1932

Abstract

Volcanic eruptions are driven by bubbles that form when volatile species exsolve from magma. The conditions under which bubbles form depend mainly on magma composition, volatile concentration, presence of crystals, and magma decompression rate. These are all predicated on the mechanism by which volatiles exsolve from the melt to form bubbles. We critically review the known or inferred mechanisms of bubble formation in magmas: homogeneous nucleation, heterogeneous nucleation on crystal surfaces, and spontaneous phase separation (spinodal decomposition). We propose a general approach for calculating bubble nucleation rates as the sum of the contributions from homogeneous and heterogeneous nucleation, suggesting that nucleation may not be limited to a single mechanism prior to eruption. We identify three major challenges in which further experimental, analytical, and theoretical work is required to permit the development of a general model for bubble formation under natural eruption conditions.

  • ▪  We review the mechanisms of bubble formation in magma and summarize the conditions under which the various mechanisms are understood to operate.
  • ▪  Bubble formation mechanisms may evolve throughout magma ascent as conditions change such that bubbles may form simultaneously and sequentially via more than one mechanism.
  • ▪  Contributions from both homogeneous nucleation and heterogeneous nucleation on multiphase crystal phases can be captured via a single equation.
  • ▪  Future work should focus on constraining macroscopic surface tension, characterizing the microphysics, and developing a general framework for modeling bubble formation, via all mechanisms, over natural magma ascent pathways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-080308
2023-05-31
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-080308.html?itemId=/content/journals/10.1146/annurev-earth-031621-080308&mimeType=html&fmt=ahah

Literature Cited

  1. Allabar A, Nowak M. 2018.. Message in a bottle: spontaneous phase separation of hydrous Vesuvius melt even at low decompression rates. . Earth Planet. Sci. Lett. 501::192201
    [Google Scholar]
  2. Alletti M, Baker DR, Freda C. 2007.. Halogen diffusion in a basaltic melt. . Geochim. Cosmochim. Acta 71::357080
    [Google Scholar]
  3. Allison CM, Roggensack K, Clarke AB. 2022.. MafiCH: a general model for H2O-CO2 solubility in mafic melts. . Contrib. Mineral. Petrol. 177::40
    [Google Scholar]
  4. Applegarth LJ, Tuffen H, James MR, Pinkerton H, Cashman KV. 2013.. Direct observations of degassing-induced crystallization in basalts. . Geology 41::24346
    [Google Scholar]
  5. Bagdassarov N, Dorfman A, Dingwell D. 2000.. Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. . Am. Mineral. 85::3340
    [Google Scholar]
  6. Baidakov VG, Boltachev GS. 1999.. Curvature dependence of the surface tension of liquid and vapor nuclei. . Phys. Rev. E 59::46975
    [Google Scholar]
  7. Baidakov VG, Boltashev GS, Schmelzer JWP. 2000.. Comparison of different approaches to the determination of the work of critical cluster formation. . J. Colloid Interface Sci. 231::31221
    [Google Scholar]
  8. Blake S. 1984.. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. . J. Geophys. Res. 89:(B10):823744
    [Google Scholar]
  9. Blank JG, Stolper EM, Carroll MR. 1993.. Solubility of carbon dioxide and water in rhyolitic melt at 850°C and 750 bars. . Earth Planet. Sci. Lett. 119::2736
    [Google Scholar]
  10. Blower JD, Mader HM, Wilson SDR. 2001.. Coupling of viscous and diffusive controls on bubble growth during explosive volcanic eruptions. . Earth Planet. Sci. Lett. 193::4756
    [Google Scholar]
