1932

Abstract

The early to mid-Paleoproterozoic Lomagundi-Jatuli Excursion (LJE) is ostensibly the largest magnitude (approximately +5 to +30‰), longest duration (ca. 130–250 million years) positive carbon isotope excursion measured in carbonate rocks in Earth history. The LJE has been attributed to large nutrient fluxes, an increase in the size of the biosphere, a reorganization of the global carbon cycle, and oxygenation of the atmosphere. However, significant debate remains about its genesis, synchroneity, global-versus-local extent, and role in atmospheric oxygenation. Here we review existing models and mechanisms suggested for the LJE and analyze a compilation of ∼9,400 δ13C and associated contextual data. These data call into question the interpretation of the LJE as a globally synchronous carbon isotope excursion and suggest that any model for the LJE must account for both the absence of a clearly defined initiation and termination of the excursion and a facies-dependent expression of 13C-enrichment.

  • ▪  The Lomagundi-Jatuli Excursion (LJE) continues to challenge current understandings of the carbon cycle.
  • ▪  Understanding this excursion is critical for reconstructing biogeochemical cycles and atmospheric oxygenation through Earth history.
  • ▪  Some evidence indicates local rather than global changes in δ13C and raises the possibility of asynchronous, local excursions.
  • ▪  Resolving whether the LJE was globally synchronous or asynchronous is essential for discriminating between different models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-071250
2023-05-31
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-071250.html?itemId=/content/journals/10.1146/annurev-earth-031621-071250&mimeType=html&fmt=ahah

Literature Cited

  1. Aharon P 2005. Redox stratification and anoxia of the early Precambrian oceans: implications for carbon isotope excursions and oxidation events. Precambrian Res. 137:3207–22
    [Google Scholar]
  2. Aharon P, Kolodny Y, Sass E. 1977. Recent hot brine dolomitization in the “solar lake,” Gulf of Elat, isotopic, chemical, and mineralogical study. J. Geol. 85:127–48
    [Google Scholar]
  3. Ahm A-S, Bjerrum CJ, Hoffman PF, Macdonald FA, Maloof AC et al. 2021. The Ca and Mg isotope record of the Cryogenian Trezona carbon isotope excursion. Earth Planet. Sci. Lett. 568:117002
    [Google Scholar]
  4. Ahm A-S, Husson J. 2022. Local and Global Controls on Carbon Isotope Chemostratigraphy Cambridge, UK: Cambridge Univ. Press
  5. Aller RC, Blair NE, Xia Q, Rude PD. 1996. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Cont. Shelf Res. 16:5753–86
    [Google Scholar]
  6. Bartley JK, Kah LC. 2004. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32:2129–32
    [Google Scholar]
  7. Beeler SR, Gomez FJ, Bradley AS. 2020. Controls of extreme isotopic enrichment in modern microbialites and associated abiogenic carbonates. Geochim. Cosmochim. Acta 269:136–49
    [Google Scholar]
  8. Bekker A 2015. Lomagundi carbon isotope excursion. Encyclopedia of Astrobiology M Gargaud, WM Irvine, R Amils, HJ Cleaves, DL Pinti, et al. 1399–404. Berlin: Springer
    [Google Scholar]
  9. Bekker A, El Albani A, Hofmann A, Karhu JA, Kump L et al. 2021. The Paleoproterozoic Francevillian succession of Gabon and the Lomagundi-Jatuli event: COMMENT. Geology 49:7e527
    [Google Scholar]
  10. Bekker A, Holland HD. 2012. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sci. Lett. 317–318 295–304
    [Google Scholar]
  11. Bekker A, Holmden C, Beukes NJ, Kenig F, Eglinton B, Patterson WP. 2008. Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet. Sci. Lett. 271:1278–91
    [Google Scholar]
  12. Bekker A, Karhu JA, Eriksson KA, Kaufman AJ. 2003. Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change?. Precambrian Res. 120:3279–325
    [Google Scholar]
  13. Bekker A, Karhu JA, Kaufman AJ. 2006. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambrian Res. 148:1145–80
    [Google Scholar]
