1932

Abstract

Molar-tooth structure (MTS) is an unusual carbonate fabric that is composed of variously shaped cracks and voids filled with calcite microspar. Despite a century of study, MTS remains enigmatic because it juxtaposes void formation within a cohesive yet unlithified substrate with the penecontemporaneous precipitation and lithification of void-filling carbonate microspar. MTS is broadly restricted to shallow marine carbonate strata of the Mesoproterozoic and Neoproterozoic, suggesting a fundamental link between the formation of MTS and the biogeochemical evolution of marine environments. Despite uncertainties in the origin of MTS, molar-tooth (MT) microspar remains a popular target for geochemical analysis and the reconstruction of Precambrian marine chemistry. Here we review models for the formation of MTS and show how detailed petrographic analysis of MT microspar permits identification of a complex process of precipitation and diagenesis that must be considered when the microspar phase is used as a geochemical proxy.

  • ▪  Molar-tooth fabric is an enigmatic structure in Precambrian sedimentary rocks that is composed of variously shaped cracks and voids filled with carbonate microspar.
  • ▪  Time restriction of this fabric suggests a link between this unusual structure and the biogeochemical evolution of marine environments.
  • ▪  Petrographic analysis of molar-tooth fabric provides insight into fundamental processes of crystallization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-080804
2022-05-31
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-031621-080804.html?itemId=/content/journals/10.1146/annurev-earth-031621-080804&mimeType=html&fmt=ahah

