1932

Abstract

An understanding of the rheological behavior of the solid Earth is fundamental to provide a quantitative description of most geological and geophysical phenomena. The continuum mechanics approach to describing large-scale phenomena needs to be informed by a description of the mechanisms operating at the atomic scale. These involve crystal defects, mainly vacancies and dislocations. This often leads to a binary view of creep reduced to diffusion creep or dislocation creep. However, the interaction between these two types of defects leading to dislocation climb plays an important role, and may even be the main one, in the high-temperature, low strain rate creep mechanisms of interest to the Earth sciences. Here we review the fundamentals of dislocation climb, highlighting the specific problems of minerals. We discuss the importance of computer simulations, informed by experiments, for accurately modeling climb. We show how dislocation climb increasingly appears as a deformation mechanism in its own right. We review the contribution of this mechanism to mineral deformation, particularly in Earth's mantle. Finally, we discuss progress and challenges, and we outline future work directions.

  • ▪  Dislocations can be sources or sinks of vacancies, resulting in a displacement out of the glide plane: climb.
  • ▪  Dislocation climb can be a recovery mechanism during dislocation creep but also a strain-producing mechanism.
  • ▪  The slow natural strain rates promote the contribution of climb, which is controlled by diffusion.
  • ▪  In planetary interiors where dislocation glide can be inhibited by pressure, dislocation climb may be the only active mechanism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-063108
2024-07-23
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-031621-063108.html?itemId=/content/journals/10.1146/annurev-earth-031621-063108&mimeType=html&fmt=ahah

Literature Cited

  1. Amelinckx S, Bontinck W, Maenhout-Van der Vorst W. 1957.. Helical dislocations in CaF2 and NaCl crystals. . Physica 23::27072. https://doi.org/10.1016/S0031-8914(57)91947-X
    [Crossref] [Google Scholar]
  2. Amelinckx S, Strumane R. 1960.. Geometry and kinetics of the polygonization of sodium chloride. . Acta Metall. 8::31220. https://doi.org/10.1016/0001-6160(81)90156-5
    [Crossref] [Google Scholar]
  3. Argon AS, Moffatt WC. 1981.. Climb of extended edge dislocations. . Acta Metall. 29::29399. https://doi.org/10.1016/0001-6160(81)90156-5
    [Crossref] [Google Scholar]
  4. Ashby MF. 1972.. A first report on deformation-mechanism maps. . Acta Metall. 20::88797. https://doi.org/10.1016/0001-6160(72)90082-X
    [Crossref] [Google Scholar]
  5. Baker KL, Curtin WA. 2016.. Multiscale diffusion method for simulations of long-time defect evolution with application to dislocation climb. . J. Mech. Phys. Solids 92::297312. https://doi.org/10.1016/j.jmps.2016.04.006
    [Crossref] [Google Scholar]
  6. Ball A, White G. 1978.. On the deformation of quartzite. . Phys. Chem. Miner. 3::16372. https://doi.org/10.1007/BF00308119
    [Crossref] [Google Scholar]
  7. Ball A, Glover G. 1979.. Dislocation climb deformation in quartz. . Bull. Minérol. 102::18894. https://doi.org/10.3406/bulmi.1979.7275
    [Crossref] [Google Scholar]
  8. Ballufi RW. 1969.. Mechanisms of dislocation climb. . Phys. Status Solidi 31::44363. https://doi.org/10.1002/pssb.19690310202
    [Crossref] [Google Scholar]
  9. Barber DJ, Heard HC, Wenk HR. 1981.. Deformation of dolomite single crystals from 20–800°C. . Phys. Chem. Miner. 7::27186. https://doi.org/10.1007/BF00311980
    [Crossref] [Google Scholar]
  10. Barber DJ, Wenk HR, Gomez-Barreiro J, Rybacki E, Dresen G. 2007.. Basal slip and texture development in calcite: new results from torsion experiments. . Phys. Chem. Miner. 34::7384. https://doi.org/10.1007/s00269-006-0129-3
    [Crossref] [Google Scholar]
  11. Barr L, Hoodless I, Morrison J, Rudham R. 1960.. Effects of gross imperfections on chloride ion diffusion in crystals of sodium chloride and potassium chloride. . Trans. Faraday Soc. 56::697708. https://doi.org/10.1039/TF9605600697
    [Crossref] [Google Scholar]
  12. Bakó B, Groma I, Györgyi G, Zimányi G. 2006.. Dislocation patterning: the role of climb in meso-scale simulations. . Comput. Mater. Sci. 38::2228. https://doi.org/10.1016/j.commatsci.2005.12.034
    [Crossref] [Google Scholar]
  13. Bakó B, Clouet E, Dupuy LM, Blétry M. 2011.. Dislocation dynamics simulations with climb: kinetics of dislocation loop coarsening controlled by bulk diffusion. . Philos. Mag. 91::317391. https://doi.org/10.1080/14786435.2011.573815