  14. Bekker A, Krapež B, Müller SG, Karhu JA. 2016. A short-term, post-Lomagundi positive C isotope excursion at c. 2.03 Ga recorded by the Wooly Dolomite, Western Australia. J. Geol. Soc. Lond. 173:689–700
    [Google Scholar]
  15. Beukes NJ, de Kock MO, Vorster C, Ravhura LG, Frei D et al. 2019. The age and country rock provenance of the Molopo Farms Complex: implications for Transvaal Supergroup correlation in southern Africa. S. Afr. J. Geol. 122:139–56
    [Google Scholar]
  16. Bindeman IN. 2021. Triple oxygen isotopes in evolving continental crust, granites, and clastic sediments. Rev. Mineral. Geochem. 86:1241–90
    [Google Scholar]
  17. Bindeman IN, Zakharov DO, Palandri J, Greber ND, Dauphas N et al. 2018. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557:7706545–48
    [Google Scholar]
  18. Birgel D, Meister P, Lundberg R, Horath TD, Bontognali TRR et al. 2015. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo-/Neoproterozoic stromatolites?. Geobiology 13:3245–66
    [Google Scholar]
  19. Blättler CL, Claire MW, Prave AR, Kirsimäe K, Higgins JA et al. 2018. Two-billion-year-old evaporites capture Earth's great oxidation. Science 360:6386320–23
    [Google Scholar]
  20. Bouilhol P, Debret B, Inglis EC, Warembourg M, Grocolas T et al. 2022. Decoupling of inorganic and organic carbon during slab mantle devolatilisation. Nat. Commun. 13:1308
    [Google Scholar]
  21. Bradbury HJ, Turchyn AV. 2019. Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments. Earth Planet. Sci. Lett. 519:40–49
    [Google Scholar]
  22. Busch JF, Hodgin EB, Ahm A-SC, Husson JM, Macdonald FA et al. 2022. Global and local drivers of the Ediacaran Shuram carbon isotope excursion. Earth Planet. Sci. Lett. 579:117368
    [Google Scholar]
  23. Cadeau P, Jézéquel D, Leboulanger C, Fouilland E, Le Floc'h E et al. 2020. Carbon isotope evidence for large methane emissions to the Proterozoic atmosphere. Sci. Rep. 10:118186
    [Google Scholar]
  24. Campbell IH, Allen CM. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nat. Geosci. 1:8554–58
    [Google Scholar]
  25. Canfield DE, Knoll AH, Poulton SW, Narbonne GM, Dunning GR. 2020. Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle. Am. J. Sci. 320:297–124
    [Google Scholar]
  26. Cantine MD, Knoll AH, Bergmann KD. 2020. Carbonates before skeletons: a database approach. Earth-Sci. Rev. 201:103065
    [Google Scholar]
  27. Caquineau T, Paquette J-L, Philippot P. 2018. U-Pb detrital zircon geochronology of the Turee Creek Group, Hamersley Basin, Western Australia: timing and correlation of the Paleoproterozoic glaciations. Precambrian Res. 307:34–50
    [Google Scholar]
  28. Condie KC, O'Neill C, Aster RC 2009. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet. Sci. Lett. 282:1294–98
    [Google Scholar]
  29. Condie KC, Pisarevsky SA, Puetz SJ, Spencer CJ, Teixeira W, Meira Faleiros F. 2022. A reappraisal of the global tectono-magmatic lull at ∼2.3 Ga. Precambrian Res. 376:106690
    [Google Scholar]
  30. Cox GM, Halverson GP, Stevenson RK, Vokaty M, Poirier A et al. 2016. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth Planet. Sci. Lett. 446:89–99
    [Google Scholar]
  31. Cramer BD, Jarvis I 2020. Carbon isotope stratigraphy. Geologic Time Scale 2020 FM Gradstein, JG Ogg, MD Schmitz, GM Ogg 309–43. Amsterdam: Elsevier
    [Google Scholar]
  32. Črne AE, Melezhik VA, Lepland A, Fallick AE, Prave AR, Brasier AT. 2014. Petrography and geochemistry of carbonate rocks of the Paleoproterozoic Zaonega Formation, Russia: documentation of 13C-depleted non-primary calcite. Precambrian Res. 240:79–93
    [Google Scholar]
  33. Crockford PW, Kunzmann M, Bekker A, Hayles J, Bao H et al. 2019. Claypool continued: extending the isotopic record of sedimentary sulfate. Chem. Geol. 513:200–25
    [Google Scholar]
  34. Crockford PW, Kunzmann M, Blättler CL, Kalderon-Asael B, Murphy JG et al. 2021. Reconstructing Neoproterozoic seawater chemistry from early diagenetic dolomite. Geology 49:4442–46
    [Google Scholar]
