1932

Abstract

The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano's largest summit collapse since at least the nineteenth century. Eruptive activity was documented in detail, yielding new insights into large caldera-rift eruptions; the geometry of a shallow magma storage-transport system and its interaction with rift zone tectonics; mechanisms of basaltic tephra-producing explosions; caldera collapse mechanics; and the dynamics of fissure eruptions and high-volume lava flows. Insights are broadly applicable to a range of volcanic systems and should reduce risk from future eruptions. Multidisciplinary collaboration will be required to fully leverage the diversity of monitoring data to address many of the most important outstanding questions.

  • ▪  Unprecedented observations of a caldera collapse and coupled rift zone eruption yield new opportunities for advancing volcano science.
  • ▪  Magma flow to a low-elevation rift zone vent triggered quasi-periodic step-like collapse of a summit caldera, which pressurized the magma system and sustained the eruption.
  • ▪  Kīlauea's magmatic-tectonic system is tightly interconnected over tens of kilometers, with complex feedback mechanisms and interrelated hazards over widely varying timescales.
  • ▪  The eruption revealed magma stored in diverse locations, volumes, and compositions, not only beneath the summit but also within the volcano's most active rift zone.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-075925
2024-07-23
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-031621-075925.html?itemId=/content/journals/10.1146/annurev-earth-031621-075925&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson K, Johanson I. 2022.. Incremental caldera collapse at Kīlauea Volcano recorded in ground tilt and high-rate GNSS data, with implications for collapse dynamics and the magma system. . Bull. Volcanol. 84::89
    [Crossref] [Google Scholar]
  2. Anderson KR, Johanson IA, Patrick MR, Gu M, Segall P, et al. 2019.. Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. . Science 366:(6470):eaaz1822
    [Crossref] [Google Scholar]
  3. Anderson KR, Poland MP, Johnson JH, Miklius A. 2015.. Episodic deflation-inflation events at Kīlauea Volcano and implications for the shallow magma system. . In Hawaiian Volcanoes: From Source to Surface, ed. R Carey, V Cayol, M Poland, D Weis , pp. 22950 Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  4. Ando M. 1979.. The Hawaii earthquake of November 29, 1975: low dip angle faulting due to forceful injection of magma. . J. Geophys. Res. 84:(B13):761626
    [Crossref] [Google Scholar]
  5. Bai Y, Ye L, Yamazaki Y, Lay T, Cheung KF. 2018.. The 4 May 2018 Mw 6.9 Hawaii island earthquake and implications for tsunami hazards. . Geophys. Res. Lett. 45:(20):1104049
    [Crossref] [Google Scholar]
  6. Baker S, Amelung F. 2012.. Top-down inflation and deflation at the summit of Kīlauea Volcano, Hawai`i observed with InSAR. . J. Geophys. Res. 117:(B12):B12406
    [Crossref] [Google Scholar]
  7. Bindeman IN, Deegan FM, Troll VR, Thordarson T, Höskuldsson Á, et al. 2022.. Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland. . Nat. Commun. 13:(1):3737
    [Crossref] [Google Scholar]
  8. Burgess MK, Roman DC. 2021.. Ongoing (2015–) magma surge in the upper mantle beneath the island of Hawai`i. . Geophys. Res. Lett. 48:(7):e2020GL091096
    [Crossref] [Google Scholar]
  9. Cahalan R, Mastin LG, Van Eaton AR, Hurwitz S, Smith AB, et al. 2023.. Dynamics of the December 2020 ash-poor plume formed by lava-water interaction at the summit of Kīlauea Volcano, Hawai`i. . Geochem. Geophys. Geosyst. 24:(3):e2022GC010718
    [Crossref] [Google Scholar]
  10. Carey RJ, Manga M, Degruyter W, Swanson D, Houghton B, et al. 2012.. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema`uma`u Overlook vent, Kīlauea, Hawai`i, USA. . J. Geophys. Res. 117:(B11):B11202
    [Crossref] [Google Scholar]
  11. Cashman KV, Mangan MT. 2014.. A century of studying effusive eruptions in Hawai'i. . In Characteristics of Hawaiian Volcanoes, ed. MP Poland, TJ Takahashi, CM Landowski , pp. 35794 Reston, VA:: US Geol. Surv.
    [Google Scholar]
  12. Cayol V, Dieterich JH, Okamura AT, Miklius A. 2000.. High magma storage rates before the 1983 eruption of Kilauea, Hawaii. . Science 288:(5475):234346
    [Crossref] [Google Scholar]
  13. Cervelli PF, Miklius A. 2003.. The shallow magmatic system of Kilauea Volcano. . In The Pu`u `Ö`ö Küpaianaha Eruption of Kïlauea Volcano, Hawai'i: The First 20 Years, ed. C Heliker, DA Swanson, TJ Takahashi , pp. 14964 Reston, VA:: US Geol. Surv.
