimas’ tides and rotation state support a present-day internal ocean.
  • ▪  Mimas’ craters, impact basin, and lack of widespread tectonism are compatible with a stable/warming ocean.
  • ▪  The formation of the Cassini Division within Saturn's rings provides a potential pathway to a present-day ocean within Mimas.
  • ▪  If Mimas has an ocean today, it is geologically young.
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-061221
2023-05-31
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-061221.html?itemId=/content/journals/10.1146/annurev-earth-031621-061221&mimeType=html&fmt=ahah

Literature Cited

  1. Amsden AA, Ruppel HM, Hirt CW. 1980. SALE: a simplified ALE computer program for fluid flow speeds Tech. Rep. 5176006 Los Alamos Sci. Lab. Los Alamos, NM: https://doi.org/https://doi.org/10.2172/5176006
    [Crossref]
  2. Asphaug E, Reufer A. 2013. Late origin of the Saturn system. Icarus 223:544–65
    [Google Scholar]
  3. Baillié K, Noyelles B, Lainey V, Charnoz S, Tobie G 2019. Formation of the Cassini Division—I. Shaping the rings by Mimas inward migration. Mon. Not. R. Astron. Soc. 486:2933–46
    [Google Scholar]
  4. Bland MT, Singer KN, McKinnon WB, Schenk PM. 2012. Enceladus’ extreme heat flux as revealed by its relaxed craters. Geophys. Res. Lett. 39:L17204
    [Google Scholar]
  5. Bottke WF, Brož M, O'Brien DP, Bagatin AC, Morbidelli A, Marchi S 2015. The collisional evolution of the main asteroid belt. Asteroids IV P Michel, FE Demeo, WF Bottke 701–24. Tucson: Univ. Arizona Press
    [Google Scholar]
  6. Bruesch LS, Asphaug E. 2004. Modeling global impact effects on middle-sized icy bodies: applications to Saturn's moons. Icarus 168:457–66
    [Google Scholar]
  7. Canup RM, Ward WR. 2006. A common mass scaling for satellite systems of gaseous planets. Nature 441:834–39
    [Google Scholar]
  8. Castillo-Rogez JC, Efroimsky M, Lainey V 2011. The tidal history of Iapetus: spin dynamics in the light of a refined dissipation model. J. Geophys. Res. 116:E9E09008
    [Google Scholar]
  9. Castillo-Rogez JC, Hemmingway D, Rhoden AR, Tobie G, McKinnon WB 2018. Origin and evolution of Saturn's mid-sized moons. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 285–306. Tucson: Univ. Arizona Press
    [Google Scholar]
  10. Caudal G. 2017. The damping of forced librations of triaxial satellites with eccentric orbits: consequences on the dynamics of Mimas. Icarus 286:280–88
    [Google Scholar]
  11. Charnoz S, Crida A, Castillo-Rogez JC, Lainey V, Dones L et al. 2011. Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus 216:535–50
    [Google Scholar]
  12. Choblet G, Tobie G, Sotin C, Běhounková M, Čadek O et al. 2017. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1:841–47
    [Google Scholar]
  13. Collins GC, McKinnon WB, Moore JM, Nimmo F, Pappalardo RT et al. 2009. Tectonics of the outer planet satellites. Planetary Tectonics TR Watters, RA Schultz 264–350. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  14. Collins GS, Melosh HJ, Ivanov BA. 2004. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39:217–31
    [Google Scholar]
  15. Colwell JE, Nicholson PD, Tiscareno MS, Murray CD, French RG, Marouf EA 2009. The structure of Saturn's rings. Saturn from Cassini-Huygens MK Dougherty, LW Esposito, SM Krimigis 375–412. Dordrecht, Neth.: Springer
    [Google Scholar]
  16. Crow-Willard EN, Pappalardo RT 2015. Structural mapping of Enceladus and implications for formation of tectonized regions. J. Geophys. Res. Planets 120:928–50
    [Google Scholar]