    [Crossref] [Google Scholar]
  14. Bardeen J, Herring C. 1952.. Diffusion in alloys and the Kirkendall effect. . In Imperfections in Nearly Perfect Crystals, ed. W Schockley , pp. 26188. New York:: Wiley
    [Google Scholar]
  15. Ben Ismaïl W, Mainprice D. 1998.. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. . Tectonophysics 296::14557. https://doi.org/10.1016/S0040-1951(98)00141-3
    [Crossref] [Google Scholar]
  16. Bestmann M, Prior DJ. 2003.. Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization. . J. Struct. Geol. 25::1597613. https://doi.org/10.1016/S0191-8141(03)00006-3
    [Crossref] [Google Scholar]
  17. Boioli F, Carrez P, Cordier P, Devincre B, Marquille M. 2015a.. Modeling the creep properties of olivine by 2.5-dimensional dislocation dynamics simulations. . Phys. Rev. B 92::014115. https://doi.org/10.1103/PhysRevB.92.014115
    [Crossref] [Google Scholar]
  18. Boioli F, Tommasi A, Cordier P, Demouchy S, Mussi A. 2015b.. Low steady-state stresses in the cold lithospheric mantle inferred from dislocation dynamics models of dislocation creep in olivine. . Earth Planet. Sci. Lett. 432::23242. https://doi.org/10.1016/j.epsl.2015.10.012
    [Crossref] [Google Scholar]
  19. Boioli F, Carrez P, Cordier P, Devincre B, Gouriet K, et al. 2017.. Pure climb creep mechanism drives flow in the Earth's lower mantle. . Sci. Adv. 3::e1601958. https://doi.org/10.1126/sciadv.1601958
    [Crossref] [Google Scholar]
  20. Braillon P, Kubin L, Serughetti J. 1978.. Plastic deformation of calcite single crystals deformed in compression parallel to [111]. . Phys. Status Solidi (a) 45::45362. https://doi.org/10.1002/pssa.2210450212
    [Crossref] [Google Scholar]
  21. Bretheau T, Castaing J, Rabier J, Veyssière P. 1979.. Mouvement des dislocations et plasticité à haute temperature des oxydes binaires et ternaires. . Adv. Phys. 28::8351014. https://doi.org/10.1080/00018737900101465
    [Crossref] [Google Scholar]
  22. Brunner D, Taeri-Baghbadrani S, Sigle W, Rühle M. 2001.. Surprising results of a study on the plasticity in strontium titanate. . J. Am. Ceram. Soc. 84::116163. https://doi.org/10.1111/j.1151-2916.2001.tb00805.x
    [Crossref] [Google Scholar]
  23. Caillard D, Martin JL. 2003.. Thermally Activated Mechanisms in Crystal Plasticity. Oxford, UK:: Elsevier
    [Google Scholar]
  24. Caillard D, Vanderschaeve G, Bresson L, Gratias D. 2000.. Transmission electron microscopy study of dislocations and extended defects in as-grown icosahedral Al-Pd-Mn single grains. . Philos. Mag. A 80::23753. https://doi.org/10.1080/01418610008212051
    [Crossref] [Google Scholar]
  25. Caillard D, Roucau C, Bresson L, Gratias D. 2002.. Dislocation motions in 5-fold planes of icosahedral Al-Pd-Mn. . Acta Mater. 50::4499509. https://doi.org/10.1016/S1359-6454(02)00268-9
    [Crossref] [Google Scholar]
  26. Carrez P, Cordier P. 2017.. Plastic deformation of materials under pressure. . MRS Bull. 42::71417. https://doi.org/10.1557/mrs.2017.213
    [Crossref] [Google Scholar]
  27. Carrez P, Ferré D, Denoual C, Cordier P. 2010.. Modelling thermal activation of <110>{110} slip at low temperature in SrTiO3. . Scr. Mater. 63::43437. https://doi.org/10.1016/j.scriptamat.2010.04.045
    [Crossref] [Google Scholar]
  28. Castelnau O, Derrien K, Ritterbex S, Carrez P, Cordier P, Moulinec H. 2020.. Multiscale modeling of the effective viscoplastic behavior of Mg2SiO4 wadsleyite: bridging atomic and polycrystal scales. . C. R. Méc. 348::82746. https://doi.org/10.5802/crmeca.61
    [Crossref] [Google Scholar]
  29. Cherns D, Hirsch P, Saka H. 1980.. Mechanism of climb of dissociated dislocations. . Proc. R. Soc. A 371::21334. https://doi.org/10.1098/rspa.1980.0077
    [Google Scholar]
  30. Chien FR, Heuer AH. 1996.. Lattice diffusion kinetics in Y2O3-stabilized cubic ZrO2 single crystals: a dislocation loop annealing study. . Philos. Mag. A 73::68197. https://doi.org/10.1080/01418619608242990
    [Crossref] [Google Scholar]
  31. Cordier C, Doukhan JC. 1989.. Water solubility in quartz and its influence on ductility. . Eur. J. Mineral. 1::22137. https://doi.org/10.1127/ejm/1/2/0221
    [Crossref] [Google Scholar]
  32. Cordier P, Gouriet K, Weidner T, Van Orman J, Castelnau O, et al. 2023.. Periclase deforms slower than bridgmanite under mantle conditions. . Nature 613::3037. https://doi.org/10.1038/s41586-022-05410-9
    [Crossref] [Google Scholar]
  33. Couret A. 2010.. Low and high temperature deformation mechanisms in TiAl alloys. . J. Phys. Conf. Ser. 240::012001. https://doi.org/10.1088/1742-6596/240/1/012001
    [Crossref] [Google Scholar]