    [Google Scholar]
  14. Chen K, Smith JD, Avouac J, Liu Z, Song YT, Gualandi A. 2019.. Triggering of the Mw 7.2 Hawaii earthquake of 4 May 2018 by a dike intrusion. . Geophys. Res. Lett. 46:(5):250310
    [Crossref] [Google Scholar]
  15. Clague DA, Denlinger RP. 1994.. Role of olivine cumulates in destabilizing the flanks of Hawaiian volcanoes. . Bull. Volcanol. 56:(6–7):42534
    [Crossref] [Google Scholar]
  16. Cooper KM, Anderson K, Cashman K, Coombs M, Dietterich H, et al. 2023.. Coordinating science during an eruption: lessons from the 2020–2021 Kīlauea volcanic eruption. . Bull. Volcanol. 85:(5):29
    [Crossref] [Google Scholar]
  17. Crozier J, Karlstrom L. 2021.. Wavelet-based characterization of very-long-period seismicity reveals temporal evolution of shallow magma system over the 2008–2018 eruption of Kīlauea Volcano. . J. Geophys. Res. Solid Earth 126::e2020JB020837
    [Crossref] [Google Scholar]
  18. Crozier J, Karlstrom L. 2022.. Evolving magma temperature and volatile contents over the 2008–2018 summit eruption of Kīlauea Volcano. . Sci. Adv. 8:(22):eabm4310
    [Crossref] [Google Scholar]
  19. Crozier JA, Karlstrom L, Dufek J, Anderson KR, Thelen WA, et al. 2018.. Hindcasting May 2018 Kilauea summit explosions with remote sensing, geophysical monitoring, and eruption simulations. Part 1: seismic source inversions and self-consistent initial conditions for plume models. . AGU Fall Meet. Abstr. 2018::V43J0274
    [Google Scholar]
  20. Cui X, Li Z, Huang H. 2021.. Subdivision of seismicity beneath the summit region of Kilauea volcano: implications for the preparation process of the 2018 eruption. . Geophys. Res. Lett. 48:(20):e2021GL094698
    [Crossref] [Google Scholar]
  21. Dawson P, Chouet B. 2014.. Characterization of very-long-period seismicity accompanying summit activity at Kīlauea Volcano, Hawai'i: 2007–2013. . J. Volcanol. Geotherm. Res. 278–279::5985
    [Crossref] [Google Scholar]
  22. deGraffenried R, Hammer J, Dietterich H, Perroy R, Patrick M, Shea T. 2021.. Evaluating lava flow propagation models with a case study from the 2018 eruption of Kīlauea Volcano, Hawai'i. . Bull. Volcanol. 83:(11):65
    [Crossref] [Google Scholar]
  23. Delaney PT, Fiske RS, Miklius A, Okamura AT, Sako MK. 1990.. Deep magma body beneath the summit and rift zones of Kilauea Volcano, Hawaii. . Science 247:(4948):131116
    [Crossref] [Google Scholar]
  24. Denlinger RP. 2019.. Anatomy of Kilauea volcano. . AGU Fall Meet. Abstr. 2019::V51A06
    [Google Scholar]
  25. Denlinger RP, Flinders A. 2022.. Density structure of the island of Hawai'i and the implications for gravity-driven motion of the south flank of Kīlauea Volcano. . Geophys. J. Int. 228:(3):1793807
    [Crossref] [Google Scholar]
  26. Denlinger RP, Morgan JK. 2014.. Instability of Hawaiian volcanoes. . In Characteristics of Hawaiian Volcanoes, ed. MP Poland, TJ Takahashi, CM Landowski , pp. 14976 Reston, VA:: US Geol. Surv.
    [Google Scholar]
  27. Dieterich JH. 1988.. Growth and persistence of Hawaiian volcanic rift zones. . J. Geophys. Res. 93:(B5):425870
    [Crossref] [Google Scholar]
  28. Dietterich HR, Diefenbach AK, Soule SA, Zoeller MH, Patrick MP, et al. 2021.. Lava effusion rate evolution and erupted volume during the 2018 Kīlauea lower East Rift Zone eruption. . Bull. Volcanol. 83:(4):25
    [Crossref] [Google Scholar]
  29. Dietterich HR, Grant GE, Fasth B, Major JJ, Cashman KV. 2022.. Can lava flow like water? Assessing applications of critical flow theory to channelized basaltic lava flows. . J. Geophys. Res. Earth Surface 127::e2022JF006666
    [Crossref] [Google Scholar]
  30. Druitt TH, Sparks RSJ. 1984.. On the formation of calderas during ignimbrite eruptions. . Nature 310:(5979):67981
    [Crossref] [Google Scholar]
  31. Dvorak JJ, Dzurisin D. 1993.. Variations in magma supply rate at Kilauea Volcano, Hawaii. . J. Geophys. Res. 98:(B12):2225568
    [Crossref] [Google Scholar]
  32. Eaton JP, Murata KJ. 1960.. How volcanoes grow: Geology, geochemistry, and geophysics disclose the constitution and eruption mechanism of Hawaiian volcanoes. . Science 132:(3432):92538
    [Crossref] [Google Scholar]
