1932

Abstract

For the first time, from early 2019 to the end of 2022, Mars’ shallow and deep interiors have been explored by seismology with the InSight mission. Thanks to the performances of its seismometers and the quality of their robotic installation on the ground, 1,319 seismic events have been detected, including about 90 marsquakes at teleseismic distances, with w from 2.5 to 4.7 and at least 6 impacts, the largest ones with craters larger than 130 m. A large fraction of these marsquakes occur in Cerberus Fossae, demonstrating active regional tectonics. Records of pressure-induced seismic noise and signals from the penetration of a heat flow probe have provided subsurface models below the lander. Deeper direct and secondary body wave phase travel time, receiver function, and surface wave analysis have provided the first interior models of Mars, including crustal thickness and crustal layering, mantle structure, thermal lithospheric thickness, and core radius and state.

  • ▪  With InSight's SEIS (Seismic Experiment for Interior Structure of Mars) experiment and for the first time in planetary exploration, Mars’ internal structure and seismicity are constrained.
  • ▪  More than 1,300 seismic events and seismic noise records enable the first comparative seismology studies together with Earth and lunar seismic data.
  • ▪  Inversion of seismic travel times and waveforms provided the first interior model of another terrestrial planet, down to the core.
  • ▪  Several impacts were also seismically recorded with their craters imaged from orbit, providing the first data on impact dynamic on Mars.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-073318
2023-05-31
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-073318.html?itemId=/content/journals/10.1146/annurev-earth-031621-073318&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson DL, Miller WF, Latham GV, Nakamura Y, Toksöz MN, et al. 1977.. Seismology on Mars. . J. Geophys. Res. 82:(28):452446
    [Google Scholar]
  2. Andrews-Hanna J, Zuber M, Banerdt WB. 2008.. The Borealis basin and the origin of the martian crustal dichotomy. . Nature 453::21215
    [Google Scholar]
  3. Bagheri A, Khan A, Al-Attar D, Crawford O, Giardini D. 2019.. Tidal response of Mars constrained from laboratory-based viscoelastic dissipation models and geophysical data. . J. Geophys. Res. Planets 124::270327
    [Google Scholar]
  4. Banerdt WB, Smrekar S, Banfield D, Giardini D, Golombek M, et al. 2020.. Initial results from the InSight mission on Mars. . Nat. Geosci. 13::18389
    [Google Scholar]
  5. Banfield D, Rodriguez-Manfredi JA, Russell CT, Rowe KM, Leneman D, et al. 2019.. InSight Auxiliary Payload Sensor Suite (APSS). . Space Sci. Rev. 215::4
    [Google Scholar]
  6. Banfield D, Spiga A, Newman C, Forget F, Lemmon M, et al. 2020.. The atmosphere of Mars as observed by InSight. . Nat. Geosci. 13::19098
    [Google Scholar]
  7. Barkaoui S, Lognonné P, Kawamura T, Stutzmann E, Seydoux L, et al. 2021.. Anatomy of streaming Mars SEIS data from unsupervised learning. . Bull. Seismol. Soc. Am. 111::296481
    [Google Scholar]
  8. Bates JR, Lauderdale WW, Kernaghan H. 1979.. ALSEP termination report. Rep. 1036, NASA , Washington, DC:. https://www.lpi.usra.edu/lunar/ALSEP/pdf/NASA%20RP-1036.pdf
    [Google Scholar]
  9. Beghein C, Li J, Weidner E, Maguire R, Wookey J, et al. 2022.. Crustal anisotropy in the Martian lowlands from surface waves. . Geophys. Res. Lett. 49::e2022GL101508
    [Google Scholar]
  10. Böse M, Giardini D, Stähler S, Ceylan S, Clinton JF, et al. 2018.. Magnitude scales for marsquakes. . Bull. Seismol. Soc. Am. 108::276477
    [Google Scholar]
  11. Böse MD, Clinton JF, Ceylan S, Euchner F, van Driel M, et al. 2017.. Probabilistic framework for single-station location of seismicity on Earth and Mars. . Phys. Earth Planet. Inter. 262::4865
    [Google Scholar]
  12. Böse MD, Stähler SC, Deichmann N, Giardini D, Clinton JF, et al. 2021.. Magnitude scales for marsquakes calibrated from InSight data. . Bull. Seismol. Soc. Am. 111::300315
    [Google Scholar]
  13. Brinkman N, Schmelzbach C, Sollberger D, ten Pierick J, Edme P, et al. 2022.. In-situ regolith seismic velocity measurement at the InSight landing site on Mars. . J. Geophys. Res. Planets 127::e2022JE007229
    [Google Scholar]