  34. Demouchy S, Tommasi A, Boffa Ballaran T, Cordier P. 2013.. Low strength of Earth's uppermost mantle inferred from tri-axial deformation experiments on dry olivine crystals. . Phys. Earth Planet. Inter. 220::3749. https://doi.org/10.1016/j.pepi.2013.04.008
    [Crossref] [Google Scholar]
  35. Demouchy S, Mussi A, Barou F, Tommasi A, Cordier P. 2014.. Viscoplasticity of polycrystalline olivine experimentally deformed at high pressure and 900°C. . Tectonophysics 623::12335. https://doi.org/10.1016/j.tecto.2014.03.022
    [Crossref] [Google Scholar]
  36. Demouchy S, Mussi A, Weidner T, Gardés E, Cordier P. 2024.. Dislocations in naturally deformed olivine: example of a mylonitic peridotite. . Phys. Earth Planet. Inter. 346::107125. https://doi.org/10.1016/j.pepi.2023.107125
    [Crossref] [Google Scholar]
  37. Douin J, Beauchamp P, Veyssière P. 1988.. Climb dissociation on {310} planes in nearly-stoichiometric Ni3Al. . Philos. Mag. A 58::92335. https://doi.org/10.1080/01418618808214423
    [Crossref] [Google Scholar]
  38. Doukhan N, Duclos R, Escaig B. 1982.. Climb dissociation in {113} planes in Al-Mg spinel. . J. Phys. 43::114957. https://doi.org/10.1051/jphys:019820043070114900
    [Crossref] [Google Scholar]
  39. Donlon WT, Mitchell TE, Heuer AH. 1979.. Climb dissociation of network dislocations in non–stoichiometric Mg–Al spinel. . Philos. Mag. A 40::35166. https://doi.org/10.1080/01418617908234845
    [Crossref] [Google Scholar]
  40. Donlon WT, Heuer AH, Mitchell TE. 1998.. Compositional softening in Mg-A1 spinel. . Philos. Mag. A 78::61541. https://doi.org/10.1080/01418619808241926
    [Crossref] [Google Scholar]
  41. Dorn JE. 1954.. Some fundamental experiments on high temperature creep. . J. Mech. Phys. Solids 8::85116. https://doi.org/10.1016/0022-5096(55)90054-5
    [Google Scholar]
  42. Durham WB, Goetze G. 1977.. Plastic flow of oriented single crystals of olivine. 1. Mechanical data. . J. Geophys. Res. 82:(36):573753. https://doi.org/10.1029/JB082i036p05737
    [Crossref] [Google Scholar]
  43. Edelin G, Levy V. 1973.. Observation de sources de Bardeen-Herring dans le magnesium trempé. . Philos. Mag. A 27::48797. https://doi.org/10.1080/14786437308227423
    [Crossref] [Google Scholar]
  44. Edelin G, Poirier JP. 1973a.. Etude de la montée des dislocations au moyen d'expériences de fluage par diffusion dans le magnesium. I. Mécanismes de déformation. . Philos. Mag. 28::120310. https://doi.org/10.1080/14786437308227994
    [Crossref] [Google Scholar]
  45. Edelin G, Poirier JP. 1973b.. Etude de la montée des dislocations au moyen d'expériences de fluage par diffusion dans le magnesium. II. Mesure de la vitesse de montée. . Philos. Mag. 28::121123. https://doi.org/10.1080/14786437308227995
    [Crossref] [Google Scholar]
  46. Epishin A, Link T. 2004.. Mechanisms of high temperature creep of nickel-base superalloys under low applied stress. . Philos. Mag. 84::19792000. https://doi.org/10.1080/14786430410001663240
    [Crossref] [Google Scholar]
  47. Escaig B. 1963.. Emission et absorption de défauts ponctuels par les dislocations dissociées. . Acta Metall. 11::595610. https://doi.org/10.1016/0001-6160(63)90094-4
    [Crossref] [Google Scholar]
  48. Evans DJ, Scheltens FJ, Woodhouse JB, Fraser HL. 1997.. Deformation mechanisms in MoSi2 at temperatures above the brittle-to-ductile transition temperature I. Polycrystalline MoSi2. . Philos. Mag. A 75::115. https://doi.org/10.1080/01418619708210278
    [Crossref] [Google Scholar]
  49. Feng Z, Fu R, Lin C, Wu G, Huang T, et al. 2020.. TEM-based dislocation tomography: challenges and opportunities. . Curr. Opin. Solid State Mater. Sci. 24::100833. https://doi.org/10.1016/j.cossms.2020.100833
    [Crossref] [Google Scholar]
  50. Firestone RF, Heuer AH. 1976.. Creep deformation of 0° sapphire. . J. Am. Ceram. Soc. 59::2429. https://doi.org/10.1111/j.1151-2916.1976.tb09379.x
    [Crossref] [Google Scholar]
  51. Friedel J. 1964.. Dislocations. Oxford, UK:: Pergamon
    [Google Scholar]
  52. Gaboriaud RJ. 1980.. Climb model of dislocations in oxides. . J. Mater. Sci. 15::209196. https://doi.org/10.1007/BF00550636
    [Crossref] [Google Scholar]
  53. Gaboriaud RJ. 1981.. Fluage haute temperature du sesquioxyde d'yttrium: Y2O3. . Philos. Mag. A 44::56187. https://doi.org/10.1080/01418618108236162
    [Crossref] [Google Scholar]
  54. Galy B, Musi M, Hantcherli M, Molénat G, Couret A, et al. 2023.. Glide and mixed climb dislocation velocity in γ-TiAl investigated by in-situ transmission electron microscopy. . Scr. Mater. 228::115333. https://doi.org/10.1016/j.scriptamat.2023.115333