  33. Elias T, Kern C, Horton KA, Sutton AJ, Garbeil H. 2018.. Measuring SO2 emission rates at Kīlauea Volcano, Hawaii, using an array of upward-looking UV spectrometers, 2014–2017. . Front. Earth Sci. 6::214
    [Crossref] [Google Scholar]
  34. Epp D, Decker RW, Okamura AT. 1983.. Relation of summit deformation to East Rift Zone eruptions on Kilauea Volcano, Hawaii. . Geophys. Res. Lett. 10:(7):49396
    [Crossref] [Google Scholar]
  35. Farquharson JI, Amelung F. 2020.. Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. . Nature 580:(7804):49195
    [Crossref] [Google Scholar]
  36. Feng KF, Huang HH, Wu YM. 2020.. Detecting pre-eruptive magmatic processes of the 2018 eruption at Kilauea, Hawaii volcano with ambient noise interferometry. . Earth Planets Space 72:(1):74
    [Crossref] [Google Scholar]
  37. Fischer T, Moran S, Cooper K, Roman D, LaFemina P. 2021.. Making the most of volcanic eruption responses. . Eos 102:. https://doi.org/10.1029/2021EO162790
    [Crossref] [Google Scholar]
  38. Fiske RS, Rose TR, Swanson DA, Andrews BJ, Nichols AR. 2019.. The Kulanaokuaiki-3 tephra, 900 CE: products of a remarkably energetic pyroclastic eruption at Kīlauea Volcano, Hawai`i, USA. . Geol. Soc. Am. Bull. 131:(9–10):153754
    [Crossref] [Google Scholar]
  39. Flinders AF, Caudron C, Johanson IA, Taira T, Shiro B, Haney M. 2020a.. Seismic velocity variations associated with the 2018 lower East Rift Zone eruption of Kīlauea, Hawai`i. . Bull. Volcanol. 82:(6):47
    [Crossref] [Google Scholar]
  40. Flinders AF, Johanson IA, Dawson PB, Anderson KR, Haney MM, Shiro BR. 2020b.. Very-long-period (VLP) seismic artifacts during the 2018 caldera collapse at Kīlauea, Hawai`i. . Seismol. Res. Lett. 91:(6):341732
    [Crossref] [Google Scholar]
  41. Gansecki C, Lee RL, Shea T, Lundblad SP, Hon K, Parcheta C. 2019.. The tangled tale of Kīlauea's 2018 eruption as told by geochemical monitoring. . Science 366:(6470):eaaz0147
    [Crossref] [Google Scholar]
  42. Garcia MO. 2015.. How and why Hawaiian volcanism has become pivotal to our understanding of volcanoes from their source to the surface. . In Hawaiian Volcanoes: From Source to Surface, ed. R Carey, V Cayol, M Poland, D Weis , pp. 118 Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  43. Garcia MO, Pietruszka AJ, Norman MD, Rhodes JM. 2021.. Kīlauea's Pu`u`Ō`ō eruption (1983–2018): a synthesis of magmatic processes during a prolonged basaltic event. . Chem. Geol. 581::120391
    [Crossref] [Google Scholar]
  44. Gudmundsson A. 2015.. Collapse-driven large eruptions. . J. Volcanol. Geotherm. Res. 304::110
    [Crossref] [Google Scholar]
  45. Gudmundsson MT, Jónsdóttir K, Hooper A, Holohan EP, Halldórsson SA, et al. 2016.. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. . Science 353:(6296):aaf8988
    [Crossref] [Google Scholar]
  46. Haney MM, Patrick MR, Anderson KR. 2016.. Ground tilt time delays between Kīlauea Volcano's summit and East Rift Zone caused by magma reservoir buffering. . AGU Fall Meet. Abstr. 2016::V12A06
    [Google Scholar]
  47. Heliker C, Mattox TN. 2003.. The first two decades of the Pu`u `Ö`ö-Küpaianaha eruption: chronology and selected bibliography. . In The Pu`u `Ö`ö-Küpaianaha Eruption of Kïlauea Volcano, Hawai`i: The First 20 Years C Heliker, DA Swanson, TJ Takahashi , pp. 128 Reston, VA:: US Geol. Surv.
    [Google Scholar]
  48. Helz RT, Thornber CR. 1987.. Geothermometry of Kilauea Iki lava lake, Hawaii. . Bull. Volcanol. 49:(5):65168
    [Crossref] [Google Scholar]
  49. Helz RT, Wright TL. 1992.. Differentiation and magma mixing on Kilauea's east rift zone: a further look at the eruptions of 1955 and 1960. Part I. The late 1955 lavas. . Bull. Volcanol. 54:(5):36184
    [Crossref] [Google Scholar]
  50. Hill DP, Zucca JJ. 1987.. Geophysical constraints on the structure of Kilauea and Mauna Loa Volcanoes and some implications for seismomagmatic processes. . In Volcanism in Hawaii, ed. RW Decker, TL Wright, PH Stauffer , pp. 90317 Washington, DC:: US Geol. Surv.
    [Google Scholar]
  51. Holcomb RT. 1987.. Eruptive history and long-term behavior of Kilauea Volcano. . In Volcanism in Hawaii, ed. RW Decker, TL Wright, PH Stauffer , pp. 261350 Washington, DC:: US Geol. Surv.