  14. Brinkman N, Schmelzbach C, Sollberger D, van Driel M, ten Pierick J, et al. 2019.. The first active seismic experiment on Mars to characterize the shallow subsurface structure at the InSight landing site. . SEG Tech. Progam Expand. Abstr. 2019.:475660
    [Google Scholar]
  15. Brinkman N, Stähler SC, Giardini D, Schmelzbach C, Khan A, et al. 2021.. First focal mechanisms of marsquakes. . J. Geophys. Res. Planets 126::e2020JE006546
    [Google Scholar]
  16. Carrasco S, Knapmeyer-Endrun B, Margerin L, Schmelzbach C, Onodera K, et al. 2023.. Empirical H/V spectral ratios at the InSight landing site and implications for the martian subsurface structure. . J. Geophys. Int. 232:(3):1293310
    [Google Scholar]
  17. Ceylan S, Clinton JF, Giardini D, Böse M, Charalambous C, et al. 2021.. Companion guide to the Marsquake Catalog from InSight, Sols 0–478: data content and non-seismic events. . Phys. Earth Planet. Inter. 310::106597
    [Google Scholar]
  18. Ceylan S, Clinton JF, Giardini D, Stähler SC, Horleston A, et al. 2022.. The marsquake catalogue from InSight, sols 0–1011. . Phys. Earth Planet. Inter. 333::106943
    [Google Scholar]
  19. Charalambous C, Stott AE, Pike WT, McClean JB, Warren T, et al. 2021.. A comodulation analysis of atmospheric energy injection into the ground motion at InSight, Mars. . J. Geophys. Res. Planets 126::e2020JE006538
    [Google Scholar]
  20. Clinton J, Giardini D, Böse M, Ceylan S, van Driel M, et al. 2018.. The Marsquake Service: securing daily analysis of SEIS data and building the Martian seismicity catalogue for InSight. . Space Sci. Rev. 214::133
    [Google Scholar]
  21. Clinton JF, Ceylan S, van Driel M, Giardini D, Stähler SC, et al. 2021.. The marsquake catalog from InSight, Sols 0–478: data content and non-seismic events. . Phys. Earth Planet. Inter. 310::106595
    [Google Scholar]
  22. Clinton JF, Giardini D, Lognonné P, Banerdt WB, van Driel M, et al. 2017.. Preparing for InSight: an invitation to participate in a blind test for Martian seismicity. . Seismol. Res. Lett. 88::1290302
    [Google Scholar]
  23. Collins GS, Newland EL, Schwarz D, Coleman M, McMullan S, et al. 2022.. Meteoroid fragmentation in the martian atmosphere and the formation of crater clusters. . J. Geophys. Res. Planets 127::e2021JE007149
    [Google Scholar]
  24. Compaire N, Margerin L, Garcia RF, Pinot B, Calvet M, et al. 2021.. Autocorrelation of the ground vibrations recorded by the SEIS-InSight seismometer on Mars. . J. Geophys. Res. Planets 126::e2020JE006498
    [Google Scholar]
  25. Compaire N, Margerin L, Monnereau M, Garcia RF, Lange L, et al. 2022.. Seasonal variations of subsurface seismic velocities monitored by the SEIS-InSight seismometer on Mars. . Geophys. J. Int. 229::77699
    [Google Scholar]
  26. da Silva S, Corso G. 2021.. Nonextensive Gutenberg–Richter law and the connection between earthquakes and marsquakes. . Eur. Phys. J. B 94::25
    [Google Scholar]
  27. Dahmen NL, Clinton JF, Ceylan S, van Driel M, Giardini D, et al. 2020.. Super high frequency events: a new class of events recorded by the InSight seismometers on Mars. . J. Geophys. Res. Planets 126::e2020JE006599
    [Google Scholar]
  28. Dahmen NL, Clinton JF, Meier M-A, Stähler SC, Ceylon S, et al. 2022.. MarsQuakeNet: a more complete marsquake catalog obtained by deep learning techniques. . J. Geophys. Res. Planets 127::e2022JE007503
    [Google Scholar]
  29. Dahmen NL, Zenhäusern G, Clinton JF, Giardini D, Stähler SC, et al. 2021.. Resonances and Lander modes observed by InSight on Mars (1–9 Hz). . Bull. Seismol. Soc. Am. 111::292450
    [Google Scholar]
  30. Daubar IJ, Lognonné P, Teanby NA, Collins GS, Clinton JF, et al. 2020.. A new crater near InSight: implications for seismic impact detectability on Mars. . J. Geophys. Res. Planets 125::e2020JE006382
    [Google Scholar]
  31. Daubar IJ, Lognonné P, Teanby NA, Miljkovic K, Stevanović J, et al. 2018.. Impact-seismic investigations of the InSight mission. . Space Sci. Rev. 214::132
    [Google Scholar]
  32. Deng S, Levander A. 2020.. Autocorrelation reflectivity of Mars. . Geophys. Res. Lett. 47::e2020GL089630
    [Google Scholar]
  33. Deng S, Levander A. 2022.. Autocorrelation R2 on Mars. . Geophys. Res. Lett. 49::e2022GL099580
    [Google Scholar]
  34. Drilleau M, Samuel H, Garcia RF, Rivoldini A, Perrin C, et al. 2022.. Marsquake locations and 1-D seismic models for Mars from InSight data. . J. Geophys. Res. Planets 127::e2021JE007067