  35. Derry LA, Kaufman AJ, Jacobsen SB. 1992. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta 56:31317–29
    [Google Scholar]
  36. Eguchi J, Diamond CW, Lyons TW. 2022. Proterozoic supercontinent break-up as a driver for oxygenation events and subsequent carbon isotope excursions. PNAS Nexus 1:2pgac036
    [Google Scholar]
  37. Eguchi J, Seales J, Dasgupta R. 2020. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat. Geosci. 13:171–76
    [Google Scholar]
  38. El Albani A, Bengtson S, Canfield DE, Bekker A, Macchiarelli R et al. 2010. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:7302100–4
    [Google Scholar]
  39. El Albani A, Bengtson S, Canfield DE, Riboulleau A, Bard CR et al. 2014. The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity. PLOS ONE 9:6e99438
    [Google Scholar]
  40. El Albani A, Mangano MG, Buatois LA, Bengtson S, Riboulleau A et al. 2019. Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago. PNAS 116:93431–36
    [Google Scholar]
  41. Fantle MS, DePaolo DJ. 2007. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: the Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim. Cosmochim. Acta 71:102524–46
    [Google Scholar]
  42. Fantle MS, Higgins J. 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg. Geochim. Cosmochim. Acta 142:458–81
    [Google Scholar]
  43. Farquhar J, Wing BA. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213:11–13
    [Google Scholar]
  44. Frauenstein F, Veizer J, Beukes N, Van Niekerk HS, Coetzee LL 2009. Transvaal Supergroup carbonates: implications for Paleoproterozoic δ18O and δ13C records. Precambrian Res. 175:1149–60
    [Google Scholar]
  45. Galimov EM, Kuznetsova NG, Prokhorov VS. 1968. On the problem of the Earth's ancient atmosphere composition in connection with results of isotope analysis of carbon from the Precambrian carbonates. Geochemistry 11:1376–81 ( In Russian )
    [Google Scholar]
  46. Galimov EM, Migdisov AA, Ronov AB. 1975. Variation in the isotopic composition of carbonate and organic carbon in the sedimentary rocks during Earth's history. Geochem. Int. 12:21–19
    [Google Scholar]
  47. Geyman EC, Maloof AC. 2019. A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen. PNAS 116:4924433–39
    [Google Scholar]
  48. Gumsley AP, Chamberlain KR, Bleeker W, Söderlund U, de Kock MO et al. 2017. Timing and tempo of the Great Oxidation Event. PNAS 114:81811–16
    [Google Scholar]
  49. Hao W, Mänd K, Li Y, Alessi DS, Somelar P et al. 2021. The kaolinite shuttle links the Great Oxidation and Lomagundi events. Nat. Commun. 12:12944
    [Google Scholar]
  50. Hardisty DS, Lu Z, Planavsky NJ, Bekker A, Philippot P et al. 2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42:7619–22
    [Google Scholar]
  51. Hawkesworth C, Cawood PA, Dhuime B. 2019. Rates of generation and growth of the continental crust. Geosci. Front. 10:1165–73
    [Google Scholar]
  52. Hay CC, Creveling JR, Hagen CJ, Maloof AC, Huybers P. 2019. A library of early Cambrian chemostratigraphic correlations from a reproducible algorithm. Geology 47:5457–60
    [Google Scholar]
  53. Hayes JM, Waldbauer JR. 2006. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361:931–50
    [Google Scholar]
  54. Hedges JI, Keil RG. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49:281–115
    [Google Scholar]
  55. Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI et al. 2019. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570:7760228–31
    [Google Scholar]
  56. Higgins JA, Blättler CL, Lundstrom EA, Santiago-Ramos DP, Akhtar AA et al. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim. Cosmochim. Acta 220:512–34
    [Google Scholar]
  57. Higgins JA, Fischer WW, Schrag DP. 2009. Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth Planet. Sci. Lett. 284:125–33
    [Google Scholar]
  58. Hodgskiss MSW, Crockford PW, Peng Y, Wing BA, Horner TJ. 2019a. A productivity collapse to end Earth's Great Oxidation. PNAS 116:3517207–12
    [Google Scholar]