    [Google Scholar]
  52. Holohan E, Schöpfer M, Walsh J. 2015.. Stress evolution during caldera collapse. . Earth Planet. Sci. Lett. 421::13951
    [Crossref] [Google Scholar]
  53. Hotovec-Ellis AJ, Shiro BR, Shelly DR, Anderson KR, Haney MM, et al. 2022.. Earthquake-derived seismic velocity changes during the 2018 caldera collapse of Kīlauea Volcano. . J. Geophys. Res. Solid Earth 127::e2021JB023324
    [Crossref] [Google Scholar]
  54. Houghton B, Swanson D, Carey R, Rausch J, Sutton A. 2011.. Pigeonholing pyroclasts: insights from the 19 March 2008 explosive eruption of Kīlauea volcano. . Geology 39:(3):26366
    [Crossref] [Google Scholar]
  55. Houghton BF, Tisdale CM, Llewellin EW, Taddeucci J, Orr TR, et al. 2021.. The birth of a Hawaiian fissure eruption. . J. Geophys. Res. Solid Earth 126::e2020JB020903
    [Crossref] [Google Scholar]
  56. Hsieh PA, Ingebritsen SE. 2019.. Groundwater inflow toward a preheated volcanic conduit: application to the 2018 eruption at Kīlauea Volcano, Hawai'i. . J. Geophys. Res. Solid Earth 124::1498506
    [Crossref] [Google Scholar]
  57. James M, Carr B, D'Arcy F, Diefenbach A, Dietterich H, et al. 2020.. Volcanological applications of unoccupied aircraft systems (UAS): developments, strategies, and future challenges. . Volcanica 3:(1):67114
    [Crossref] [Google Scholar]
  58. Johnson DJ. 1995.. Molten core model for Hawaiian rift zones. . J. Volcanol. Geotherm. Res. 66:(1–4):2735
    [Crossref] [Google Scholar]
  59. Kehoe HL, Kiser ED, Okubo PG. 2019.. The rupture process of the 2018 Mw 6.9 Hawai`i earthquake as imaged by a genetic algorithm-based back-projection technique. . Geophys. Res. Lett. 46:(5):246774
    [Crossref] [Google Scholar]
  60. Kern C, Lerner AH, Elias T, Nadeau PA, Holland L, et al. 2020.. Quantifying gas emissions associated with the 2018 rift eruption of Kīlauea Volcano using ground-based DOAS measurements. . Bull. Volcanol. 82:(7):55
    [Crossref] [Google Scholar]
  61. Kumagai H, Ohminato T, Nakano M, Ooi M, Kubo A, et al. 2001.. Very-long-period seismic signals and caldera formation at Miyake Island, Japan. . Science 293:(5530):68790
    [Crossref] [Google Scholar]
  62. Kundu B, Yadav RK, Bürgmann R, Wang K, Panda D, Gahalaut VK. 2020.. Triggering relationships between magmatic and faulting processes in the May 2018 eruptive sequence at Kīlauea volcano, Hawaii. . Geophys. J. Int. 222:(1):46173
    [Crossref] [Google Scholar]
  63. Lai VH, Zhan Z, Brissaud Q, Sandanbata O, Miller MS. 2021.. Inflation and asymmetric collapse at Kīlauea summit during the 2018 eruption from seismic and infrasound analyses. . J. Geophys. Res. Solid Earth 126::e2021JB022139
    [Crossref] [Google Scholar]
  64. Lay T, Ye L, Kanamori H, Satake K. 2018.. Constraining the dip of shallow, shallowly dipping thrust events using long-period Love wave radiation patterns: applications to the 25 October 2010 Mentawai, Indonesia, and 4 May 2018 Hawaii Island earthquakes. . Geophys. Res. Lett. 45:(19):1034249
    [Crossref] [Google Scholar]
  65. Lengliné O, Duputel Z, Okubo P. 2021.. Tracking dike propagation leading to the 2018 Kīlauea eruption. . Earth Planet. Sci. Lett. 553::116653
    [Crossref] [Google Scholar]
  66. Lerner AH, Wallace PJ, Shea T, Mourey AJ, Kelly PJ, et al. 2021.. The petrologic and degassing behavior of sulfur and other magmatic volatiles from the 2018 eruption of Kīlauea, Hawai`i: melt concentrations, magma storage depths, and magma recycling. . Bull. Volcanol. 83:(6):43
    [Crossref] [Google Scholar]
  67. Liang C, Dunham EM. 2020.. Lava lake sloshing modes during the 2018 Kīlauea Volcano eruption probe magma reservoir storativity. . Earth Planet. Sci. Lett. 535::116110
    [Crossref] [Google Scholar]
  68. Lin G, Shearer PM. 2021.. Spatiotemporal variations of focal mechanism and in situ Vp/Vs ratio during the 2018 Kīlauea eruption. . Geophys. Res. Lett. 48:(18):e2021GL094636
    [Crossref] [Google Scholar]
  69. Lin JT, Aslam KS, Thomas AM, Melgar D. 2020.. Overlapping regions of coseismic and transient slow slip on the Hawaiian décollement. . Earth Planet. Sci. Lett. 544::116353
    [Crossref] [Google Scholar]
  70. Liu C, Lay T, Xiong X. 2018.. Rupture in the 4 May 2018 MW 6.9 earthquake seaward of the Kilauea East Rift Zone fissure eruption in Hawaii. . Geophys. Res. Lett. 45:(18):950815
    [Crossref] [Google Scholar]