  11. Bureau H, Keppler H. 1999.. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. . Earth Planet. Sci. Lett. 165::18796
    [Google Scholar]
  12. Cáceres F, Wadsworth FB, Scheu B, Colombier M, Madonna C, et al. 2020.. Can nanolites enhance eruption explosivity?. Geology 48::9971001
    [Google Scholar]
  13. Cahn JW. 1961.. On spinodal decomposition. . Acta Metall. 9::795801
    [Google Scholar]
  14. Cahn JW. 1965.. Phase separation by spinodal decomposition in isotropic systems. . J. Chem. Phys. 42::9399
    [Google Scholar]
  15. Cahn JW, Hilliard JE. 1958.. Free energy of a nonuniform system. I. Interfacial free energy. . J. Chem. Phys. 28::25867
    [Google Scholar]
  16. Cahn JW, Hilliard JE. 1959.. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. . J. Chem. Phys. 31::68899
    [Google Scholar]
  17. Carroll MR, Webster JD. 1994.. Solubilities of sulfur, noble gases, nitrogen, chlorine and fluorine in magmas. . Rev. Mineral. Geochem. 30::23179
    [Google Scholar]
  18. Castro JM, Burgisser A, Shipper I, Mancini S. 2012.. Mechanisms and dynamics of bubble coalescence in silicic magmas. . Bull. Volcanol. 74::233952
    [Google Scholar]
  19. Chernov AA, Belof JL. 2018.. Homogeneous versus heterogeneous nucleation modes of solidification at strong driving force conditions. Rep. LLNL-TR-751938 , Lawrence Livermore Natl. Lab., Livermore, CA:
    [Google Scholar]
  20. Chernov AA, Pil'nik AA, Davydov MN, Ermanyuk EV, Pakhomov MA. 2018.. Gas nucleus growth in high-viscosity liquid under strongly non-equilibrium conditions. . Int. J. Heat Mass Transf. 123::11018
    [Google Scholar]
  21. Cichy SB, Botcharnikov RE, Holtz F, Behrens H. 2011.. Vesiculation and microlite crystallization induced by decompression: a case study of the 1991–1995 Mt Unzen eruption (Japan). . J. Petrol. 52::146992
    [Google Scholar]
  22. Cluzel N, Laporte D, Provost A, Kannewischer I. 2008.. Kinetics of heterogeneous bubble nucleation in rhyolitic melts: implications for the number density of bubbles in volcanic conduits and for pumice textures. . Contrib. Mineral. Petrol. 156::74563
    [Google Scholar]
  23. Colombier M, Shea T, Burgisser A, Druitt TH, Gurioli L, et al. 2020.. Rheological change and degassing during a trachytic Vulcanian eruption at Kilian Volcano, Chaîne des Puys, France. . Bull. Volcanol. 82::78
    [Google Scholar]
  24. Couch S, Sparks RSJ, Carroll MR. 2003.. The kinetics of degassing-induced crystallization at Soufrière Hills volcano, Montserrat. . J. Petrol. 44::1477502
    [Google Scholar]
  25. Coumans J, Llewellin E, Wadsworth F, Humphreys M, Mathias SA, et al. 2020.. An experimentally validated numerical model for bubble growth in magma. . J. Volcanol. Geotherm. Res. 402::107002
    [Google Scholar]
  26. Debenedetti PG. 1996.. Metastable Liquids: Concepts and Principles. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  27. Debenedetti PG. 2000.. Phase separation by nucleation and by spinodal decomposition: fundamentals. . Supercrit. Fluids 366::12366
    [Google Scholar]
  28. Di Genova D, Brooker RA, Mader HM, Drewitt JWE, Longo A, et al. 2020.. In situ observation of nanolite growth in volcanic melt: a driving force for explosive eruptions. . Sci. Adv. 6::eabb0413
    [Google Scholar]
  29. Di Genova D, Caracciolo A, Kolzenburg S. 2018.. Measuring the degree of “nanotilization” of volcanic glasses: understanding syn-eruptive processes recorded in melt inclusions. . Lithos 318::20918
    [Google Scholar]
  30. Di Matteo V, Carroll MR, Behrens H, Vetere F, Brooker RA. 2004.. Water solubility in trachytic melts. . Chem. Geol. 213::18796
    [Google Scholar]
  31. Dixon JE. 1997.. Degassing of alkalic basalts. . Am. Mineral. 82::36878