  59. Hodgskiss MSW, Dagnaud OMJ, Frost JL, Halverson GP, Schmitz MD et al. 2019b. New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group. Earth Planet. Sci. Lett. 520:141–52
    [Google Scholar]
  60. Hodgskiss MSW, Lalonde SV, Crockford PW, Hutchings AM. 2021. A carbonate molybdenum isotope and cerium anomaly record across the end-GOE: local records of global oxygenation. Geochim. Cosmochim. Acta 313:313–39
    [Google Scholar]
  61. Hodgskiss MSW, Sperling EA. 2021. A prolonged, two-step oxygenation of Earth's early atmosphere: support from confidence intervals. Geology 50:2158–62
    [Google Scholar]
  62. Hoffman PF, Halverson GP, Schrag DP, Higgins JA, Domack EW et al. 2021. Snowballs in Africa: sectioning a long-lived Neoproterozoic carbonate platform and its bathyal foreslope (NW Namibia). Earth-Sci. Rev. 219:103616
    [Google Scholar]
  63. Hoffman PF, Lamothe KG. 2019. Seawater-buffered diagenesis, destruction of carbon isotope excursions, and the composition of DIC in Neoproterozoic oceans. PNAS 116:3818874–79
    [Google Scholar]
  64. Hofmann HJ, Davidson A. 1998. Paleoproterozoic stromatolites, Hurwitz Group, Quartzite Lake area, Northwest Territories, Canada. Can. J. Earth Sci. 35:280–89
    [Google Scholar]
  65. Holland HD. 2002. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66:213811–26
    [Google Scholar]
  66. Johnson JE, Gerpheide A, Lamb MP, Fischer WW. 2014. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126:5–6813–30
    [Google Scholar]
  67. Jones DS, Brothers RW, Ahm A-SC, Slater N, Higgins JA, Fike DA. 2019. Sea level, carbonate mineralogy, and early diagenesis controlled δ13C records in Upper Ordovician carbonates. Geology 48:2194–99
    [Google Scholar]
  68. Karhu JA. 1993. Paleoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield PhD Diss. Univ. Helsinki Helsinki, Finland:
  69. Karhu JA, Holland HD. 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology 24:10867–70
    [Google Scholar]
  70. Kipp MA, Stüeken EE, Bekker A, Buick R. 2017. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. PNAS 114:5875–80
    [Google Scholar]
  71. Knoll AH, Hayes JM, Kaufman AJ, Swett K, Lambert IB. 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321:6073832–38
    [Google Scholar]
  72. Kreitsmann T, Külaviir M, Lepland A, Paiste K, Paiste P et al. 2019. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia—implications for the preservation of primary C isotope signals. Chem. Geol. 512:43–57
    [Google Scholar]
  73. Laakso TA, Schrag DP 2022. The carbon isotope record and Earth surface oxygenation. Isotopic Constraints on Earth System Processes KWW Sims, K Maher, DP Schrag 205–16. Hoboken, NJ: Wiley & Sons
    [Google Scholar]
  74. Liebmann J, Spencer CJ, Kirkland CL, Ernst RE. 2022. Large igneous provinces track fluctuations in subaerial exposure of continents across the Archean–Proterozoic transition. Terra Nova 34:4323–29
    [Google Scholar]
  75. Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE. 2016. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. Sci. Adv. 2:5e1600134
    [Google Scholar]
  76. Macdonald FA, Jones DS, Schrag DP. 2009. Stratigraphic and tectonic implications of a newly discovered glacial diamictite-cap carbonate couplet in southwestern Mongolia. Geology 37:2123–26
    [Google Scholar]
  77. MacLennan S, Park Y, Swanson-Hysell N, Maloof A, Schoene B et al. 2018. The arc of the Snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation. Geology 46:6539–42
    [Google Scholar]
  78. Maheshwari A, Sial AN, Gaucher C, Bossi J, Bekker A et al. 2010. Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay. Precambrian Res. 182:4274–99
    [Google Scholar]
  79. Martin AP, Condon DJ, Prave AR, Lepland A. 2013. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event). Earth-Sci. Rev. 127:242–61
    [Google Scholar]
  80. Mayika KB, Moussavou M, Prave AR, Lepland A, Mbina M, Kirsimäe K. 2020. The Paleoproterozoic Francevillian succession of Gabon and the Lomagundi-Jatuli event. Geology 48:111099–104