  71. Lundgren P, Bagnardi M, Dietterich H. 2019.. Topographic changes during the 2018 Kīlauea eruption from single-pass airborne InSAR. . Geophys. Res. Lett. 46:(16):955462
    [Crossref] [Google Scholar]
  72. Lynn KJ. 2022.. Olivine and glass analyses for select eruptions of Kilauea Volcano, Hawai'i. Data release : US Geol. Surv., Reston, VA:. https://doi.org/10.5066/P9HA3PRK
    [Google Scholar]
  73. Lynn KJ, Shea T, Garcia MO. 2017.. Nickel variability in Hawaiian olivine: evaluating the relative contributions from mantle and crustal processes. . Am. Mineral. 102:(3):50718
    [Crossref] [Google Scholar]
  74. Lynn KJ, Swanson DA. 2022.. Olivine and glass chemistry record cycles of plumbing system recovery after summit collapse events at Kīlauea Volcano, Hawai‘i. . J. Volcanol. Geotherm. Res. 426::107540
    [Crossref] [Google Scholar]
  75. Lyons JJ, Dietterich HR, Patrick MP, Fee D. 2021.. High-speed lava flow infrasound from Kīlauea's fissure 8 and its utility in monitoring effusion rate. . Bull. Volcanol. 83:(11):66
    [Crossref] [Google Scholar]
  76. Mastin LG, Christiansen RL, Swanson DA, Stauffer PH, Hendley JWI. 1999.. Explosive eruptions at Kilauea Volcano, Hawai'i? Fact Sheet 132-98 , US Geol. Surv., Reston, VA:. https://doi.org/10.3133/fs13298
    [Google Scholar]
  77. McMurtry GM, Dasilveira LA, Horn EL, DeLuze JR, Blessing JE. 2019.. High 3He/4He ratios in lower East Rift Zone steaming vents precede a new phase of Kilauea 2018 eruption by 8 months. . Sci. Rep. 9:(1):11860
    [Crossref] [Google Scholar]
  78. Michon L, Massin F, Famin V, Ferrazzini V, Roult G. 2011.. Basaltic calderas: collapse dynamics, edifice deformation, and variations of magma withdrawal. . J. Geophys. Res. 116:(B3):B03209
    [Crossref] [Google Scholar]
  79. Michon L, Staudacher T, Ferrazzini V, Bachèlery P, Marti J. 2007.. April 2007 collapse of Piton de la Fournaise: a new example of caldera formation. . Geophys. Res. Lett. 34:(21):L21301
    [Crossref] [Google Scholar]
  80. Michon L, Villeneuve N, Catry T, Merle O. 2009.. How summit calderas collapse on basaltic volcanoes: new insights from the April 2007 caldera collapse of Piton de la Fournaise volcano. . J. Volcanol. Geotherm. Res. 184:(1–2):13851
    [Crossref] [Google Scholar]
  81. Montagna CP, Gonnermann HM. 2013.. Magma flow between summit and Pu`u `Ō`ō at Kīlauea Volcano, Hawai`i. . Geochem. Geophys. Geosyst. 14:(7):223246
    [Crossref] [Google Scholar]
  82. Montgomery-Brown EK, Miklius A. 2020.. Periodic dike intrusions at Kīlauea volcano, Hawai`i. . Geology 49:(4):397401
    [Crossref] [Google Scholar]
  83. Montgomery-Brown EK, Poland MP, Miklius A. 2015.. Delicate balance of magmatic-tectonic interaction at Kīlauea Volcano, Hawai`i, revealed from slow slip events. . In Hawaiian Volcanoes: From Source to Surface, ed. R Carey, V Cayol, M Poland, D Weis , pp. 26988 Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  84. Mourey AJ, Shea T, Costa F, Shiro B, Longman RJ. 2023a.. Years of magma intrusion primed Kīlauea Volcano (Hawai'i) for the 2018 eruption: evidence from olivine diffusion chronometry and monitoring data. . Bull. Volcanol. 85:(3):18
    [Crossref] [Google Scholar]
  85. Mourey AJ, Shea T, Hammer JE. 2023b.. Preservation of magma recharge signatures in Kīlauea olivine during protracted storage. . J. Geophys. Res. Solid Earth 128:(1):e2022JB025523
    [Crossref] [Google Scholar]
  86. Mourey AJ, Shea T, Lynn KJ, Lerner AH, Lambart S, et al. 2022.. Trace elements in olivine fingerprint the source of 2018 magmas and shed light on explosive-effusive eruption cycles at Kīlauea Volcano. . Earth Planet. Sci. Lett. 595::117769
    [Crossref] [Google Scholar]
  87. Mullet B, Segall P, Fávero Neto AH. 2023.. Numerical modeling of caldera formation using smoothed particle hydrodynamics (SPH). . Geophys. J. Int. 234:(2):887902
    [Crossref] [Google Scholar]
  88. Nakada S, Nagai M, Kaneko T, Nozawa A, Suzuki-Kamata K. 2005.. Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan. . Bull. Volcanol. 67:(3):20518
    [Crossref] [Google Scholar]
  89. Namiki A, Patrick MR, Manga M, Houghton BF. 2021.. Brittle fragmentation by rapid gas separation in a Hawaiian fountain. . Nat. Geosci. 14:(4):24247
    [Crossref] [Google Scholar]
  90. Neal CA, Anderson KR. 2020.. Preliminary analyses of volcanic hazards at Kīlauea Volcano, Hawai`i, 2017–2018. Open File Rep. 2020-1002 , US Geol. Surv., Reston, VA.: https://doi.org/10.3133/ofr20201002