    [Google Scholar]
  35. Drilleau M, Samuel H, Rivoldini A, Panning M, Lognonné P. 2021.. Bayesian inversion of the Martian structure using geodynamic constraints. . Geophys. J. Int. 226::161544
    [Google Scholar]
  36. Durán C, Khan A, Ceylan S, Charalambous C, Kim D, et al. 2022a.. Observation of a core-diffracted P-wave from a farside impact with implications for the lower-mantle structure of Mars. . Geophys. Res. Lett. 49::e2022GL100887
    [Google Scholar]
  37. Durán C, Khan A, Ceylan S, Zenhäusern G, Stähler S, et al. 2022b.. Seismology on Mars: an analysis of direct, reflected, and converted seismic body waves with implications for interior structure. . Phys. Earth Planet. Inter. 325::106851
    [Google Scholar]
  38. Fayon L, Knapmeyer-Endrun B, Lognonné P, Bierwirth M, Kramer A, et al. 2018.. A numerical model of the SEIS leveling system transfer matrix and resonances: application to SEIS rotational seismology and dynamic ground interaction. . Space Sci. Rev. 214::119
    [Google Scholar]
  39. Fernando B, Wójcicka N, Han Z, Stott A, Ceylan S, et al. 2021a.. Questions to Heaven. . Astron. Geophys. 62::6.2225
    [Google Scholar]
  40. Fernando B, Wójcicka N, Maguire R, Stähler S, Stott AE, et al. 2021b.. Seismic constraints from a Mars impact experiment using InSight and Perseverance. . Nat. Astron. 6::5964
    [Google Scholar]
  41. Folkner WM, Dehant V, Le Maistre S, Yseboodt M, Rivoldini T, et al. 2018.. The rotation and interior structure experiment on the InSight mission to Mars. . Space Sci. Rev. 214::100
    [Google Scholar]
  42. Garcia RF, Brissaud Q, Rolland L, Martin R, Komatitsch D, et al. 2017.. Finite-difference modeling of acoustic and gravity wave propagation in Mars atmosphere: application to infrasounds emitted by meteor impacts. . Space Sci. Rev. 211::54770
    [Google Scholar]
  43. Garcia RF, Daubar IJ, Beucler E, Posiolova LV, Collins GS, et al. 2022.. Newly formed craters on Mars located using seismic and acoustic wave data from InSight. . Nat. Geosci. 15::77480
    [Google Scholar]
  44. Garcia RF, Kenda B, Kawamura T, Spiga A, Murdoch N, et al. 2020.. Pressure effects on the SEIS-InSight instrument, improvement of seismic records, and characterization of long period atmospheric waves from ground displacements. . J. Geophys. Res. Planets 125::e2019JE006278
    [Google Scholar]
  45. Garcia RF, Murdoch N, Lorenz R, Spiga A, Bowman DC, et al. 2021.. Search for infrasound signals in InSight data using coupled pressure/ground deformation methods. . Bull. Seismol. Soc. Am. 111::305564
    [Google Scholar]
  46. Giardini D, Lognonné P, Banerdt WB, Pike WT, Christensen U, et al. 2020.. The seismicity of Mars. . Nat. Geosci. 13::20512
    [Google Scholar]
  47. Golombek M, Warner N, Grant J, Hauber E, Ansan V, et al. 2020.. Geology of the InSight landing site on Mars. . Nat. Commun. 11::1014
    [Google Scholar]
  48. Gudkova T, Lognonné P, Miljković K, Gagnepain-Beyneix J. 2015.. Impact cutoff frequency—momentum scaling law inverted from Apollo seismic data. . Earth Planet. Sci. Lett. 427::5765
    [Google Scholar]
  49. Harada Y. 2022.. Reconsideration of the anelasticity parameters of the martian mantle: preliminary estimates based on the latest geodetic parameters and seismic models. . Icarus 383::114917
    [Google Scholar]
  50. Heap MJ. 2019.. P- and S-wave velocity of dry, water-saturated, and frozen basalt: implications for the interpretation of Martian seismic data. . Icarus 330::1115
    [Google Scholar]
  51. Hobiger M, Hallo M, Schmelzbach C, Stähler SC, Fäh D, et al. 2021.. The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations. . Nat. Commun. 12::6756
    [Google Scholar]
  52. Horleston A, Clinton JF, Ceylan S, Giardini D, Charalambous C, et al. 2022.. The far side of Mars: two distant marsquakes detected by InSight. . Seism. Rec. 2::8899
    [Google Scholar]
  53. Huang Q, Schmerr NC, King SD, Kim D, Rivoldini A, et al. 2022.. Seismic detection of a deep mantle discontinuity within Mars by InSight. . PNAS 119:(42):e2204474119
    [Google Scholar]
  54. Hurst KJ, Ervin J, Fayon L, Kedar S, Knapmeyer-Endrun B, et al. 2021.. Resonances of the InSight seismometer on Mars. . Bull. Seismol. Soc. Am. 111::295163
    [Google Scholar]