    [Google Scholar]
  32. Dixon JE, Stolper EM, Holloway JR. 1995.. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. . J. Petrol. 36::160731
    [Google Scholar]
  33. Epel'baum MB. 1973.. Surface tension of felsic magmatic melts at high temperatures and pressure. . Geochem. Int. 10::34345
    [Google Scholar]
  34. Fiege A, Cichy SB. 2015.. Experimental constraints on bubble formation and growth during magma ascent. . Am. Mineral. 100::242642
    [Google Scholar]
  35. Fiege A, Holtz F, Cichy SB. 2014.. Bubble formation during decompression of andesitic melts. . Am. Mineral. 99::105262
    [Google Scholar]
  36. Fletcher NH. 1958.. Size effect in heterogeneous nucleation. . J. Chem. Phys. 29::57276
    [Google Scholar]
  37. Fogel RA, Rutherford MJ. 1990.. The solubility of carbon dioxide in rhyolitic melts; a quantitative FTIR study. . Am. Mineral. 75::131126
    [Google Scholar]
  38. Freda C, Baker DR, Scarlato P. 2005.. Sulfur diffusion in basaltic melts. . Geochim. Cosmochim. Acta 69::506169
    [Google Scholar]
  39. Gardner JE. 2007.. Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure. . Chem. Geol. 236::112
    [Google Scholar]
  40. Gardner JE. 2012.. Surface tension and bubble nucleation in phonolite magmas. . Geochim. Cosmochim. Acta 76::93102
    [Google Scholar]
  41. Gardner JE, Denis M-H. 2004.. Heterogeneous bubble nucleation on Fe-Ti oxide crystals in high-silica rhyolitic melts. . Geochim. Cosmochim. Acta 68::358797
    [Google Scholar]
  42. Gardner JE, Hajimirza S, Webster JD, Gonnermann HM. 2018.. The impact of dissolved fluorine on bubble nucleation in hydrous rhyolite melts. . Geochim. Cosmochim. Acta 226::17481
    [Google Scholar]
  43. Gardner JE, Ketcham RA. 2011.. Bubble nucleation in rhyolite and dacite melts: temperature dependence of surface tension. . Contrib. Mineral. Petrol. 162::92943
    [Google Scholar]
  44. Gardner JE, Ketcham RA, Moore G. 2013.. Surface tension of hydrous silicate melts: constraints on the impact of melt composition. . J. Volcanol. Geotherm. Res. 267::6874
    [Google Scholar]
  45. Gardner JE, Webster JD. 2016.. The impact of dissolved CO2 on bubble nucleation in water-poor rhyolite melts. . Chem. Geol. 420::18085
    [Google Scholar]
  46. Genareau K, Mulukutla GK, Proussevitch AA, Durant AJ, Rose WI, Sahagian DL. 2013.. The size range of bubbles that produce ash during explosive volcanic eruptions. . J. Appl. Volcanol. 2::4
    [Google Scholar]
  47. Genareau K, Proussevitch AA, Durant AJ, Mulukutla G, Sahagian DL. 2012.. Sizing up the bubbles that produce very fine ash during explosive volcanic eruptions. . Geophys. Res. Lett. 39::L15306
    [Google Scholar]
  48. Ghiorso MS, Gualda GAR. 2015.. An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. . Contrib. Mineral. Petrol. 169::53
    [Google Scholar]
  49. Gibbs JW. 1961.. Influence of Surfaces of Discontinuity upon the Equilibrium of Heterogeneous Masses—Theory of Capillarity. . In The Scientific Papers of J. Willard Gibbs 1: Thermodynamics, pp. 219331 New York:: Dover
    [Google Scholar]
  50. Girona T, Costa F, Schubert G. 2016.. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions. . Sci. Rep. 5::18212
    [Google Scholar]
  51. Gondé C, Martel C, Pichavant M, Bureau H. 2011.. In situ bubble vesiculation in silicic magmas. . Am. Mineral. 96::11124
    [Google Scholar]
  52. Gonnermann HM, Gardner JE. 2013.. Homogeneous bubble nucleation in rhyolitic melt: experiments and non-classical theory. . Geochem. Geophys. Geosyst. 14::475873
    [Google Scholar]
  53. Hajimirza S, Gardner JE, Gonnermann HM. 2021a.. Experimental demonstration of continuous bubble nucleation in rhyolite. . J. Volcanol. Geotherm. Res. 421::107417