    [Crossref] [Google Scholar]
  55. Gao Y, Zhuang Z, Liu ZL, You XC, Zhao XC, Zhang ZH. 2011.. Investigations of pipe-diffusion-based dislocation climb by discrete dislocation dynamics. . Int. J. Plast. 27::105571. https://doi.org/10.1016/j.ijplas.2010.11.003
    [Crossref] [Google Scholar]
  56. Goetze C, Kohlstedt DL. 1973.. Laboratory study of dislocation climb and diffusion in olivine. . J. Geophys. Res. 78:(26):596171. https://doi.org/10.1029/JB078i026p05961
    [Crossref] [Google Scholar]
  57. Goetze C. 1978.. The mechanisms of creep in olivine. . Philos. Trans. R. Soc. A 288::99119. http://doi.org/10.1098/rsta.1978.0008
    [Google Scholar]
  58. Gouriet K, Cordier P, Garel F, Thoraval C, Demouchy S, et al. 2019.. Dislocation dynamics modelling of the power-law breakdown in olivine single crystals: toward a unified creep law for the upper mantle. . Earth Planet. Sci. Lett. 506::28291. https://doi.org/10.1016/j.epsl.2018.10.049
    [Crossref] [Google Scholar]
  59. Gratias D, Beauchesne JT, Mompiou F, Caillard D. 2006.. Geometry of dislocations in icosahedral quasicrystals. . Philos. Mag. 86::413951. https://doi.org/10.1080/14786430600575435
    [Crossref] [Google Scholar]
  60. Green H II. 1976.. Plasticity of olivine in peridotites. . In Electron Microscopy in Mineralogy, ed. HR Wenk , pp. 44364. Berlin:: Springer. https://doi.org/10.1007/978-3-642-66196-9_34
    [Google Scholar]
  61. Green HW II, Radcliffe SV. 1972.. Deformation processes in the upper mantle. . In Flow and Fracture of Rocks, Vol. 16, ed. HC Heard, IY Barg, NL Carter, CB Raleigh , pp. 13956. Washington, DC:: Am. Geophys. Union. https://doi.org/10.1029/GM016p0139
    [Google Scholar]
  62. Grilhé J, Boisson M, Seshan K, Gaboriaud RJ. 1977.. Climb model of extended dislocations in f.c.c. metals. . Philos. Mag. 36::92330. https://doi.org/10.1080/14786437708239767
    [Crossref] [Google Scholar]
  63. Groves GW, Kelly A. 1969.. Change of shape due to dislocation climb. . Philos. Mag. 19::97786. https://doi.org/10.1080/14786436908225862
    [Crossref] [Google Scholar]
  64. Gu Y, Xiang Y, Srolovitz DJ. 2016.. Relaxation of low-angle grain boundary structure by climb of the constituent dislocations. . Scripta Mater. 114::3540. https://doi.org/10.1016/j.scriptamat.2015.11.016
    [Crossref] [Google Scholar]
  65. Gu Y, Xiang Y, Srolovitz DJ, El-Awady JA. 2018.. Self-healing of low angle grain boundaries by vacancy diffusion and dislocation climb. . Scripta Mater. 155::15559. https://doi.org/10.1016/j.scriptamat.2018.06.035
    [Crossref] [Google Scholar]
  66. Gumbsch P, Taeri-Baghbadrani S, Brunner D, Sigle W, Rühle M. 2001.. Plasticity and an inverse brittle-to-ductile transition in strontium titanate. . Phys. Rev. Lett. 87::085505. https://doi.org/10.1103/PhysRevLett.87.085505
    [Crossref] [Google Scholar]
  67. Hawemann F, Mancktelow N, Wex S, Pennacchioni G, Camacho A. 2019.. Fracturing and crystal plastic behavior of garnet under seismic stress in the dry lower continental crust (Musgrave Ranges, Central Australia). . Solid Earth 10::163549. https://doi.org/10.5194/se-10-1635-2019
    [Crossref] [Google Scholar]
  68. Hentschel F, Trepmann CA, Janots E. 2019.. Deformation of feldspar at greenschist facies conditions—the record of mylonitic pegmatites from the Pfunderer Mountains, Eastern Alps. . Solid Earth 10::95116. https://doi.org/10.5194/se-10-95-2019
    [Crossref] [Google Scholar]
  69. Hirel P, Carrez P, Cordier P. 2016.. From glissile to sessile: effect of temperature on <110>dislocations in perovskite materials. . Scr. Mater. 120::6770. https://doi.org/10.1016/j.scriptamat.2016.04.001
    [Crossref] [Google Scholar]
  70. Hirel P, Kraych A, Carrez P, Cordier P. 2014.. Atomic core structure and mobility of [100](010) and [010](100) dislocations in MgSiO3 perovskite. . Acta Mat. 79::11725. https://doi.org/10.1016/j.actamat.2014.07.001
    [Crossref] [Google Scholar]
  71. Hirsch PB, Silcox J, Smallman RE, Westmacott KH. 1958.. Dislocation loops in quenched aluminium. . Philos. Mag. 3::897908. https://doi.org/10.1080/14786435808237028
    [Crossref] [Google Scholar]
  72. Hirsch PB. 1962.. Extended jogs in dislocations in face-centred cubic metals. . Philos. Mag. 7::67: 93. https://doi.org/10.1080/14786436208201859
    [Crossref] [Google Scholar]
  73. Hwang SL, Shen P, Yui TF, Chu HT. 2003.. On the mechanism of resorption zoning in metamorphic garnet. . J. Metamorph. Geol. 21::76169. https://doi.org/10.1046/j.1525-1314.2003.00477.x
    [Crossref] [Google Scholar]
  74. Jaoul O. 1980.. Multicomponent diffusion and creep in olivine. . J. Geophys. Res. 95:(B11):1763142. https://doi.org/10.1029/JB095iB11p17631