  55. InSight Mars SEIS Data Serv. 2019.. SEIS raw data, Insight mission. IPGP, JPL, CNES, ETHZ, ICL, MPS, ISAE-Supaero, LPG, MFSC. http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016
    [Google Scholar]
  56. InSight Marsquake Serv. 2020.. Mars Seismic Catalogue, InSight Mission; V1 2/1/2020. ETHZ, IPGP, JPL, ICL, ISAE-Supaero, MPS, Univ. Bristol. https://doi.org/10.12686/a6
    [Google Scholar]
  57. InSight Marsquake Serv. 2022.. Mars Seismic Catalogue, InSight Mission; V12—2019-01-12/2022-06-30. ETHZ, IPGP, JPL, ICL, Univ. Bristol. https://doi.org/10.12686/a18
    [Google Scholar]
  58. InSight Marsquake Serv. 2023.. Mars Seismic Catalogue, InSight Mission; V13—2019-01-12/2022-09-30. ETHZ, IPGP, JPL, ICL, Univ. Bristol. https://doi.org/10.12686/a19
    [Google Scholar]
  59. Irving J, Antonangeli D, Beghein C, Drilleau M, Garcia RF, et al. 2022.. First observations of seismic waves travelling through the Martian core. Paper presented at the AGU Fall Meeting, Chicago:, Dec. 15
    [Google Scholar]
  60. Jacob A, Plasman M, Perrin C, Fuji N, Lognonné P, et al. 2022.. Seismic sources of InSight marsquakes and seismotectonic context of Elysium Planitia, Mars. . Tectonophysics 837::229434
    [Google Scholar]
  61. Joshi R, Knapmeyer-Endrun B, Mosegaard K, Wieczorek MA, Igel H, . 2023.. Joint inversion of receiver functions and apparent incidence angles to determine the crustal structure of Mars. . Geophys. Res. Lett. 50::e2022GL100469
    [Google Scholar]
  62. Karakostas F, Schmerr N, Maguire R, Huang Q, Kim D, et al. 2021.. Scattering attenuation of the Martian interior through coda wave analysis. . Bull. Seismol. Soc. Am. 111::303554
    [Google Scholar]
  63. Kawamura T, Clinton JF, Zenhäusern G, Ceylan S, Horleston AC, et al. 2022.. Largest marsquake ever detected by InSight: S1222a. . Geophys. Res. Lett. 49::e2022GL101543
    [Google Scholar]
  64. Kedar S, Andrade J, Banerdt WB, Delage P, Golombek M, et al. 2017.. Analysis of regolith properties using seismic signals generated by InSight's HP3 penetrator. . Space Sci. Rev. 211::31537
    [Google Scholar]
  65. Kedar S, Panning MP, Smrekar SE, Stähler SC, King SD, et al. 2021.. Analyzing low frequency seismic events at Cerberus Fossae as long period volcanic quakes. . J. Geophys. Res. Planets 126::e2020JE006518
    [Google Scholar]
  66. Kenda B, Drilleau M, Garcia RF, Kawamura T, Murdoch N, et al. 2020.. Subsurface structure at the InSight landing site from compliance measurements by seismic and meteorological experiments. . J. Geophys. Res. Planets 125::e2020JE006387
    [Google Scholar]
  67. Kenda B, Lognonné P, Spiga A, Kawamura T, Kedar S, et al. 2017.. Modeling of ground deformation and shallow surface waves generated by Martian dust, devils and perspectives for near-surface structure inversion. . Space Sci. Rev. 211::50124
    [Google Scholar]
  68. Khan A, Ceylan S, van Driel M, Giardini D, Lognonné P, et al. 2021.. Imaging the upper mantle structure of Mars with InSight seismic data. . Science 373::43438
    [Google Scholar]
  69. Khan A, Sossi PA, Liebske C, Rivoldini A, Giardini D. 2022.. Geophysical and cosmochemical evidence for a volatile-rich Mars. . Earth Planet. Sci. Lett. 578::117330
    [Google Scholar]
  70. Khan A, van Driel M, Böse M, Giardini D, Ceylan S, et al. 2016.. Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. . Phys. Earth Planet. Inter. 258::2842
    [Google Scholar]
  71. Kim D, Banerdt WB, Ceylan S, Giardini D, Lekić V, et al. 2022a.. Surface waves and crustal structure on Mars. . Science 378:(6618):41721
    [Google Scholar]
  72. Kim D, Davis P, Lekić V, Maguire R, Compaire N, et al. 2021a.. Potential pitfalls in the analysis and structural interpretation of Mars’ seismic data from InSight. . Bull. Seismol. Soc. Am. 111::29823002
    [Google Scholar]
  73. Kim D, Lekić V, Irving JCE, Schmerr N, Knapmeyer-Endrun B, et al. 2021b.. Improving constraints on planetary interiors with PPs receiver functions. . J. Geophys. Res. Planets 126::e2021JE006983
    [Google Scholar]
  74. Kim D, Stähler SC, Ceylan S, Lekic V, Maguire R, et al. 2022b.. Structure along the Martian dichotomy constrained by fundamental-mode Rayleigh and Love waves and their overtones. . Geophys. Res. Lett. 49::e2022GL10166
    [Google Scholar]
  75. Knapmeyer M, Ceylan S, Plesa A-C, Charalambous C, Clinton J, et al. 2022.. The global seismic moment rate of Mars after Event S1222a. . Geophys. Res. Lett. In press