  17. Ćuk M, Dones L, Nesvorný D. 2016. Dynamical evidence for a late formation of Saturn's moons. Astrophys. J. 820:97
    [Google Scholar]
  18. Denton CA, Rhoden AR. 2022. Tracking the evolution of an ocean within Mimas using the Herschel impact basin. Geophys. Res. Lett. 49:24e2022GL100516
    [Google Scholar]
  19. Dombard AJ, McKinnon WB. 2006. Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto. J. Geophys. Res. 111:E1E01001
    [Google Scholar]
  20. Dubinski J. 2019. A recent origin for Saturn's rings from the collisional disruption of an icy moon. Icarus 321:291–306
    [Google Scholar]
  21. Ferguson SN, Rhoden AR, Kirchoff MR. 2020. Small impact crater populations on Saturn's moon Tethys and implications for source impactors in the system. J. Geophys. Res. Planets 125:e2020JE006400
    [Google Scholar]
  22. Ferguson SN, Rhoden AR, Kirchoff MR. 2022a. Regional impact crater mapping and analysis on Saturn's moon Dione and the relation to source impactors. J. Geophys. Res. Planets 127:e2022JE007204
    [Google Scholar]
  23. Ferguson SN, Rhoden AR, Kirchoff MR, Salmon JJ. 2022b. A unique Saturnian impactor population from elliptical craters. Earth Planet. Sci. Lett. 593:117652
    [Google Scholar]
  24. Fuller J, Luan J, Quataert E. 2016. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc. 458:3867–79
    [Google Scholar]
  25. Goldreich P, Tremaine S 1978. The formation of the Cassini division in Saturn's rings. Icarus 34:240–53
    [Google Scholar]
  26. Greenberg R, Geissler P, Hoppa G, Tufts BR, Durda DD et al. 1998. Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus 135:64–78
    [Google Scholar]
  27. Greenstreet S, Gladman B, McKinnon WB. 2015. Impact and cratering rates onto Pluto. Icarus 258:267–88
    [Google Scholar]
  28. Hedman MM, Gosmeyer CM, Nicholson PD, Sotin C, Brown RH et al. 2013. An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500:182–84
    [Google Scholar]
  29. Hiesinger H, van der Bogert CH, Pasckert JH, Funcke L, Giacomini L et al. 2012. How old are young lunar craters?. J. Geophys. Res. 117:E12E00H10
    [Google Scholar]
  30. Hoppa GV, Greenberg R, Riley J, Tufts BR 2001. Observational selection effects in Europa image data: identification of chaotic terrain. Icarus 151:181–89
    [Google Scholar]
  31. Howett CJA, Spencer JR, Schenk P, Johnson RE, Paranicas C et al. 2011. A high-amplitude thermal inertia anomaly of probable magnetospheric origin on Saturn's moon Mimas. Icarus 216:221–26
    [Google Scholar]
  32. Hurford TA, Helfenstein P, Hoppa GV, Greenberg R, Bills BG. 2007. Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447:292–94
    [Google Scholar]
  33. Hussmann H, Sotin C, Lunine JI. 2015. Interiors and evolution of icy satellites. Treatise Geophys. 10:605–35
    [Google Scholar]
  34. Jara-Orué HM, Vermeersen BLA 2011. Effects of low-viscous layers and a non-zero obliquity on surface stresses induced by diurnal tides and non-synchronous rotation: the case of Europa. Icarus 215:417–38
    [Google Scholar]
  35. Kay JP, Rhoden AR, Walker ME. 2022. Using the lack of relaxation on Mimas to test for an ocean Paper presented at the 53rd Lunar and Planetary Science Conference Woodlands, TX: March 7–11
  36. Kirchoff MR, Bierhaus EB, Dones L, Singer KN, Robbins SJ et al. 2018. Cratering histories in the Saturnian system. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 267–84. Tucson: Univ. Arizona Press
    [Google Scholar]
  37. Lainey V, Casajus LG, Fuller J, Zannoni M, Tortora P et al. 2020. Resonance locking in giant planets indicated by the rapid orbital expansion of Titan. Nat. Astron. 4:1053–58
    [Google Scholar]