    [Crossref] [Google Scholar]
  75. Ji S, Martignole J. 1994.. Ductility of garnet as an indicator of extremely high temperature deformation. . J. Struct. Geol. 16::98596. https://doi-org.ressources-electroniques.univ-lille.fr/10.1016/0191-8141(94)90080-9
    [Crossref] [Google Scholar]
  76. Junqua N, Grilhé J. 1984.. Apparition d'instabilités sur des dipoles de dislocations coin. . Acta Metall. 32::213947. https://doi.org/10.1016/0001-6160(84)90157-3
    [Crossref] [Google Scholar]
  77. Kabir M, Lau TT, Rodney D, Yip S, Van Vliet KJ. 2010.. Predicting dislocation climb and creep from explicit atomistic details. . Phys. Rev. Lett. 105::095501. https://doi.org/10.1103/PhysRevLett.105.095501
    [Crossref] [Google Scholar]
  78. Kad BK, Fraser HL. 1994.. On the contribution of climb to high-temperature deformation in single phase γ-TiAl. . Philos. Mag. A 69::68999. https://doi.org/10.1080/01418619408242511
    [Crossref] [Google Scholar]
  79. Keralavarma SM, Cagin T, Arsenlis A, Benzerga AA. 2012.. Power-law creep from discrete dislocation dynamics. . Phys. Rev. Lett. 109::265504. https://doi.org/10.1103/PhysRevLett.109.265504
    [Crossref] [Google Scholar]
  80. Kirby SH, Raleigh CB. 1973.. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle. . Tectonophysics 19::16594. https://doi.org/10.1016/0040-1951(73)90038-3
    [Crossref] [Google Scholar]
  81. Kirby SH, Wegner MW. 1978.. Dislocation substructure of mantle-derived olivine as revealed by selective chemical etching and transmission electron microscopy. . Phys. Chem. Miner. 3::30930. https://doi.org/10.1007/BF00311845
    [Crossref] [Google Scholar]
  82. Kohnert AA, Capolungo L. 2022.. The kinetics of static recovery by dislocation climb. . NPJ Comput. Mater. 8::104. https://doi.org/10.1038/s41524-022-00790-y
    [Crossref] [Google Scholar]
  83. Lagerlöf KPD, Mitchell TE, Heuer AH. 1989.. Energetics of the break-up of dislocation dipoles into prismatic loops. . Acta Metall. 37::331525. https://doi.org/10.1016/0001-6160(89)90204-6
    [Crossref] [Google Scholar]
  84. Landeiro Dos Reis ML, Giret Y, Carrez P, Cordier P. 2022.. Efficiency of the vacancy pipe diffusion along an edge dislocation in MgO. . Comput. Mater. Sci. 211::111490. https://doi.org/10.1016/j.commatsci.2022.111490
    [Crossref] [Google Scholar]
  85. Lau TT, Lin X, Yip S, Van Vliet KJ. 2009.. Atomistic examination of the unit processes and vacancy-dislocation interaction in dislocation climb. . Scripta Mater. 60::399402. https://doi.org/10.1016/j.scriptamat.2008.11.019
    [Crossref] [Google Scholar]
  86. Legros M, Dehm G, Artz E, Balk J. 2008.. Observation of giant diffusivity along dislocation cores. . Science 319::164649. https://doi.org/10.1126/science.1151771
    [Crossref] [Google Scholar]
  87. Le Hazif R, Edelin G, Dupouy JM. 1973.. Diffusion creep by dislocation climb in beryllium and Be-Cu single crystals. . Metall. Trans. 4::127581. https://doi.org/10.1007/BF02644522
    [Crossref] [Google Scholar]
  88. Lin D, Wang Y, Liu J, Law CC. 1999.. Brittle-to-ductile transition temperature and its controlling mechanism in Ti-47Al-2Mn-2Nb alloy. . J. Chin. Inst. Eng. 22::5560. https://doi.org/10.1080/02533839.1999.9670441
    [Crossref] [Google Scholar]
  89. Liu F, Liu Z, Lin P, Zhuang Z. 2017.. Numerical investigations of helical dislocations based on coupled glide-climb model. . Int. J. Plast. 92::218. https://doi.org/10.1016/j.ijplas.2017.02.015
    [Crossref] [Google Scholar]
  90. Liu F, Cocks ACF, Gill SPA, Tartelon E. 2020.. An improved method to model dislocation self-climb. . Model. Simul. Mater. Sci. Eng. 28::055012. https://doi.org/10.1088/1361-651X/ab81a8
    [Crossref] [Google Scholar]
  91. Lothe J. 1960.. Theory of dislocation climb in metals. . J. Appl. Phys. 31::107787. https://doi.org/10.1063/1.1735749
    [Crossref] [Google Scholar]
  92. Malaplate J, Caillard D, Couret A. 2004.. Interpretation of the stress dependence of creep by a mixed climb mechanism in TiAl. . Philos. Mag. 84::367187. https://doi.org/10.1080/14786430412331284009
    [Crossref] [Google Scholar]
  93. Martelat JE, Malamoud K, Cordier P, Randrianasolo B, Schulmann K, Lardeaux JM. 2012.. Garnet crystal plasticity in the continental crust, new example from south Madagascar. . J. Metamorph. Geol. 30::43552. https://doi.org/10.1111/j.1525-1314.2012.00974.x
    [Crossref] [Google Scholar]
  94. Matthews JW, Klokholm E, Plaskett TS, Sadagopan S. 1973.. Helical dislocations in gadolinium gallium garnet (Gd3Ga5O12). . Phys. Status Solidi (a) 19::67178. https://doi.org/10.1002/pssa.2210190233