    [Google Scholar]
  76. Knapmeyer M, Knapmeyer-Endrun B, Plesa AC, Böse M, Kawamura T, et al. 2019.. Estimation of the seismic moment rate from an incomplete seismicity catalog, in the context of the InSight mission to Mars. . Bull. Seismol. Soc. Am. 109::112547
    [Google Scholar]
  77. Knapmeyer M, Stähler SC, Daubar I, Forget F, Spiga A, et al. 2021.. Seasonal seismic activity on Mars. . Earth Planet. Sci. Lett. 576::117171
    [Google Scholar]
  78. Knapmeyer-Endrun B, Murdoch N, Kenda B, Golombek MP, Knapmeyer M, et al. 2018.. Influence of body waves, instrumentation resonances, and prior assumptions on Rayleigh wave ellipticity inversion for shallow structure at the InSight landing site. . Space Sci. Rev. 214::94
    [Google Scholar]
  79. Knapmeyer-Endrun B, Panning MP, Bissig F, Joshi R, Khan A, et al. 2021.. Thickness and structure of the Martian crust from InSight seismic data. . Science 373::43843
    [Google Scholar]
  80. Le Maistre S, Rivoldini A, Caldiero A, Yseboodt M, Baland RM, et al. 2023.. Detection of the liquid core signature in Mars nutations from Insight-rise data: implications for Mars interior structure. 54th Lunar and Planetary Science Conference, The Woodlands, TX:, Mar. 13–17 (Abstr. 1611
    [Google Scholar]
  81. Li J, Beghein C, Davis P, Wieczorek MA, McLennan SM, et al. 2022a.. Crustal structure constraints from the detection of the SsPp phase on Mars. . Earth Space Sci. 9::e2022EA002416
    [Google Scholar]
  82. Li J, Beghein C, Lognonné P, McLennan S, Wieczorek M, et al. 2022b.. Different Martian crustal seismic velocities across the dichotomy boundary from multi-orbiting surface waves. . Geophys. Res. Lett. 49::e2022GL101243
    [Google Scholar]
  83. Li J, Beghein C, McLennan SM, Horleston AC, Charalambous C, et al. 2022c.. Constraints on the martian crust away from the InSight landing site. . Nat. Commun. 13::7950
    [Google Scholar]
  84. Li J, Beghein C, Wookey J, Davis P, Lognonné P, et al. 2022d.. Evidence for crustal seismic anisotropy at the InSight lander site. . Earth Planet. Sci. Lett. 593::117654
    [Google Scholar]
  85. Lognonné P. 2005.. Planetary seismology. . Annu. Rev. Earth Planet. Sci. 33::571604
    [Google Scholar]
  86. Lognonné P, Banerdt WB, Giardini D, Pike WT, Christensen U, et al. 2019.. SEIS: Insight's seismic experiment for internal structure of Mars. . Space Sci. Rev. 215::12
    [Google Scholar]
  87. Lognonné P, Banerdt WB, Pike WT, Giardini D, Christensen U, et al. 2020.. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. . Nat. Geosci. 13::21320
    [Google Scholar]
  88. Lognonné P, Johnson CL. 2015.. Planetary seismology. . In Treatise on Geophysics, ed. G Schubert , pp. 65120 Oxford, UK:: Elsevier, 2nd ed.
    [Google Scholar]
  89. Lognonné P, Karakostas F, Rolland L, Nishikawa Y. 2016.. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: from Earth observation to Mars and Venus perspectives. . J. Acoust. Soc. Am. 140::144768
    [Google Scholar]
  90. Lognonné P, Le Feuvre M, Johnson CL, Weber RC. 2009.. Moon meteoritic seismic hum: steady state prediction. . J. Geophys. Res. 114:(E12):E12003
    [Google Scholar]
  91. Lognonné P, Mosser B. 1993.. Planetary seismology. . Surv. Geophys. 14::239302
    [Google Scholar]
  92. Lognonné P, Schimmel M, Stutzmann E, Drilleau M, Samuel H, et al. 2022.. Martian free oscillations: search in SEIS data and implications. Paper presented at Europlanet Science Congress 2022, Granada, Spain:, Sept . 1823
    [Google Scholar]
  93. Lorenz RD, Kedar S, Murdoch N, Lognonné P, Kawamura T, et al. 2015.. Seismometer detection of dust devil vortices by ground tilt. . Bull. Seismol. Soc. Am. 105::301523
    [Google Scholar]
  94. Lorenz RD, Spiga A, Lognonné P, Plasman M, Newman CE, Charalambous C. 2021.. The whirlwinds of Elysium: a catalog and meteorological characteristics of “dust devil” vortices observed by InSight on Mars. . Icarus 355::114119
    [Google Scholar]
  95. Lucas A, Bourdon L, Mangeney A, Sainton G, Bah MA, et al. 2022.. InSight for seismically detectability and seismically triggered avalanches on Mars. Paper presented at Europlanet Science Congress 2022 , Granada, Spain:, Sept . 1823
    [Google Scholar]