    [Google Scholar]
  81. Mayika KB, Moussavou M, Prave AR, Lepland A, Mbina M, Kirsimäe K. 2021. The Paleoproterozoic Francevillian succession of Gabon and the Lomagundi-Jatuli event: REPLY. Geology 49:7e528
    [Google Scholar]
  82. McKenzie NR, Hughes NC, Myrow PM, Banerjee DM, Deb M, Planavsky NJ 2013. New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications. Precambrian Res. 238:120–28
    [Google Scholar]
  83. Melchin MJ, Holmden C. 2006. Carbon isotope chemostratigraphy in Arctic Canada: sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 234:2186–200
    [Google Scholar]
  84. Melezhik VA, Fallick AE. 1996. A widespread positive δ13Ccarb anomaly at around 2.33–2.06 Ga on the Fennoscandian Shield: a paradox?. Terra Nova 8:2141–57
    [Google Scholar]
  85. Melezhik VA, Fallick AE, Medvedev PV, Makarikhin VV. 1999. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite–stromatolite–dolomite–‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth-Sci. Rev. 48:171–120
    [Google Scholar]
  86. Melezhik VA, Prave AR, Fallick AE, Kump LR, Strauss H et al., eds. 2013a. Reading the Archive of Earth's Oxygenation, Vol. 1 The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia-Drilling Early Earth Project Berlin: Springer
  87. Melezhik VA, Prave AR, Fallick AE, Kump LR, Strauss H et al., eds. 2013b. Reading the Archive of Earth's Oxygenation, Vol. 2 The Core Archive of the Fennoscandian Arctic Russia-Drilling Early Earth Project Berlin: Springer
  88. Melezhik VA, Prave AR, Fallick AE, Kump LR, Strauss H et al. 2013c. Reading the Archive of Earth's Oxygenation, Vol. 3 Global Events and the Fennoscandian Arctic Russia-Drilling Early Earth Project Berlin: Springer
  89. Metzger JG, Ramezani J, Bowring SA, Fike DA. 2020. New age constraints on the duration and origin of the Late Ordovician Guttenberg δ13Ccarb excursion from high-precision U-Pb geochronology of K-bentonites. Geol. Soc. Am. Bull. 133:3–4580–90
    [Google Scholar]
  90. Miall AD. 2015. Updating uniformitarianism: stratigraphy as just a set of ‘frozen accidents. .’ Geol. Soc. Lond. Spec. Publ. 404:111–36
    [Google Scholar]
  91. Miyazaki Y, Planavsky NJ, Bolton EW, Reinhard CT. 2018. Making sense of massive carbon isotope excursions with an inverse carbon cycle model. J. Geophys. Res. Biogeosci. 123:82485–96
    [Google Scholar]
  92. Ossa Ossa F, Eickmann B, Hofmann A, Planavsky NJ, Asael D et al. 2018. Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event. Earth Planet. Sci. Lett. 486:70–83
    [Google Scholar]
  93. Ossa Ossa F, Eickmann B, Hofmann A, Spangenberg JE, Planavsky NJ et al. 2019. Reply to the comment by Préat and Weber on Ossa Ossa et al. 2018. Earth Planet. Sci. Lett. 511:259–61
    [Google Scholar]
  94. Ostrander CM, Johnson AC, Anbar AD. 2021. Earth's First Redox Revolution. Annu. Rev. Earth Planet. Sci. 49:337–66
    [Google Scholar]
  95. Partin CA, Bekker A, Planavsky NJ, Scott CT, Gill BC et al. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet. Sci. Lett. 369–370:284–93
    [Google Scholar]
  96. Partin CA, Sadler PM. 2016. Slow net sediment accumulation sets snowball Earth apart from all younger glacial episodes. Geology 44:121019–22
    [Google Scholar]
  97. Planavsky NJ, Bekker A, Hofmann A, Owens JD, Lyons TW. 2012. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. PNAS 109:4518300–5
    [Google Scholar]
  98. Poulton SW, Bekker A, Cumming VM, Zerkle AL, Canfield DE, Johnston DT. 2021. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592:7853232–36
    [Google Scholar]
  99. Prave AR, Kirsimäe K, Lepland A, Fallick AE, Kreitsmann T et al. 2022. The grandest of them all: the Lomagundi–Jatuli Event and Earth's oxygenation. J. Geol. Soc. Lond. 179:1jgs2021–036
    [Google Scholar]
  100. Préat A, Weber F. 2019. Comment on Ossa Ossa et al. 2018 paper published in EPSL. Earth Planet. Sci. Lett. 511:256–58
    [Google Scholar]