    [Crossref] [Google Scholar]
  95. McElfresh C, Cui Y, Dudarev SL, Po G, Marian J. 2021.. Discrete stochastic model of point defect-dislocation interaction for simulating dislocation climb. . Int. J. Plast. 136::102848. https://doi.org/10.1016/j.ijplas.2020.102848
    [Crossref] [Google Scholar]
  96. McLaren AC, Fitz Gerald JD, Gerretsen J. 1989.. Dislocation nucleation and multiplication in synthetic quartz: relevance to water weakening. . Phys. Chem. Minerals 16::46582. https://doi.org/10.1007/BF00197016
    [Crossref] [Google Scholar]
  97. Minster JB, Anderson DL. 1980.. Dislocations and nonelastic processes in the mantle. . J. Geophys. Res. 85:(B11):634752. https://doi.org/10.1029/JB085iB11p06347
    [Crossref] [Google Scholar]
  98. Mompiou F, Bresson L, Cordier P, Caillard D. 2003.. Dislocation-climb and low-temperature plasticity of an Al-Pd-Mn quasicrystal. . Philos. Mag. 83::313357. https://doi.org/10.1080/1478643031000155110
    [Crossref] [Google Scholar]
  99. Mompiou F, Caillard D, Feuerbacher M. 2004.. In-situ observation of dislocation motion in icosahedral Al–Pd–Mn quasicrystals. . Philos. Mag. 84::277792. https://doi.org/10.1080/14786430410001671494
    [Crossref] [Google Scholar]
  100. Mompiou F, Caillard D. 2008a.. On the stress exponent of dislocation climb velocity. . Mater. Sci. Eng. A 483484:14347. https://doi.org/10.1016/j.msea.2006.12.166
    [Google Scholar]
  101. Mompiou F, Caillard D. 2008b.. Dislocation-climb plasticity: modelling and comparison with the mechanical properties of icosahedral AlPdMn. . Acta Mater. 56::226271. https://doi.org/10.1016/j.actamat.2008.01.015
    [Crossref] [Google Scholar]
  102. Mompiou F, Caillard D. 2014.. Dislocation and mechanical properties of icosahedral quasicrystals. . C. R. Phys. 15::8289. https://doi.org/10.1016/j.crhy.2013.09.003
    [Crossref] [Google Scholar]
  103. Morales LFG, Mainprice D, Lloyd GE, Law RD. 2011.. Crystal fabric development and slip systems in a quartz mylonite: an approach via transmission electron microscopy and viscoplastic self-consistent modelling. . Geol. Soc. Lond. Spec. Publ. 360::15174. https://doi.org/10.1144/SP360.9
    [Crossref] [Google Scholar]
  104. Mordehai D, Clouet E, Fivel M, Verdier M. 2008.. Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics. . Philos. Mag. 88::899925. https://doi.org/10.1080/14786430801992850
    [Crossref] [Google Scholar]
  105. Mott NF. 1951.. The mechanical properties of metals. . Proc. Phys. Soc. B 64::72941. https://doi.org/10.1088/0370-1301/64/9/301
    [Crossref] [Google Scholar]
  106. Mott NF. 1953.. Bakerian lecture: dislocations, plastic flow and creep. . Proc. R. Soc. A 220::114. https://doi.org/10.1098/rspa.1953.0167
    [Google Scholar]
  107. Muramoto M, Michibayashi K, Ando J-I, Kagi H. 2011.. Rheological contrast between garnet and clinopyroxene in the mantle wedge: an example from Higashi-akaishi peridotite mass, SW Japan. . Phys. Earth Planet. Sci. 184::1433. https://doi.org/10.1016/j.pepi.2010.10.008
    [Crossref] [Google Scholar]
  108. Mussi A, Cordier P, Frost D. 2013.. Transmission electron microscopy characterization of the dislocations and slip systems of the dense hydrous magnesium silicate superhydrous B. . Eur. J. Mineral. 25::56168. https://doi.org/10.1127/0935-1221/2013/0025-2308
    [Crossref] [Google Scholar]
  109. Mussi A, Carrez P, Gouriet K, Hue B, Cordier P. 2021a.. 4D electron tomography of dislocations undergoing electron irradiation. . C. R. Phys. 22::6781. https://doi.org/10.5802/crphys.80
    [Crossref] [Google Scholar]
  110. Mussi A, Gallet J, Castelnau O, Cordier P. 2021b.. Application of electron tomography of dislocations in beam-sensitive quartz to the determination of strain components. . Tectonophysics 803::228754. https://doi.org/10.1016/j.tecto.2021.228754
    [Crossref] [Google Scholar]
  111. Naanani S, Monchoux JP, Mabru C, Couret A. 2018.. Pure climb of [001]dislocations in TiAl at 850°C. . Scr. Mater. 149::5357. https://doi.org/10.1016/j.scriptamat.2018.02.002
    [Crossref] [Google Scholar]
  112. Nabarro FRN. 1967a.. Theory of Crystal Dislocations. Oxford, UK:: Clarendon
    [Google Scholar]
  113. Nabarro FRN. 1967b.. Steady-state diffusional creep. . Philos. Mag. 16::23137. https://doi.org/10.1080/14786436708229736
    [Crossref] [Google Scholar]
  114. Phakey P, Dollinger G, Christie J. 1972.. Transmission electron microscopy of experimentally deformed olivine crystals. . In Flow and Fracture of Rocks, Vol. 16, ed. HC Heard, IY Barg, NL Carter, CB Raleigh , pp. 11738. Washington, DC:: Am. Geophys. Union. https://doi.org/10.1029/GM016p0117