  96. Mahvelati S, Coe TJ. 2021.. Horizontal-to-vertical spectral ratio (HVSR) analysis of the martian passive seismic data from the InSight mission. Paper presented at the 17th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments, Earth and Space, Seattle, WA:, Apr . 1923
    [Google Scholar]
  97. Maki JN, Golombek M, Deen R, Abarca H, Sorice C, et al. 2018.. The color cameras on the InSight lander. . Space Sci. Rev. 214::105
    [Google Scholar]
  98. Manga M, Wright V. 2021.. No cryosphere-confined aquifer below InSight on Mars. . Geophys. Res. Lett. 48::e2021GL093127
    [Google Scholar]
  99. Martire L, Garcia RF, Rolland L, Spiga A, Lognonné P, et al. 2020.. Martian infrasound: numerical modeling and analysis of InSight's data. . J. Geophys. Res. Planets 125::e2020JE006376
    [Google Scholar]
  100. Menina S, Margerin L, Kawamura T, Lognonné P, Marti J, et al. 2021.. Energy envelope and attenuation characteristics of high-frequency (HF) and very-high-frequency (VF) Martian events. . Bull. Seismol. Soc. Am. 111::301634
    [Google Scholar]
  101. Millour E, Forget F, Gonzalez-Galindo F, Spiga A, Lebonnois S, et al. 2018.. The Mars Climate Database (version 5.3). Paper presented at the EGU General Assembly 2017 , Vienna:, Apr . 2328
    [Google Scholar]
  102. Mimoun D, Murdoch N, Lognonné P, Hurst K, Pike WT, et al. 2017.. The noise model of the SEIS seismometer of the InSight mission to Mars. . Space Sci. Rev. 211::383428
    [Google Scholar]
  103. Morgan P, Grott M, Knapmeyer-Endrun B, Golombek M, Delage P, et al. 2018.. A pre-landing assessment of regolith properties at the InSight landing site. . Space Sci. Rev. 214::104
    [Google Scholar]
  104. Murdoch N, Kenda B, Kawamura T, Spiga A, Lognonné P, et al. 2017a.. Estimations of the seismic pressure noise on Mars determined from large eddy simulations and demonstration of pressure decorrelation techniques for the InSight mission. . Space Sci. Rev. 211::45783
    [Google Scholar]
  105. Murdoch N, Mimoun D, Garcia RF, Rapin W, Kawamura T, et al. 2017b.. Evaluating the wind-induced mechanical noise on the InSight seismometers. . Space Sci. Rev. 211::42955
    [Google Scholar]
  106. Murdoch N, Spiga A, Lorenz R, Garcia RF, Perrin C, et al. 2021.. Constraining Martian regolith and vortex parameters from combined seismic and meteorological measurements. . J. Geophys. Res. Planets 126::e2020JE006410
    [Google Scholar]
  107. Nishikawa Y, Lognonné P, Kawamura T, Spiga A, Stutzmann E, et al. 2019.. Mars’ background free oscillations. . Space Sci. Rev. 215::13
    [Google Scholar]
  108. Onodera K. 2022.. Subsurface structure of the Moon and Mars from 3D seismic wave propagation simulation and analysis of Apollo and InSight seismic data. PhD Diss., Univ. Paris, Paris Cité:
    [Google Scholar]
  109. Ortiz HD, Matoza RS, Tanimoto T. 2022.. Autocorrelation infrasound interferometry on Mars. . Geophys. Res. Lett. 49::e2021GL096225
    [Google Scholar]
  110. Panning MP, Banerdt WB, Beghein C, Carrasco S, Ceylan S, et al. 2023.. Locating the largest event observed on Mars with multi-orbit surface waves. . Geophys. Res. Lett. 50::e2022GL101270
    [Google Scholar]
  111. Panning MP, Beucler E, Drilleau M, Mocquet A, Lognonné P, Banerdt WB. 2015.. Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. . Icarus 248::23042
    [Google Scholar]
  112. Panning MP, Lognonné P, Banerdt WB, Garcia R, Golombek M, et al. 2017.. Planned products of the Mars Structure Service for the InSight mission, Mars. . Space Sci. Rev. 211::61150
    [Google Scholar]
  113. Panning MP, Pike WT, Lognonné P, Banerdt WB, Murdoch N, et al. 2020.. On-deck seismology: lessons from InSight for future planetary seismology. . J. Geophys. Res. Planets 125::e2019JE006353
    [Google Scholar]
  114. Perrin C, Jacob A, Lucas A, Myhill R, Hauber E, et al. 2022.. Geometry and segmentation of Cerberus Fossae, Mars: implications for marsquake properties. . J. Geophys. Res. Planets 127::e2021JE007118
    [Google Scholar]
  115. Perrin C, Rodriguez S, Jacob A, Lucas A, Spiga A, et al. 2020.. Monitoring of dust devil tracks around the InSight landing site, Mars, and comparison with in situ atmospheric data. . Geophys. Res. Lett. 47::e2020GL087234
    [Google Scholar]
  116. Peterson J. 1993.. Observation and modeling of seismic background noise. Open-File Rep. 93-322 , US Geol. Surv., Albuquerque, NM:
    [Google Scholar]