  38. Lainey V, Jacobson RA, Tajeddine R, Cooper NJ, Murray C et al. 2017. New constraints on Saturn's interior from Cassini astrometric data. Icarus 281:286–96
    [Google Scholar]
  39. Liao Y, Nimmo F, Neufeld JA. 2020. Heat production and tidally driven fluid flow in the permeable core of Enceladus. J. Geophys. Res. Planets 125:e2019JE006209
    [Google Scholar]
  40. Manga M, Wang CY. 2007. Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys. Res. Lett. 34:L07202
    [Google Scholar]
  41. Matson DL, Castillo-Rogez JC, Schubert G, Sotin C, McKinnon WB 2009. The thermal evolution and internal structure of Saturn's mid-sized icy satellites. Saturn from Cassini-Huygens MK Dougherty, LW Esposito, SM Krimigis 577–612. Dordrecht, Neth.: Springer
    [Google Scholar]
  42. Meyer J, Wisdom J. 2008. Tidal evolution of Mimas, Enceladus, and Dione. Icarus 193:213–23
    [Google Scholar]
  43. Movshovitz N, Nimmo F, Korycansky DG, Asphaug E, Owen JM. 2015. Disruption and reaccretion of midsized moons during an outer solar system Late Heavy Bombardment. Geophys. Res. Lett. 42:256–63
    [Google Scholar]
  44. NASEM (Natl. Acad. Sci. Eng. Med.) 2022. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032 Washington, DC: Natl. Acad.
  45. Neukum G, Ivanov BA, Hartmann WK. 2001. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96:55–86
    [Google Scholar]
  46. Neveu M, Rhoden AR. 2017. The origin and evolution of a differentiated Mimas. Icarus 296:183–96
    [Google Scholar]
  47. Neveu M, Rhoden AR. 2019. Evolution of Saturn's mid-sized moons. Nat. Astron. 3:543–52
    [Google Scholar]
  48. Nimmo F. 2004. Stresses generated in cooling viscoelastic ice shells: application to Europa. J. Geophys. Res. 109:E12001
    [Google Scholar]
  49. Nimmo F, Barr AC, Behounkova M, McKinnon WB 2018. The thermal and orbital evolution of Enceladus: observational constraints and models. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 79–94. Tucson: Univ. Arizona Press
    [Google Scholar]
  50. Nimmo F, Korycansky DG. 2012. Impact-driven ice loss in outer Solar System satellites: consequences for the Late Heavy Bombardment. Icarus 219:508–10
    [Google Scholar]
  51. Nimmo F, Spencer JR, Pappalardo RT, Mullen ME. 2007. Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447:289–91
    [Google Scholar]
  52. Noyelles B. 2017. Interpreting the librations of a synchronous satellite—how their phase assesses Mimas’ global ocean. Icarus 282:276–89
    [Google Scholar]
  53. Noyelles B, Baillié K, Charnoz S, Lainey V, Tobie G 2019. Formation of the Cassini Division—II. Possible histories of Mimas and Enceladus. Mon. Not. R. Astron. Soc. 486:2947–63
    [Google Scholar]
  54. Peale SJ. 1999. Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37:533–602
    [Google Scholar]
  55. Peale SJ, Cassen P, Reynolds RT. 1979. Melting of Io by tidal dissipation. Science 203:892–94
    [Google Scholar]
  56. Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J et al. 2006. Cassini observes the active south pole of Enceladus. Science 311:1393–401
    [Google Scholar]
  57. Postberg F, Clark RN, Hansen CJ, Coates AJ, Dalle Ore CM et al. 2018. Plume and surface composition of Enceladus. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 129–62. Tucson: Univ. Arizona Press
    [Google Scholar]
  58. Rhoden AR, Henning W, Hurford TA, Patthoff DA, Tajeddine R. 2017. The implications of tides on the Mimas ocean hypothesis. J. Geophys. Res. Planets 122:400–10
    [Google Scholar]
  59. Rhoden AR, Hurford TA, Spitale J, Henning W, Huff EM et al. 2020. The formation of Enceladus’ Tiger Stripe Fractures from eccentricity tides. Earth Planet. Sci. Lett. 544:116389