    [Google Scholar]
  91. Neal CA, Brantley SR, Antolik L, Babb JL, Burgess M, et al. 2019.. The 2018 rift eruption and summit collapse of Kīlauea Volcano. . Science 363:(6425):36774
    [Crossref] [Google Scholar]
  92. Olivier G, Brenguier F, Carey R, Okubo P, Donaldson C. 2019.. Decrease in seismic velocity observed prior to the 2018 eruption of Kīlauea Volcano with ambient seismic noise interferometry. . Geophys. Res. Lett. 46:(7):373444
    [Crossref] [Google Scholar]
  93. Orr TR, Poland MP, Patrick MR, Thelen WA, Sutton AJ, et al. 2015.. Kīlauea's 5–9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu`u `Ō`ō. . In Hawaiian Volcanoes: From Source to Surface, ed. R Carey, V Cayol, M Poland, D Weis , pp. 393420 Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  94. Orr TR, Thelen WA, Patrick MR, Swanson DA, Wilson DC. 2013.. Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawai`i. . Geology 41:(2):20710
    [Crossref] [Google Scholar]
  95. Patrick M, Orr T, Anderson K, Swanson D. 2019a.. Eruptions in sync: improved constraints on Kīlauea Volcano's hydraulic connection. . Earth Planet. Sci. Lett. 507::5061
    [Crossref] [Google Scholar]
  96. Patrick M, Orr T, Swanson D, Houghton B, Wooten K, et al. 2021.. Kīlauea's 2008–2018 summit lava lake—chronology and eruption insights. Prof. Pap. 1867 , US Geol. Surv., Reston, VA.: https://doi.org/10.3133/pp1867
    [Crossref] [Google Scholar]
  97. Patrick M, Swanson D, Orr T. 2019b.. A review of controls on lava lake level: insights from Halema`uma`u Crater, Kīlauea Volcano. . Bull. Volcanol. 81:(3):13
    [Crossref] [Google Scholar]
  98. Patrick MR, Dietterich HR, Lyons JJ, Diefenbach AK, Parcheta C, et al. 2019c.. Cyclic lava effusion during the 2018 eruption of Kīlauea Volcano. . Science 366:(6470):eaay9070
    [Crossref] [Google Scholar]
  99. Patrick MR, Houghton BF, Anderson KR, Poland MP, Montgomery-Brown E, et al. 2020.. The cascading origin of the 2018 Kīlauea eruption and implications for future forecasting. . Nat. Commun. 11:(1):5646
    [Crossref] [Google Scholar]
  100. Patrick MR, Younger EF, Tollett W. 2019d.. Lava level and crater geometry data during the 2018 lava lake draining at Kīlauea Volcano, Hawaii. Data rel. : US Geol. Surv., Reston, VA.: https://doi.org/10.5066/P9MJY24N
    [Google Scholar]
  101. Pietruszka AJ, Garcia MO, Rhodes JM. 2021.. Accumulated Pu`u `Ō`ō magma fed the voluminous 2018 rift eruption of Kīlauea Volcano: evidence from lava chemistry. . Bull. Volcanol. 83:(9):59
    [Crossref] [Google Scholar]
  102. Pietruszka AJ, Heaton DE, Marske JP, Garcia MO. 2015.. Two magma bodies beneath the summit of Kīlauea Volcano unveiled by isotopically distinct melt deliveries from the mantle. . Earth Planet. Sci. Lett. 413::90100
    [Crossref] [Google Scholar]
  103. Piombo A, Dragoni M. 2021.. Effusion rate from a volcanic conduit subject to pressure oscillations in a viscoelastic medium. . J. Geophys. Res. Solid Earth 126::e2020JB020642
    [Crossref] [Google Scholar]
  104. Poland MP, Carbone D, Patrick MR. 2021a.. Onset and evolution of Kīlauea's 2018 flank eruption and summit collapse from continuous gravity. . Earth Planet. Sci. Lett. 567::117003
    [Crossref] [Google Scholar]
  105. Poland MP, de Zeeuw-van Dalfsen E, Bagnardi M, Johanson IA. 2019.. Post-collapse gravity increase at the summit of Kīlauea Volcano, Hawai`i. . Geophys. Res. Lett. 46:(24):1443039
    [Crossref] [Google Scholar]
  106. Poland MP, Hurwitz S, Kauahikaua JP, Montgomery-Brown EK, Anderson KR, et al. 2022.. Rainfall an unlikely factor in Kīlauea's 2018 rift eruption. . Nature 602:(7895):E710
    [Crossref] [Google Scholar]
  107. Poland MP, Miklius A, Johanson IA, Anderson KR. 2021b.. A decade of geodetic change at Kīlauea's summit—observations, interpretations, and unanswered questions from studies of the 2008–2018 Halema`uma`u eruption. . In The 2008–2018 Summit Lava Lake at Kīlauea Volcano, Hawai`i, ed. MP Patrick, T Orr, D Swanson, B Houghton , no. 1867-G in U.S. Geological Survey Professional Paper. 29
    [Google Scholar]
  108. Poland MP, Miklius A, Montgomery-Brown EK. 2014.. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. . In Characteristics of Hawaiian Volcanoes, ed. MP Poland, TJ Takahashi, CM Landowski , pp. 179234 Reston, VA:: US Geol. Surv.