    [Google Scholar]
  54. Hajimirza S, Gonnermann HM, Gardner JE. 2021b.. Reconciling bubble nucleation in explosive eruptions with geospeedometers. . Nat. Comm. 12::283
    [Google Scholar]
  55. Hajimirza S, Gonnermann HM, Gardner JE, Giachetti T. 2019.. Predicting homogeneous bubble nucleation in rhyolite. . J. Geophys. Res. Solid Earth 124::2395416
    [Google Scholar]
  56. Hamada M, Laporte D, Cluzel N, Koga KT, Kawamoto T. 2010.. Simulating bubble number density of rhyolitic pumices from Plinian eruptions: constraints from fast decompression experiments. . Bull. Volcanol. 72::73546
    [Google Scholar]
  57. Hammer JE, Rutherford MJ. 2002.. An experimental study of the kinetics of decompression-induced crystallization in silicic melt. . J. Geophys. Res. 107:(B1):ECV8-18-24
    [Google Scholar]
  58. Hardiagon M, Laporte D, Marizet Y, Provost A. 2013.. CO2 degassing in a haplo-basaltic magma: an experimental approach. . Mineral. Mag. 77::1258
    [Google Scholar]
  59. Hedges LO, Whitelam S. 2012.. Patterning a surface so as to speed nucleation from solution. . Soft Matter 8::862435
    [Google Scholar]
  60. Hess K-U, Dingwell DB. 1996.. Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. . Am. Mineral. 81::1297300
    [Google Scholar]
  61. Hillert M. 1961.. A solid-solution model for inhomogeneous systems. . Acta Metal. 9::52535
    [Google Scholar]
  62. Hirth JP, Pound GM, Pierre GRS. 1970.. Bubble nucleation. . Metal. Trans. 1::93945
    [Google Scholar]
  63. Holtz F, Behrens H, Dingwell DB, Johannes W. 1995.. H2O solubility in haplogranitic melts: compositional, pressure, and temperature dependence. . Am. Mineral. 80::94108
    [Google Scholar]
  64. Hurwitz S, Navon O. 1994.. Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. . Earth Planet. Sci. Lett. 122::26780
    [Google Scholar]
  65. Iacono-Marziano G, Morizet Y, Le Trong E, Gaillard F. 2012.. New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. . Geochim. Cosmochim. Acta 97::123
    [Google Scholar]
  66. Iacono-Marziano G, Schmidt BC, Dolfi D. 2007.. Equilibrium and disequilibrium degassing of a phonolitic melt (Vesuvius AD 79 “white pumice”) simulated by decompression experiments. . J. Volcanol. Geotherm. Res. 161::15164
    [Google Scholar]
  67. Johnson MC, Anderson AT, Rutherford MJ. 1994.. Pre-eruptive volatile contents of magmas. . Rev. Mineral. Geochem. 30::281330
    [Google Scholar]
  68. Joswiak MN, Duff N, Doherty MF, Peters P. 2013.. Size-dependent surface free energy and Tolman-corrected droplet nucleation of TIP4P/2005 water. . J. Phys. Chem. Lett. 4::426772
    [Google Scholar]
  69. Jugo PJ, Luth RW, Richards JP. 2005.. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulphide or sulfate liquids at 1300°C and 1.0 GPa. . J. Petrol. 46::78398
    [Google Scholar]
  70. Kashchiev D. 2000.. Nucleation: Basic Theory with Applications. Oxford, UK:: Elsevier
    [Google Scholar]
  71. Kashchiev D. 2003.. Thermodynamically consistent description of the work to form a nucleus of any size. . J. Chem. Phys. 118::183751
    [Google Scholar]
  72. Kashchiev D. 2004.. Multicomponent nucleation: thermodynamically consistent description of the nucleation work. . J. Chem. Phys. 120::374958
    [Google Scholar]
  73. Knafelc J, Bryan SE, Jones MWM, Gust D, Mallmann G, et al. 2022.. Havre 2012 pink pumice is evidence of a short-lived, deep-sea, magnetite nanolite-driven explosive eruption. . Commun. Earth Environ. 3::19
    [Google Scholar]
  74. Landau LD, Lifshitz EM. 1980.. Statistical Physics 1. New York:: Pergamon
    [Google Scholar]
  75. Larsen JF. 2008.. Heterogeneous bubble nucleation and disequilibrium H2O exsolution in Vesuvius K-phonolite melts. . J. Volcanol. Geotherm. Res. 175::27888