    [Google Scholar]
  115. Phillips DS, Mitchell TE, Heuer AH. 1982a.. Climb dissociation of dislocations in sapphire (α-Al2O3) revisited: crystallography of dislocation dipoles. . Philos. Mag. 45::37185. https://doi.org/10.1080/01418618208236177
    [Crossref] [Google Scholar]
  116. Phillips DS, Pletka BJ, Heuer A, Mitchell TE. 1982b.. An improved model of break-up of dislocation dipoles into loops: application to sapphire (α-Al2O3). . Acta Metall. 30::49198. https://doi.org/10.1016/0001-6160(82)90229-2
    [Crossref] [Google Scholar]
  117. Pletka BJ, Mitchell TE, Heuer A. 1982.. Dislocation substructures in doped sapphire (α-Al2O3) deformed by basal slip. . Acta Metall. 30::14756. https://doi.org/10.1016/0001-6160(82)90054-2
    [Crossref] [Google Scholar]
  118. Prior DJ, Wheeler J, Brenker FE, Harte B, Matthews M. 2000.. Crystal plasticity of natural garnet: new microstructural evidence. . Geology 28::10036. https://doi.org/10.1130/0091-7613(2000)28<1003:CPONGN>2.0.CO;2
    [Crossref] [Google Scholar]
  119. Raleigh CB, Kirby SH. 1970.. Creep in the upper mantle. . Mineral. Soc. Am. Spec. Pap. 3::11321
    [Google Scholar]
  120. Reali R, Van Orman J, Pigott J, Jackson JM, Boioli F, et al. 2019.. The role of diffusion-driven pure climb creep on the rheology of bridgmanite under lower mantle conditions. . Sci. Rep. 9::2053. https://doi.org/10.1038/s41598-018-38449-8
    [Crossref] [Google Scholar]
  121. Reiner M. 1964.. The Deborah number. . Phys. Today 17::62. https://doi.org/10.1063/1.3051374
    [Crossref] [Google Scholar]
  122. Ritterbex S, Carrez P, Gouriet K, Cordier P. 2015.. Modeling dislocation glide in Mg2SiO4 ringwoodite: towards rheology under transition zone conditions. . Phys. Earth Planet. Inter. 248::2029. https://doi.org/10.1016/j.pepi.2015.09.001
    [Crossref] [Google Scholar]
  123. Ritterbex S, Carrez P, Cordier P. 2016.. Modeling dislocation glide and lattice friction in Mg2SiO4 wadsleyite in conditions of the Earth's transition zone. . Am. Mineral. 101::208594. https://doi.org/10.2138/am-2016-5578CCBYNCND
    [Crossref] [Google Scholar]
  124. Ritterbex S, Carrez P, Cordier P. 2020.. Deformation across the mantle transition zone: a theoretical mineral physics view. . Earth Planet. Sci. Lett. 547::116438. https://doi.org/10.1016/j.epsl.2020.116438
    [Crossref] [Google Scholar]
  125. Sarkar S, Li J, Cox WT, Bitzek E, Lenosky TJ, Wang Y. 2012.. Finding activation pathway of coupled displacive-diffusional defect processes in atomistics: dislocation climb in fcc copper. . Phys. Rev. B 86::014115. https://doi.org/10.1103/PhysRevB.86.014115
    [Crossref] [Google Scholar]
  126. Seitz F. 1950.. The generation of vacancies by dislocations. . Phys. Rev. 79::10023. https://doi.org/10.1103/PhysRev.79.1002.2
    [Crossref] [Google Scholar]
  127. Sigle W, Sarbu C, Brunner D, Rühle M. 2006.. Dislocations in plastically deformed SrTiO3. . Philos. Mag. 86::480921. https://doi.org/10.1080/14786430600672695
    [Crossref] [Google Scholar]
  128. Silcox J, Whelan MJ. 1960.. Direct observations of the annealing of prismatic dislocation loops and of climb of dislocations in quenched aluminium. . Philos. Mag. 5::123. https://doi.org/10.1080/14786436008241196
    [Crossref] [Google Scholar]
  129. Skrotzki W. 1992.. Defect structure and deformation mechanisms in naturally deformed hornblende. . Phys. Stat. Sol. (a) 131::60524
    [Crossref] [Google Scholar]
  130. Stroh AN. 1954.. Constrictions and jogs in extended dislocations. . Proc. Phys. Soc. B 67::42736. https://doi.org/10.1088/0370-1301/67/5/307
    [Crossref] [Google Scholar]
  131. Swinburne TD, Arakawa K, Mori H, Yasuda H, Isshiki M, et al. 2016.. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals. . Sci. Rep. 6::30596. https://doi.org/10.1038/srep30596
    [Crossref] [Google Scholar]
  132. Tang X, Lagerlöf KPD, Heuer AH. 2003.. Determination of pipe diffusion coefficients in undoped and magnesia-doped sapphire (α-Al2O3): a study based on annihilation of dislocation dipoles. . J. Am. Ceram. Soc. 86::56065. https://doi.org/10.1111/j.1151-2916.2003.tb03341.x
    [Crossref] [Google Scholar]
  133. Thomson RM, Balluffi RW. 1962.. Kinetic theory of dislocation climb. I. General models for edge and screw dislocations. . J. Appl. Phys. 33::80316
    [Crossref] [Google Scholar]
  134. Tisone TC, Marshall GW, Brittain JO. 1968.. Prismatic dislocations in β′ NiAl. . J. Appl. Phys. 39::371417. https://doi.org/10.1063/1.1656845
    [Crossref] [Google Scholar]
  135. Tullis J, Yund R. 1989.. Hydrolytic weakening of quartz aggregates: the effects of water and pressure on recovery. . Geophys. Res. Lett. 16::134346. https://doi.org/10.1029/GL016i011p01343