    [Google Scholar]
  109. Roman A, Lundgren P. 2021.. Dynamics of large effusive eruptions driven by caldera collapse. . Nature 592:(7854):39296
    [Crossref] [Google Scholar]
  110. Roman DC, Soldati A, Dingwell DB, Houghton BF, Shiro BR. 2021.. Earthquakes indicated magma viscosity during Kīlauea's 2018 eruption. . Nature 592:(7853):23741
    [Crossref] [Google Scholar]
  111. Ryan MP. 1988.. The mechanics and three-dimensional internal structure of active magmatic systems: Kilauea Volcano, Hawaii. . J. Geophys. Res. 93:(B5):421348
    [Crossref] [Google Scholar]
  112. Segall P, Anderson K. 2021.. Repeating caldera collapse events constrain fault friction at the kilometer scale. . PNAS 118:(30):e2101469118
    [Crossref] [Google Scholar]
  113. Segall P, Anderson K, Wang TA. 2022.. Could Kīlauea's 2020 post caldera-forming eruption have been anticipated?. Geophys. Res. Lett. 49:(15):e2022GL099270
    [Crossref] [Google Scholar]
  114. Segall P, Anderson KR, Johanson I, Miklius A. 2019.. Mechanics of inflationary deformation during caldera collapse: evidence from the 2018 Kīlauea eruption. . Geophys. Res. Lett. 46:(21):1178289
    [Crossref] [Google Scholar]
  115. Segall P, Anderson KR, Pulvirenti F, Wang T, Johanson I. 2020.. Caldera collapse geometry revealed by near-field GPS displacements at Kīlauea Volcano in 2018. . Geophys. Res. Lett. 47:(15):e2020GL088867
    [Crossref] [Google Scholar]
  116. Shelly DR, Thelen WA. 2019.. Anatomy of a caldera collapse: Kīlauea 2018 summit seismicity sequence in high resolution. . Geophys. Res. Lett. 46:(24):14395403
    [Crossref] [Google Scholar]
  117. Shiro BR, Zoeller MH, Kamibayashi K, Johanson IA, Parcheta C, et al. 2021.. Monitoring network changes during the 2018 Kīlauea Volcano eruption. . Seismol. Res. Lett. 92:(1):10218
    [Crossref] [Google Scholar]
  118. Shreve T, Grandin R, Boichu M, Garaebiti E, Moussallam Y, et al. 2019.. From prodigious volcanic degassing to caldera subsidence and quiescence at Ambrym (Vanuatu): the influence of regional tectonics. . Sci. Rep. 9:(1):18868
    [Crossref] [Google Scholar]
  119. Sigmundsson F. 2019.. Calderas collapse as magma flows into rifts. . Science 366:(6470):12001
    [Crossref] [Google Scholar]
  120. Simkin T, Howard KA. 1970.. Caldera collapse in the Galápagos Islands, 1968. . Science 169:(3944):42937
    [Crossref] [Google Scholar]
  121. Smittarello D, Smets B, Barrière J, Michellier C, Oth A, et al. 2022.. Precursor-free eruption triggered by edifice rupture at Nyiragongo volcano. . Nature 609:(7925):8388
    [Crossref] [Google Scholar]
  122. Soldati A, Houghton B, Dingwell D. 2021.. A lower bound on the rheological evolution of magmatic liquids during the 2018 Kilauea eruption. . Chem. Geol. 576::120272
    [Crossref] [Google Scholar]
  123. Soubestre J, Chouet B, Dawson P. 2021.. Sources of volcanic tremor associated with the summit caldera collapse during the 2018 east rift eruption of Kīlauea Volcano, Hawai'i. . J. Geophys. Res. Solid Earth 126:(6): e2020JB021572.
    [Crossref] [Google Scholar]
  124. Soule SA, Zoeller M, Parcheta C. 2021.. Submarine lava deltas of the 2018 eruption of Kīlauea volcano. . Bull. Volcanol. 83:(4):23
    [Crossref] [Google Scholar]
  125. Stearns HT. 1925.. The explosive phase of Kilauea Volcano, Hawaii, in 1924. . Bull. Volcanol. 2:(2):193208
    [Crossref] [Google Scholar]
  126. Swanson DA, Rose TR, Mucek AE, Garcia MO, Fiske RS, Mastin LG. 2014.. Cycles of explosive and effusive eruptions at Kīlauea Volcano, Hawai`i. . Geology 42:(7):63134
    [Crossref] [Google Scholar]
  127. Tepp G. 2021.. Material failure and caldera collapse: insights from the 2018 Kilauea eruption. . Earth Planet. Sci. Lett. 553::116621
    [Crossref] [Google Scholar]
  128. Tepp G, Hotovec-Ellis A, Shiro B, Johanson I, Thelen W, Haney MM. 2020.. Seismic and geodetic progression of the 2018 summit caldera collapse of Kīlauea volcano. . Earth Planet. Sci. Lett. 540::116250
    [Crossref] [Google Scholar]
  129. Thelen W, Waite G, Lyons J, Fee D. 2022.. Infrasound observations and constraints on the 2018 eruption of Kīlauea Volcano, Hawaii. . Bull. Volcanol. 84:(8):76
    [Crossref] [Google Scholar]
  130. Thornber CR, Orr TR, Heliker C, Hoblitt RP. 2015.. Petrologic testament to changes in shallow magma storage and transport during 30+ years of recharge and eruption at Kīlauea Volcano, Hawai`i. . In Hawaiian Volcanoes: From Source to Surface, ed. R Carey, V Cayol, M Poland, D Weis , pp. 14788 Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  131. Tilling RI, Dvorak JJ. 1993.. Anatomy of a basaltic volcano. . Nature 363:(6425):12533
    [Crossref] [Google Scholar]
  132. Tilling RI, Kauahikaua JP, Brantley SR, Neal CA. 2014.. The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism. . In Characteristics of Hawaiian Volcanoes, ed. MP Poland, TJ Takahashi, CM Landowski , pp. 164 Reston, VA:: US Geol. Surv.