    [Google Scholar]
  76. Le Gall N, Pichavant M. 2016a.. Experimental simulation of bubble nucleation and magma ascent in basaltic systems: implications for Stromboli volcano. . Am. Mineral. 101::196785
    [Google Scholar]
  77. Le Gall N, Pichavant M. 2016b.. Homogeneous bubble nucleation in H2O- and H2O-CO2-bearing basaltic melts: results of high temperature decompression experiments. . J. Volcanol. Geotherm. Res. 327::60421
    [Google Scholar]
  78. Lei YA, Bykov T, Yoo S, Zeng XC. 2005.. The Tolman length: Is it positive or negative?. J. Am. Chem. Soc. 127::1534647
    [Google Scholar]
  79. Lensky NG, Navon O, Lyakhovsky V. 2004.. Bubble growth during decompression of magma: experimental and theoretical investigation. . J. Volcanol. Geotherm. Res. 129::722
    [Google Scholar]
  80. Lesne P, Scaillet B, Pichavant M, Beny J-M. 2011.. The carbon dioxide solubility in alkali basalts: an experimental study. . Contrib. Mineral. Petrol. 162::15368
    [Google Scholar]
  81. Liu Y, Zhang Y, Behrens H. 2005.. Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts. . J. Volcanol. Geotherm. Res. 143::21935
    [Google Scholar]
  82. Lubetkin SD. 2003.. Why is it much easier to nucleate gas bubbles than theory predicts?. Langmuir 19::257587
    [Google Scholar]
  83. Luhr JF. 1990.. Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichon volcano. . J. Petrol. 31::1071114
    [Google Scholar]
  84. Mangan M, Sisson T. 2000.. Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. . Earth Planet. Sci. Lett. 183::44155
    [Google Scholar]
  85. Mangan M, Sisson T. 2005.. Evolution of melt-vapor surface tension in silicic volcanic systems: experiments with hydrous melts. . J. Geophys. Res. 110:(B1):B01202
    [Google Scholar]
  86. Mangan MT, Sisson TW, Hankins WB. 2004.. Decompression experiments identify kinetic controls on explosive silicic eruptions. . Geophys. Res. Lett. 31::L08605
    [Google Scholar]
  87. Massol H, Koyaguchi T. 2005.. The effect of magma flow on nucleation of gas bubbles in a volcanic conduit. . J. Volcanol. Geotherm. Res. 143::6988
    [Google Scholar]
  88. McIntosh IM, Llewellin EW, Humphreys MCS, Nichols ARL, Burgisser A, et al. 2014.. Distribution of dissolved water in magmatic glass records growth and resorption of bubbles. . Earth Planet. Sci. Lett. 401::111
    [Google Scholar]
  89. McMillan P. 1994.. Water solubility and speciation models. . Rev. Mineral. Geochem. 30::13156
    [Google Scholar]
  90. Merikanto J, Zapadinsky E, Lauri A, Vehkamaki H. 2007.. Origin of the failure of classical nucleation theory: incorrect description of the smallest clusters. . Phys. Rev. Lett. 98::145702
    [Google Scholar]
  91. Moore G, Vennemann T, Carmichael ISE. 1998.. An empirical model for the solubility of H2O in magmas to 3 kilobars. . Am. Mineral. 83::3642
    [Google Scholar]
  92. Moune S, Holtz F, Botcharnikov RE. 2009.. Sulphur solubility in andesitic to basaltic melts: implications for Hekla volcano. . Contrib. Mineral. Petrol. 157::691707
    [Google Scholar]
  93. Mourtada-Bonnefoi CC, Laporte D. 1999.. Experimental study of homogeneous bubble nucleation in rhyolitic magmas. . Geophys. Res. Lett. 26::35058
    [Google Scholar]
  94. Mourtada-Bonnefoi CC, Laporte D. 2002.. Homogeneous bubble nucleation in rhyolitic magmas: an experimental study of the effect of H2O and CO2. . J. Geophys. Res. 107:(B4):ECV 212-19
    [Google Scholar]
  95. Mourtada-Bonnefoi CC, Laporte D. 2004.. Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. . Earth Planet. Sci. Lett. 218::52137
    [Google Scholar]
  96. Mujin M, Nakamura M. 2014.. A nanolite record of eruption style transition. . Geology 42::61114