    [Crossref] [Google Scholar]
  136. Tullis J, Yund R. 1992.. The Brittle-ductile transition in feldspar aggregates: an experimental study. . Int. Geophys. 51::89117. https://doi.org/10.1016/S0074-6142(08)62816-8
    [Crossref] [Google Scholar]
  137. Van Orman J, Crispin K. 2010.. Diffusion in oxides. . Rev. Mineral. Geochem. 72::757825. https://doi.org/10.2109/jcersj1950.74.851_215
    [Crossref] [Google Scholar]
  138. Veyssière P, Grilhé J. 1971.. Experimental study of the influence of some parameters on the helical dislocations equilibrium in quenched alloys. . Acta Metall. 19::104751. https://doi.org/10.1016/0001-6160(71)90037-X
    [Crossref] [Google Scholar]
  139. Veyssière P, Rabier J, Garem GJ. 1976.. Sous-joints de dislocations et dissociations dans le ferrite de nickel déformé plastiquement à 0,85 TF. . Philos. Mag. 33::14363. https://doi.org/10.1080/14786437608221099
    [Crossref] [Google Scholar]
  140. Veyssière P, Rabier J, Garem GJ. 1978.. Influence of temperature on dissociation of dislocations and plastic deformation in spinel oxides. . Philos. Mag. 38::6179. https://doi.org/10.1080/01418617808239218
    [Crossref] [Google Scholar]
  141. Voegelé V, Cordier P, Sautter V, Sharp TG, Lardeaux JM, Marques FO. 1998.. Plastic deformation of silicate garnets. II. Deformation microstructures in natural samples. . Phys. Earth Planet. Inter. 108::31938. https://doi.org/10.1016/S0031-9201(98)00111-3
    [Crossref] [Google Scholar]
  142. Voisin T, Monchoux JP, Thomas M, Deshayes C, Couret A. 2016.. Mechanical properties of the TiAl IRIS alloy. . Metall. Mater. Trans. A 47::6097108. https://doi.org/10.1007/s11661-016-3801-3
    [Crossref] [Google Scholar]
  143. Weertman J. 1955.. Theory of steady-state creep based on dislocation climb. . J. Appl. Phys. 26::121317. https://doi.org/10.1063/1.1721875
    [Crossref] [Google Scholar]
  144. Weertman J. 1957.. Helical dislocations. . Phys. Rev. 107::125961. https://doi.org/10.1103/PhysRev.107.1259
    [Crossref] [Google Scholar]
  145. Weertman J. 1970.. The creep strength of the Earth's mantle. . Rev. Geophys. Space Phys. 8::14568. https://doi.org/10.1029/RG008i001p00145
    [Crossref] [Google Scholar]
  146. Westmacott KH, Barnes RS, Smallman RE. 1962.. The observation of a dislocation ‘climb’ source. . Philos. Mag. 7::158596. https://doi.org/10.1080/14786436208213293
    [Crossref] [Google Scholar]
  147. White S. 1975.. Tectonic deformation and recrystallisation of oligoclase. . Contrib. Mineral. Petrol. 50::287304. https://doi.org/10.1007/BF00394854
    [Crossref] [Google Scholar]
  148. White S. 1977.. Geological significance of recovery and recrystallization processes in quartz. . Tectonophysics 39::14370. https://doi.org/10.1016/0040-1951(77)90093-2
    [Crossref] [Google Scholar]
  149. Willaime C, Christie JM, Kovacs MP. 1979.. Experimental deformation of K-feldspar single crystals. . Bull. Minéral. 102::16877. https://doi.org/10.3406/bulmi.1979.7272
    [Crossref] [Google Scholar]
  150. Wollgarten M, Bartschs M, Messerschmidt U, Feuerbacher M, Rosenfeld R, et al. 1995.. In-situ observation of dislocation motion in icosahedral Al-Pd-Mn single quasicrystals. . Philos. Mag. Lett. 71::99105. https://doi.org/10.1080/09500839508241001
    [Crossref] [Google Scholar]
  151. Yang M, Flynn C. 1994.. Intrinsic diffusion properties of an oxide: MgO. . Phys. Rev. Lett. 73::180912. https://doi.org/10.1103/PhysRevLett.73.1809
    [Crossref] [Google Scholar]
  152. Yi J, Argon AS, Sayir A. 2006.. Internal stresses and the creep resistance of the directionally solidified ceramic eutectics. . Mater. Sci. Eng. A 421::86102. https://doi.org/10.1016/j.msea.2005.10.012
    [Crossref] [Google Scholar]
  153. Zhai JH, Hirel P, Carrez P. 2020.. Atomic-scale properties of jogs along 1/2 <110> edge dislocations in MgO. . Scripta Mater. 181::6669. https://doi.org/10.1016/j.scriptamat.2020.02.013
    [Crossref] [Google Scholar]
  154. Zhang Z, Sigle W, Kurtz W, Rühle M. 2002.. Electronic and atomic structure of a dissociated dislocation in SrTiO3. . Phys. Rev. B 66::214112. https://doi.org/10.1103/PhysRevB.66.214112
    [Crossref] [Google Scholar]
  155. Zheng JG, Li Q, Feng D. 1993.. Climb dissociation of |c| dislocations in Y-Ba-Cu-O superconductors. . Mater. Sci. Forum 129::14754. https://doi.org/10.4028/www.scientific.net/MSF.129.147
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-063108
Loading
/content/journals/10.1146/annurev-earth-031621-063108
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error