    [Google Scholar]
  60. Rhoden AR, Militzer B, Huff EM, Hurford TA, Manga M, Richards MA. 2010. Constraints on Europa's rotational dynamics from modeling of tidally-driven fractures. Icarus 210:770–84
    [Google Scholar]
  61. Rhoden AR, Walker ME. 2022. The case for an ocean-bearing Mimas from tidal heating analysis. Icarus 376:114872
    [Google Scholar]
  62. Roberts JH. 2015. The fluffy core of Enceladus. Icarus 258:54–66
    [Google Scholar]
  63. Rovira-Navarro M, Katz RF, Liao Y, van der Wal W, Nimmo F. 2022. The tides of Enceladus’ porous core. J. Geophys. Res. Planets 127:e2021JE007117
    [Google Scholar]
  64. Rudolph ML, Manga M. 2009. Fracture penetration in planetary ice shells. Icarus 199:536–41
    [Google Scholar]
  65. Rudolph ML, Manga M, Walker M, Rhoden AR. 2022. Cooling crusts create concomitant cryovolcanic cracks. Geophys. Res. Lett. 49:5e2021GL094421
    [Google Scholar]
  66. Salmon J, Canup RM. 2017. Accretion of Saturn's inner mid-sized moons from a massive primordial ice ring. Astrophys. J. 836:109
    [Google Scholar]
  67. Schenk P, White OL, Byrne PK, Moore JM 2018. Saturn's other icy moons: geologically complex worlds in their own right. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 237–65. Tucson: Univ. Arizona Press
    [Google Scholar]
  68. Schenk PM. 1989. Crater formation and modification on the icy satellites of Uranus and Saturn: depth/diameter and central peak occurrence. J. Geophys. Res. 94:B43813–32
    [Google Scholar]
  69. Schubert G, Hussmann H, Lainey V, Matson DL, McKinnon WB et al. 2010. Evolution of icy satellites. Space Sci. Rev. 153:447–84
    [Google Scholar]
  70. Schulson EM. 2006. The fracture of water ice Ih: a short overview. Meteorit. Planet. Sci. 41:1497–508
    [Google Scholar]
  71. Silber EA, Johnson BC. 2017. Impact crater morphology and the structure of Europa's ice shell. J. Geophys. Res. Planets 122:2685–701
    [Google Scholar]
  72. Singer KN, McKinnon WB, Gladman B, Greenstreet S, Bierhaus EB et al. 2019. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science 363:955–59
    [Google Scholar]
  73. Spencer JR, Pearl JC, Segura M, Flasar FM, Mamoutkine A et al. 2006. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311:1401–5
    [Google Scholar]
  74. Tajeddine R, Rambaux N, Lainey V, Charnoz S, Richard A et al. 2014. Constraints on Mimas’ interior from Cassini ISS libration measurements. Science 346:322–24
    [Google Scholar]
  75. Turtle EP, Pierazzo E. 2001. Thickness of a Europan ice shell from impact crater simulations. Science 294:1326–28
    [Google Scholar]
  76. Walker ME, Rhoden AR. 2022. Tidal heating at Europa using the multifrequency analysis of tidal heating toolkit. Planet. Sci. J. 3:149
    [Google Scholar]
  77. White OL, Schenk PM, Bellagamba AW, Grimm AM, Dombard AJ, Bray VJ. 2017. Impact crater relaxation on Dione and Tethys and relation to past heat flow. Icarus 288:37–52
    [Google Scholar]
  78. White OL, Schenk PM, Dombard AJ. 2013. Impact basin relaxation on Rhea and Iapetus and relation to past heat flow. Icarus 223:699–709
    [Google Scholar]
  79. Wünnemann K, Collins GS, Melosh HJ. 2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180:514–27
    [Google Scholar]
  80. Zahnle K, Schenk P, Levison H, Dones L. 2003. Cratering rates in the outer solar system. Icarus 163:263–89
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-061221
Loading
/content/journals/10.1146/annurev-earth-031621-061221
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error