  117. Plesa AC, Knapmeyer M, Golombek MP, Breuer D, Grott M, et al. 2018.. Present-day Mars’ seismicity predicted from 3-D thermal evolution models of interior dynamics. . Geophys. Res. Lett. 45::258089
    [Google Scholar]
  118. Posiolova LV, Lognonné P, Banerdt WB, Clinton JF, Collins GS, et al. 2022.. Large hypervelocity impact on Mars co-located by orbital imaging and surface seismic recording. . Science 378::41217
    [Google Scholar]
  119. Pou L, Nimmo F, Lognonné P, Mimoun D, Garcia RF, et al. 2021.. Forward modeling of the Phobos tides and applications to the first Martian year of the InSight mission. . Earth Space Sci. 8::e2021EA001669
    [Google Scholar]
  120. Ringler AT, Anthony RE, Aster RC, Ammon CJ, Arrowsmith S, et al. 2022.. Achievements and prospects of global broadband seismographic networks after 30 years of continuous geophysical observations. . Rev. Geophys. 60::e2021RG000749
    [Google Scholar]
  121. Rivas-Dorado S, Ruíz J, Romeo I. 2022.. Giant dikes and dike-induced seismicity in a weak crust underneath Cerberus Fossae, Mars. . Earth Planet. Sci. Lett. 594::117692
    [Google Scholar]
  122. Samuel H, Ballmer MD, Padovan S, Tosi N, Rivoldini A, Plesa AC. 2021.. The thermo-chemical evolution of Mars with a strongly stratified mantle. . J. Geophys. Res. Planets 126::e2020JE006613
    [Google Scholar]
  123. Savoie D, Richard A, Goutaudier M, Lognonné P, Hurst K, et al. 2021.. Finding SEIS North on Mars: comparisons between SEIS sundial, inertial and imaging measurements and consequences for seismic analysis. . Earth Space Sci. 8::e2020EA001286
    [Google Scholar]
  124. Schimmel M, Stutzmann E, Lognonné P, Compaire N, Davis P, et al. 2021.. Seismic noise autocorrelations on Mars. . Earth Space Sci. 8::e2021EA001755
    [Google Scholar]
  125. Scholz JR, Widmer-Schnidrig R, Davis P, Lognonné P, Pinot B, et al. 2020.. Detection, analysis, and removal of glitches from InSight's seismic data from Mars. . Earth Space Sci. 7::e2020EA001317
    [Google Scholar]
  126. Shi J, Plasman M, Knapmeyer-Endrun B, Xu Z, Kawamura T, et al. 2023.. High-frequency receiver functions with event S1222a reveal a discontinuity in the Martian shallow crust. . Geophys. Res. Lett. 50::e2022GL101627
    [Google Scholar]
  127. Smith DE, Zuber MT, Frey HV, Garvin JB, Head JW, et al. 2001.. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. . J. Geophys. Res. Planets 106::23689722
    [Google Scholar]
  128. Smrekar SE, Lognonné P, Spohn T, Banerdt WB, Breuer D, et al. 2019.. Pre-mission InSights on the interior of Mars. . Space Sci. Rev. 215::3
    [Google Scholar]
  129. Sollberger D, Schmelzbach C, Andersson F, Robertsson JOA, Brinkman N, et al. 2021.. A reconstruction algorithm for temporally aliased seismic signals recorded by the InSight Mars lander. . Earth Space Sci. 8::e2020EA001234
    [Google Scholar]
  130. Spohn T, Grott M, Smrekar SE, Knollenberg J, Hudson TL, et al. 2018.. The Heat Flow and Physical Properties Package (HP3) for the InSight mission. . Space Sci. Rev. 214::96
    [Google Scholar]
  131. Stähler SC, Khan A, Banerdt WB, Lognonné P, Giardini D, et al. 2021.. Seismic detection of the martian core. . Science 373::44348
    [Google Scholar]
  132. Stähler SC, Mittelholz A, Perrin C, Kawamura T, Kim D, et al. 2022a.. Tectonics of Cerberus Fossae unveiled by marsquakes. . Nat. Astron. 6::137686
    [Google Scholar]
  133. Stähler SC, Panning MP, Antonangeli D, Banerdt WB, Banfield D, et al. 2022b.. A Cerberus Fossae seismic network. . LPI Contrib. 2655::5024
    [Google Scholar]
  134. Stähler SC, Widmer-Schnidrig R, Scholz JR, van Driel M, Mittelholz A, et al. 2020.. Geophysical observations of Phobos transits by InSight. . Geophys. Res. Lett. 47::e2020GL089099
    [Google Scholar]
  135. Stevanović J, Teanby NA, Wookey J, Selby N, Daubar IJ, et al. 2017.. Bolide airbursts as a seismic source for the 2018 Mars InSight mission. . Space Sci. Rev. 211::52545
    [Google Scholar]
  136. Storchak DA, Schweitzer J, Bormann P. 2003.. The IASPEI Standard Seismic Phase List. . Seismol. Res. Lett. 74::76172
    [Google Scholar]
  137. Stott A, Garcia RF, Chédozeau A, Spiga A, Murdoch N, et al. 2022.. Using machine learning to separate atmospherically generated noise from marsquakes. Paper presented at Europlanet Science Congress 2022 , Granada, Spain, Sept:. 1823
    [Google Scholar]