    [Google Scholar]
  97. Navon O, Lyakhovsky V. 1998.. Vesiculation processes in silicic magmas. . Geol. Soc. Lond. Spec. Publ. 145::2750
    [Google Scholar]
  98. Newman S, Lowenstern JB. 2002.. VolatileCalc: a silicate-melt–H2O–CO2 solution model written in Visual Basic for Excel. . Comp. Geosci. 28::597604
    [Google Scholar]
  99. Nowak M, Cichy SB, Botcharnikov RE, Walker N, Hurkuck W. 2011.. A new type of high-pressure low-flow metering valve for continuous decompression: first experimental results on degassing of rhyodacitic melts. . Am. Mineral. 96::137380
    [Google Scholar]
  100. Owen DC, McConnell JDC. 1971.. Spinodal behaviour in an alkali feldspar. . Nat. Phys. Sci. 230::11819
    [Google Scholar]
  101. Page AJ, Sear RP. 2006.. Heterogeneous nucleation in and out of pores. . Phys. Rev. Lett. 97::065701
    [Google Scholar]
  102. Papale P, Moretti R, Barbato D. 2006.. The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. . Chem. Geol. 229::7895
    [Google Scholar]
  103. Pichavent M, Di Carlo I, Rotolo SG, Scaillet B, Burgisser A, et al. 2013.. Generation of CO2-rich melts during basalt magma ascent and degassing. . Contrib. Mineral. Petrol. 166::54561
    [Google Scholar]
  104. Pleše P, Higgins MD, Mancini L, Lanzafame G, Brun F, et al. 2018.. Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas. . Lithos 2969953246
    [Google Scholar]
  105. Preuss O, Marxer H, Ulmer S, Wolf J, Nowak M. 2016.. Degassing of hydrous trachytic Campi Flegrei and phonolitic Vesuvius melts: experimental limitations and chances to study homogeneous bubble nucleation. . Am. Mineral. 101::85975
    [Google Scholar]
  106. Proussevitch AA, Mulukutla GK, Sahagian DL. 2011.. A new 3D method of measuring bubble size distributions from vesicle fragments preserved on surfaces of volcanic ash particles. . Geosphere 7::6269
    [Google Scholar]
  107. Proussevitch AA, Sahagian D. 2005.. Bubbledrive-1: a numerical model of volcanic eruption mechanisms driven by disequilibrium magma degassing. . J. Volcanol. Geotherm. Res. 143::89111
    [Google Scholar]
  108. Proussevitch AA, Sahagian DL. 1996.. Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems. . J. Geophys. Res. 101:(B8):1744755
    [Google Scholar]
  109. Proussevitch AA, Sahagian DL. 1998.. Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling. . J. Geophys. Res. 103:(B8):1822351
    [Google Scholar]
  110. Proussevitch AA, Sahagian DL, Anderson AT. 1993.. Dynamics of diffusive bubble growth in magmas: isothermal case. . J. Geophys. Res. 98:(B12):22283307
    [Google Scholar]
  111. Qian M, Ma J. 2009.. Heterogeneous nucleation on convex spherical substrate surfaces: a rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived. . J. Chem. Phys. 130::214709
    [Google Scholar]
  112. Romano P, Di Carlo I, Adújar J, Rotolo SG. 2021.. Water solubility in trachytic and pantelleritic melts: an experimental study. . C. R. Geosci. 353::31531
    [Google Scholar]
  113. Ryan AG, Russell JK, Nichols ARL, Hess K-U, Porritt LA. 2015.. Experiments and models on H2O retrograde solubility in volcanic systems. . Am. Mineral. 100::77486
    [Google Scholar]
  114. Sahagian D. 1999.. Magma fragmentation in eruptions. . Nature 402::58991
    [Google Scholar]
  115. Sahagian D. 2005.. Volcanic eruption mechanisms: insights from intercomparison of models of conduit processes. . J. Volcanol. Geotherm. Res. 143::116
    [Google Scholar]
  116. Sahagian D, Carley TL. 2020.. Explosive volcanic eruptions and spinodal decomposition: a different approach to deciphering the tiny bubble paradox. . Geochem. Geophys. Geosyst. 21::e2019GC008898
    [Google Scholar]