    [Google Scholar]
  133. Townsend M, Huang M. 2022.. Timescales of dike growth and chamber deflation constrain magma storage and transport pathways during Kīlauea's 2018 Lower East Rift Zone intrusion. . J. Geophys. Res. Solid Earth 127:(12):e2022JB025636
    [Crossref] [Google Scholar]
  134. Vinet N, Higgins MD. 2010.. Magma solidification processes beneath Kilauea Volcano, Hawaii: a quantitative textural and geochemical study of the 1969–1974 Mauna Ulu lavas. . J. Petrol. 51:(6):1297332
    [Crossref] [Google Scholar]
  135. Wadsworth FB, Llewellin EW, Farquharson JI, Gillies JK, Loisel A, et al. 2022.. Crowd-sourcing observations of volcanic eruptions during the 2021 Fagradalsfjall and Cumbre Vieja events. . Nat. Commun. 13:(1):2611
    [Crossref] [Google Scholar]
  136. Walker BH, Houghton BF, Llewellin EW. 2023.. Coexisting Strombolian and Hawaiian activity during the 2018 fissure eruption of Kīlauea—implications for processes of weak explosions. . J. Volcanol. Geotherm. Res. 435::107754
    [Crossref] [Google Scholar]
  137. Wang K, MacArthur HS, Johanson I, Montgomery-Brown EK, Poland MP, et al. 2019.. Interseismic quiescence and triggered slip of active normal faults of Kīlauea Volcano's south flank during 2001–2018. . J. Geophys. Res. Solid Earth 124::978094
    [Crossref] [Google Scholar]
  138. Wang T, Segall P, Hotovec-Ellis AJ, Anderson KR, Cervelli PF. 2023.. Ring fault creep drives volcano-tectonic seismicity during caldera collapse of Kīlauea in 2018. . Earth Planet. Sci. Lett. In press
    [Google Scholar]
  139. Wang T, Zheng Y, Pulvirenti F, Segall P. 2021.. Post-2018 caldera collapse re-inflation uniquely constrains Kīlauea's magmatic system. . J. Geophys. Res. Solid Earth 126:(6):e2021JB021803
    [Crossref] [Google Scholar]
  140. Wang TA, Coppess KR, Segall P, Dunham EM, Ellsworth W. 2022.. Physics-based model reconciles caldera collapse induced static and dynamic ground motion: application to Kīlauea. 2018.. Geophys. Res. Lett. 49:(8):e2021GL097440
    [Crossref] [Google Scholar]
  141. Wei X, Shen Y, Caplan-Auerbach J, Morgan JK. 2022.. An improved earthquake catalog during the 2018 Kīlauea eruption from combined onshore and offshore seismic arrays. . Earth Space Sci. 9:(6):e2021EA001979
    [Crossref] [Google Scholar]
  142. Wieser PE, Edmonds M, Gansecki C, Maclennan J, Jenner FE, et al. 2022.. Explosive activity on Kīlauea's lower East Rift Zone fueled by a volatile-rich, dacitic melt. . Geochem. Geophys. Geosyst. 23:(2):e2021GC010046
    [Crossref] [Google Scholar]
  143. Wieser PE, Edmonds M, Maclennan J, Jenner FE, Kunz BE. 2019.. Crystal scavenging from mush piles recorded by melt inclusions. . Nat. Commun. 10:(1):5797
    [Crossref] [Google Scholar]
  144. Wieser PE, Lamadrid H, Maclennan J, Edmonds M, Matthews S, et al. 2021.. Reconstructing magma storage depths for the 2018 Kīlauean eruption from melt inclusion CO2 contents: the importance of vapor bubbles. . Geochem. Geophys. Geosyst. 22:(2):e2020GC009364
    [Crossref] [Google Scholar]
  145. Wilding JD, Zhu W, Ross ZE, Jackson JM. 2023.. The magmatic web beneath Hawai`i. . Science 379:(6631):46268
    [Crossref] [Google Scholar]
  146. Williams DM, Avery VF, Coombs ML, Cox DA, Horwitz, et al. 2020.. U.S. Geological Survey 2018 Kilauea Volcano eruption response in Hawai`i—after-action review. Open File Rep . 2020-1041 US Geol. Surv., Reston, VA.: https://doi.org/10.3133/ofr20201041
    [Google Scholar]
  147. Wolfe CJ, Solomon SC, Laske G, Collins JA, Detrick RS, et al. 2009.. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. . Science 326:(5958):138890
    [Crossref] [Google Scholar]
  148. Wright TL, Fiske RS. 1971.. Origin of the differentiated and hybrid lavas of Kilauea Volcano, Hawaii. . J. Petrol. 12:(1):165
    [Crossref] [Google Scholar]
  149. Wright TL, Helz RT. 1996.. Differentiation and magma mixing on Kilauea's east rift zone: a further look at the eruptions of 1955 and 1960. Part II. The 1960 lavas. . Bull. Volcanol. 57:(8):60230
    [Crossref] [Google Scholar]
  150. Wright TL, Klein FW. 2014.. Two hundred years of magma transport and storage at Kīlauea Volcano, Hawai`i. Prof. Pap. 1806 , US Geol. Surv., Reston, VA.: https://doi.org/10.3133/pp1806
    [Google Scholar]
  151. Wu S, Lin F, Farrell J, Shiro B, Karlstrom L, et al. 2020.. Spatiotemporal seismic structure variations associated with the 2018 Kīlauea eruption based on temporary dense geophone arrays. . Geophys. Res. Lett. 47:(9):e2019GL086668
    [Crossref] [Google Scholar]
  152. Zoeller MH, Perroy RL, Wessels R, Fisher GB, Robinson JE, et al. 2020.. Geospatial database of the 2018 lower East Rift Zone eruption of Kīlauea Volcano, Hawaii. Data release : US Geol. Surv., Reston, VA.: https://doi.org/10.5066/P9S7UQKQ
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-075925
Loading
/content/journals/10.1146/annurev-earth-031621-075925
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error