  138. Stutzmann E, Schimmel M, Lognonné P, Horleston AC, Ceylan S, et al. 2021.. Polarized ambient noise on Mars. . J. Geophys. Res. Planets 125::e2020JE006545
    [Google Scholar]
  139. Suemoto Y, Ikeda T, Tsuji T. 2020.. Temporal variation and frequency dependence of seismic ambient noise on Mars from polarization analysis. . Geophys. Res. Lett. 47::e2020GL087123
    [Google Scholar]
  140. Sun W, Tkalčić H. 2022.. Repetitive marsquakes in Martian upper mantle. . Nat. Commun. 13::1695
    [Google Scholar]
  141. Taylor J, Teanby NA, Wookey J. 2013.. Estimates of seismic activity in the Cerberus Fossae region of Mars. . J. Geophys. Res. Planets 118::257081
    [Google Scholar]
  142. Teanby NA, Wookey J. 2011.. Seismic detection of meteorite impacts on Mars. . Phys. Earth Planet. Inter. 186::7080
    [Google Scholar]
  143. Trebi-Ollennu A, Kim W, Ali K, Khan O, Sorice C, et al. 2018.. InSight Mars lander robotics instrument deployment system. . Space Sci. Rev. 214::93
    [Google Scholar]
  144. van Driel M, Ceylan S, Clinton JF, Giardini D, Alemany H, et al. 2019.. Preparing for InSight: evaluation of the blind test for Martian seismicity. . Seismol. Res. Lett. 90::151834
    [Google Scholar]
  145. van Driel M, Ceylan S, Clinton JF, Giardini D, Horleston A, et al. 2021.. High frequency seismic events on Mars observed by InSight. . J. Geophys. Res. Planets 126::e2020JE006670
    [Google Scholar]
  146. Wang S, Tkalčić H. 2022.. Scanning for planetary cores with single-receiver intersource correlations. . Nat. Astron. 6::127279
    [Google Scholar]
  147. Wieczorek MA, Broquet A, McLennan SM, Rivoldini A, Golombek M, et al. 2022.. InSight constraints on the global character of the Martian crust. . J. Geophys. Res. Planets 127::e2022JE007298
    [Google Scholar]
  148. Wójcicka N, Collins GS, Bastow ID, Teanby NA, Miljković K, et al. 2020.. The seismic moment and seismic efficiency of small impacts on Mars. . J. Geophys. Res. Planets 125::e2020JE006540
    [Google Scholar]
  149. Wright V, Dasent J, Kilburn R, Manga M. 2022.. A minimally cemented shallow crust beneath InSight. . Geophys. Res. Lett. 49::e2022GL099250
    [Google Scholar]
  150. Xiao W, Wang Y. 2022.. Characteristics of horizontal to vertical spectral ratio of InSight seismic data from Mars. . J. Geophys. Res. Planets 127::e2020JE006813
    [Google Scholar]
  151. Xu H, Beghein C, Panning MP, Drilleau M, Lognonné P, et al. 2020.. Measuring fundamental and higher mode surface wave dispersion on Mars from seismic waveforms. . Earth Space Sci. 7::e2020EA001263
    [Google Scholar]
  152. Xu W, Zhu Q, Zhao L. 2022.. GlitchNet: a glitch detection and removal system for SEIS records based on deep learning. . Seismol. Res. Lett. 93:(5):280417
    [Google Scholar]
  153. Xu Z, Froment M, Garcia RF, Beucler É, Onodera K, et al. 2022a.. Modeling seismic recordings of high-frequency guided infrasound on Mars. . J. Geophys. Res. Planets 127::e2022JE007483
    [Google Scholar]
  154. Xu Z, Stutzmann E, Lognonné P, Schimmel M, Montagner JP, Kawamura T. 2022b.. Radial anisotropy from surface-wave observation in Mars. Paper presented at Europlanet Science Congress 2022 , Granada, Spain:, Sept . 1823
    [Google Scholar]
  155. Yana C, Hurst K, Kerjean L, Gaudin E, Lognonné P, et al. 2022.. InSight-SEIS instrument deployment operations on Mars. . In Space Operations, ed. C Cruzen, M Schmidhuber, YH Lee , pp. 65585 Cham, Switz:.: Springer
    [Google Scholar]
  156. Zhang L, Gao F, Liu Z, Cao P, Zhang J. 2023a.. Temperature-dependent modal analysis of the InSight lander on Mars. . Geophysics 88::A1A5
    [Google Scholar]
  157. Zhang L, Zhang J, Mitchell RN, Cao P, Liu J. 2023b.. A thermal origin for super-high-frequency marsquakes. . Icarus 390::115327
    [Google Scholar]
  158. Zenhäusern G, Stähler SC, Clinton JF, Giardini D, Ceylan S, Garcia RF. 2022.. Low-frequency marsquakes and where to find them: back azimuth determination using a polarization analysis approach. . Bull. Seismol. Soc. Am. 112:(4):1787805
    [Google Scholar]
  159. Zweifel P, Mance D, ten Pierick J, Giardini D, Schmelzbach C, et al. 2021.. Seismic high-resolution acquisition electronics for the NASA InSight mission on Mars. . Bull. Seismol. Soc. Am. 111::290923
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-073318
Loading
/content/journals/10.1146/annurev-earth-031621-073318
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error