  117. Saxena R, Caneba GT. 2002.. Studies of spinodal decomposition in a ternary polymer-solvent-nonsolvent system. . Polymer Eng. Sci. 42::101931
    [Google Scholar]
  118. Schanofski M, Fanara S, Schmidt BC. 2019.. CO2–H2O solubility in K-rich phonolitic and leucititic melts. . Contrib. Mineral. Petrol. 174::52
    [Google Scholar]
  119. Schmelzer JWP. 1986.. The curvature dependence of surface tension of small droplets. . J. Chem. Soc. Faraday Trans. 82::142128
    [Google Scholar]
  120. Schmelzer JWP, Abyzov AS, Baidakov VG. 2019.. Entropy and the Tolman parameter in nucleation theory. . Entropy 21::670
    [Google Scholar]
  121. Schmelzer JWP, Gutzow I, Schmelzer J. 1996.. Curvature-dependent surface tension and nucleation theory. . J. Coll. Interface Sci. 178::65765
    [Google Scholar]
  122. Schmelzer JWP, Mahnke R. 1986.. General formulae for the curvature dependence of droplets and bubbles. . J. Chem. Soc. Faraday Trans. 82::141320
    [Google Scholar]
  123. Shea T. 2017.. Bubble nucleation in magmas: a dominantly heterogeneous process?. J. Volcanol. Geotherm. Res. 343::15570
    [Google Scholar]
  124. Sowerby JR, Keppler H. 2002.. The effect of fluorine, boron and excess sodium on the critical curve in the albite–H2O system. . Contrib. Mineral. Petrol. 143::3237
    [Google Scholar]
  125. Sparks RSJ. 1978.. The dynamics of bubble formation and growth in magmas: a review and analysis. . J. Volcanol. Geotherm. Res. 3::137
    [Google Scholar]
  126. Tait S, Jaupart C, Vergniolle S. 1989.. Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. . Earth Planet. Sci. Lett. 92::10723
    [Google Scholar]
  127. Tamic N, Behrens H, Holtz F. 2001.. The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. . Chem. Geol. 174::33347
    [Google Scholar]
  128. Tolman RC. 1948.. Consideration of the Gibbs theory of surface tension. . J. Chem. Phys. 16::75874
    [Google Scholar]
  129. Tolman RC. 1949.. The effect of droplet size on surface tension. . J. Chem. Phys. 17::33337
    [Google Scholar]
  130. Toramaru A. 1989.. Vesiculation process and bubble size distributions in ascending magmas with constant velocities. . J. Geophys. Res. 94:(B12):1752342
    [Google Scholar]
  131. Toramaru A. 2006.. BND (bubble number density) decompression rate meter for explosive volcanic eruptions. . J. Volcanol. Geotherm. Res. 154::30316
    [Google Scholar]
  132. Toramaru A. 2014.. On the second nucleation of bubbles in magmas under sudden decompression. . Earth Planet. Sci. Lett. 404::19099
    [Google Scholar]
  133. Tramontano S, Gualda GAR, Ghiorso MS. 2017.. Internal triggering of volcanic eruptions: tracking overpressure regimes for giant magma bodies. . Earth Planet. Sci. Lett. 472::14251
    [Google Scholar]
  134. Walker D, Mullins O Jr. 1981.. Surface tension of natural silicate melts from 1,200°–1,500°C and implications for melt structure. . Contrib. Mineral. Petrol. 76::45562
    [Google Scholar]
  135. Webster JD, Kinzler RJ, Mathez EA. 1999.. Chloride and water solubility in basalt and andesite melts and implication for magmatic degassing. . Geochim. Cosmochim. Acta 63::72938
    [Google Scholar]
  136. Wedekind J, Chkonia G, Wölk J, Strey R, Reguera D. 2009.. Crossover from nucleation to spinodal decomposition in a condensing vapor. . J. Chem. Phys. 131::114506
    [Google Scholar]
  137. Yang N, Li H, Wang G, Wang W, Chen X. 2022.. A study of nucleation at initial growth stage of SiC single crystal by physical vapor transport. . J. Crystal Growth 585::126591
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-080308
Loading
/content/journals/10.1146/annurev-earth-031621-080308
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error