  101. Rasmussen B, Muhling JR, Zi J-W, Tsikos H, Fischer WW. 2019. A 1.25 Ga depositional age for the “Paleoproterozoic” Mapedi red beds, Kalahari manganese field, South Africa: new constraints on the timing of oxidative weathering and hematite mineralization. Geology 48:144–48
    [Google Scholar]
  102. Riedman LA, Porter SM, Czaja AD. 2021. Phosphatic scales in vase-shaped microfossil assemblages from Death Valley, Grand Canyon, Tasmania, and Svalbard. Geobiology 19:4364–75
    [Google Scholar]
  103. Rooney AD, Cantine MD, Bergmann KD, Gómez-Pérez I, Al Baloushi B et al. 2020. Calibrating the coevolution of Ediacaran life and environment. PNAS 117:2916824–30
    [Google Scholar]
  104. Rooney AD, Strauss JV, Brandon AD, Macdonald FA. 2015. A Cryogenian chronology: two long-lasting synchronous Neoproterozoic glaciations. Geology 43:5459–62
    [Google Scholar]
  105. Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH. 2017. Early photosynthetic eukaryotes inhabited low-salinity habitats. PNAS 114:377737–45
    [Google Scholar]
  106. Schidlowski M, Eichmann R, Junge CE. 1975. Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res. 2:11–69
    [Google Scholar]
  107. Schidlowski M, Eichmann R, Junge CE. 1976. Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia. Geochim. Cosmochim. Acta 40:4449–55
    [Google Scholar]
  108. Schidlowski M, Matzigkeit U, Mook WG, Krumbein WE 1985. Carbon isotope geochemistry and 14C ages of microbial mats from the Gavish Sabkha and the Solar Lake. Hypersaline Ecosystems: The Gavish Sabkha GM Friedman, WE Krumbein 381–401. Berlin: Springer
    [Google Scholar]
  109. Schlager W. 2000. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems. Geol. Soc. Lond. Spec. Publ. 178:1217–27
    [Google Scholar]
  110. Schrag DP, Higgins JA, Macdonald FA, Johnston DT. 2013. Authigenic carbonate and the history of the global carbon cycle. Science 339:6119540–43
    [Google Scholar]
  111. Scott C, Wing BA, Bekker A, Planavsky NJ, Medvedev P et al. 2014. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir. Earth Planet. Sci. Lett. 389:95–104
    [Google Scholar]
  112. Shields G, Veizer J. 2002. Precambrian Marine Carbonate Isotope Database: version 1.1. Geochem. Geophys. Geosyst. 3:61–12
    [Google Scholar]
  113. Shields GA, Mills BJW. 2017. Tectonic controls on the long-term carbon isotope mass balance. PNAS 114:174318–23
    [Google Scholar]
  114. Smith ME, Swart PK. 2022. The influence of diagenesis on carbon and oxygen isotope values in shallow water carbonates from the Atlantic and Pacific: implications for the interpretation of the global carbon cycle. Sediment. Geol. 434:106147
    [Google Scholar]
  115. Soetaert K, Hofmann AF, Middelburg JJ, Meysman FJR, Greenwood J. 2007. The effect of biogeochemical processes on pH. Mar. Chem. 105:30–51
    [Google Scholar]
  116. Swanson-Hysell NL, Maloof AC, Condon DJ, Jenkin GRT, Alene M et al. 2015. Stratigraphy and geochronology of the Tambien Group, Ethiopia: evidence for globally synchronous carbon isotope change in the Neoproterozoic. Geology 43:4323–26
    [Google Scholar]
  117. Swart PK. 2008. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle. PNAS 105:3713741–45
    [Google Scholar]
  118. Swart PK, Reijmer JJG, Otto R 2009. A re-evaluation of facies on Great Bahama Bank II: variations in the δ13C, δ18O and mineralogy of surface sediments. Perspectives in Carbonate Geology PK Swart, GP Eberli, JA McKenzie 47–59. Hoboken, NJ: Wiley & Sons
    [Google Scholar]
  119. Tang M, Chu X, Hao J, Shen B. 2021. Orogenic quiescence in Earth's middle age. Science 371:6530728–31
    [Google Scholar]
  120. Valley JW. 1986. Stable isotope geochemistry of metamorphic rocks. Rev. Mineral. Geochem. 16:1445–89
    [Google Scholar]
  121. Warke MR, Di Rocco T, Zerkle AL, Lepland A, Prave AR et al. 2020. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth. .” PNAS 117:2413314–20
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-071250
Loading
/content/journals/10.1146/annurev-earth-031621-071250
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error