Literature Cited

  1. Astin T, Rogers D 1991.. “ Subaqueous shrinkage cracks” in the Devonian of Scotland reinterpreted. J. Sediment. Res. 61:850–59
    [Google Scholar]
  2. Bartley JK, Kah LC. 2004. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32:129–32
    [Google Scholar]
  3. Bartley JK, Kah LC, McWilliams JL, Stagner AF. 2007. Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia): signal recovery in a fold-and-thrust belt. Chem. Geol. 237:211–32
    [Google Scholar]
  4. Bartley JK, Knoll AH, Grotzinger JP, Sergeev VN. 2000. Lithification and fabric genesis in precipitated stromatolites and associated peritidal carbonates, Mesoproterozoic Billyakh Group, Siberia. SEPM Spec. Publ. 67:60–73
    [Google Scholar]
  5. Bauerman H. 1885. Report on the Geology of the Country near the Forty-Ninth Parallel of North Latitude West of the Rocky Mountains Montreal: Dawson Bros.
    [Google Scholar]
  6. Bergmann KD, Grotzinger JP, Fischer WW. 2013. Biological influences on seafloor carbonate precipitation. Palaios 28:99–115
    [Google Scholar]
  7. Bertrand-Sarfati J, Plaziat J, Moussine-Pouchkine A. 1997. Vermicular structures in the Neoproterozoic of the West African Craton: microbialites versus ‘molar tooth. .’ Facies 36:231–34
    [Google Scholar]
  8. Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM 2011. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 311:183–210
    [Google Scholar]
  9. Bishop JW, Sumner DY. 2006. Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South Africa. I: Constraints on microcrystalline CaCO3 precipitation. Sedimentology 53:1049–68
    [Google Scholar]
  10. Bishop JW, Sumner DY, Huerta NJ. 2006. Molar tooth structures of the Neoarchean Monteville Formation. Transvaal Supergroup, South Africa. II: A wave-induced fluid flow model. Sedimentology 53:1069–82
    [Google Scholar]
  11. Bots P, Benning LG, Rodriguez-Blanco J-D, Roncal-Herrero T, Shaw S. 2012. Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Des. 12:3806–14
    [Google Scholar]
  12. Boudreau BP. 2012. The physics of bubbles in surficial, soft, cohesive sediments. Mar. Pet. Geol. 38:1–18
    [Google Scholar]
  13. Bruckschen P, Bruhn F, Veizer J, Buhl D. 1995. 87Sr86Sr isotopic evolution of Lower Carboniferous seawater: Dinantian of western Europe. Sediment. Geol. 100:63–81
    [Google Scholar]
  14. Calver C, Baille P. 1990. Early diagenetic concretions associated with intrastratal shrinkage cracks in an Upper Proterozoic dolomite, Tasmania, Australia. J. Sediment. Pet. 60:293–305
    [Google Scholar]
  15. Canfield DE, Des Marais DJ. 1993. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57:3971–84
    [Google Scholar]
  16. Cantine MD, Knoll AH, Bergmann KD. 2019. Carbonates before skeletons: a database approach. Earth Sci. Rev. 201:103065
    [Google Scholar]
  17. Carino A, Testino A, Andalibi MR, Pilger F, Bowen P, Ludwig C. 2017. Thermodynamic-kinetic precipitation modeling. A case study: the amorphous calcium carbonate (ACC) precipitation pathway unravelled. Cryst. Growth Des. 17:2006–15
    [Google Scholar]
  18. Cody R, Cody A 1988. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J. Sediment. Res. 58:247–55
    [Google Scholar]
  19. Cowan CA, James NP. 1992. Diastasis cracks: mechanically generated synaeresis-like cracks in Upper Cambrian shallow water oolite and ribbon carbonates. Sedimentology 39:1101–18
    [Google Scholar]
  20. Crawford JC, Goodman E, Kah L. 2006. Origin of Precambrian molar-tooth microspar: a new look at an old problem. Geol. Soc. Am. Abstr. Prog. 38:324
    [Google Scholar]
  21. Crawford JC, Kah LC. 2004. Investigating the origin of Precambrian molar-tooth carbonate. Geol. Soc. Am. Abstr. Prog. 36:251
    [Google Scholar]
  22. Daly RA. 1912. Geology of the North American Cordillera at the Forty-Ninth Parallel Ottawa, Can.: Dep. Mines Geol. Surv. Can.
    [Google Scholar]
  23. Demicco RV, Hardie LA. 1994. An Inventory of Common Sedimentary Structures and Early Diagenetic Features of Shallow Marine Carbonate Deposits Tulsa, OK: SEPM
    [Google Scholar]
  24. Du Y, Han X, Gu S, Lin W, Zhang C 2001. Earthquake event deposits in Mesoproterozoic Kunyang Group in Central Yunnan Province and its geological implications. Sci. China Ser. D 31:283–89
    [Google Scholar]
  25. Dupraz C, Visscher PT. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13:429–38
    [Google Scholar]
  26. Eby D. 1975. Carbonate sedimentation under elevated salinities and implications for the origin of “molar-tooth” structure in the Middle Belt Carbonate interval (late Precambrian), northwestern Montana. Geol. Soc. Am. Abstr. Prog. 7:1063
    [Google Scholar]
  27. Evans D, Gray WR, Rae JWB, Greenop R, Webb PB et al. 2020. Trace and major element incorporation into amorphous calcium carbonate (ACC) precipitated from seawater. Geochim. Cosmochim. Acta 290:293–311
    [Google Scholar]
  28. Evans D, Webb PB, Penkman K, Kroger R, Allison N 2019. The characteristics and biological relevance of inorganic amorphous calcium carbonate (ACC) precipitated from seawater. Cryst. Growth Des. 19:4300–13
    [Google Scholar]
  29. Fairchild IJ, Einsele G, Song T 1997. Possible seismic origin of molar tooth structures in Neoproterozoic carbonate ramp deposits, north China. Sedimentology 44:611–36
    [Google Scholar]
  30. Fairchild IJ, Spencer AM, Ali DO, Anderson RP, Anderton R et al. 2018. Tonian-Cryogenian boundary sections of Argyll, Scotland. Precambrian Res 319:37–64
    [Google Scholar]
  31. Fenton CL, Fenton MA. 1937. Belt series of the North: stratigraphy, sedimentation, paleontology. GSA Bull. 48:1873–970
    [Google Scholar]
  32. Fike DA, Bradley AS, Rose CV 2015. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43:593–622
    [Google Scholar]
  33. Frank TD, Kah LC, Lyons TW. 2003. Changes in organic matter production and accumulation as a mechanism for isotopic evolution in the Mesoproterozoic ocean. Geol. Mag. 140:397–420
    [Google Scholar]
  34. Frank TD, Lyons TW. 1998.. “ Molar-tooth” structures: a geochemical perspective on a Proterozoic enigma. Geology 26:683–86
    [Google Scholar]
  35. Furniss G, Rittel JF, Winston D. 1998. Gas bubble and expansion crack origin of “molar-tooth” calcite structures in the Middle Proterozoic Belt Supergroup, Western Montana. J. Sediment. Res. 68:104–14
    [Google Scholar]
  36. Gilleaudeau G, Kah L. 2010. Molar-tooth crack formation and the Proterozoic marine substrate: insights from the Belt Supergroup, Montana and the Atar Group, Mauritania. Geol. Soc. Am. Abstr. Prog. 42:137
    [Google Scholar]
  37. Goodman EE, Kah L. 2007. Reassessing formation of Precambrian molar-tooth microspar: constraints from carbonate precipitation experiments. Geol. Soc. Am. Abstr. Prog. 39:420
    [Google Scholar]
  38. Grotzinger JP. 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. SEPM Spec. Publ. 44:79–106
    [Google Scholar]
  39. Grotzinger JP. 1990. Geochemical model for Proterozoic stromatolite decline. Am. J. Sci. 290-A:80–103
    [Google Scholar]
  40. Grotzinger JP, Knoll AH. 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?. Annu. Rev. Earth Planet. Sci. 27:313–58
    [Google Scholar]
  41. Halverson GP, Wade BP, Hurtgen MT, Barovich KM. 2010. Neoproterozoic chemostratigraphy. Precambrian Res 182:337–50
    [Google Scholar]
  42. Harazim D, Callow RH, Mcilroy D. 2013. Microbial mats implicated in the generation of intrastratal shrinkage (‘synaeresis’) cracks. Sedimentology 60:1621–38
    [Google Scholar]
  43. Hemming NG, Meyers WJ, Grams JC. 1989. Cathodoluminescence in diagenetic calcites; the roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements. J. Sediment. Res. 59:404–11
    [Google Scholar]
  44. Higgins JA, Fischer W, Schrag D. 2009. Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth Planet. Sci. Lett. 284:25–33
    [Google Scholar]
  45. Hodgskiss MSW, Kunzmann M, Poirier A, Halverson GP. 2018. The role of microbial iron reduction in the formation of Proterozoic molar tooth structures. Earth Planet. Sci. Lett. 482:1–11
    [Google Scholar]
  46. Hofmann H. 1985. The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains north-west Canada. Palaeontology 28:331–54
    [Google Scholar]
  47. Horodyski RJ. 1976. Stromatolites of the upper Siyeh limestone (Middle Proterozoic), Belt Supergroup, Glacier National Park, Montana. Precambrian Res 3:517–36
    [Google Scholar]
  48. Ihli J, Wong WC, Noel EH, Kim Y-Y, Kulak AN et al. 2014. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 5:3169
    [Google Scholar]
  49. James NP, Narbonne GM, Sherman AG. 1998. Molar-tooth carbonate: shallow subtidal facies of the Mid- to Late Proterozoic. J. Sediment. Res. 68:716–22
    [Google Scholar]
  50. Jia ZH, Hong TQ, Zheng WW, Li SY. 2003. The characters and environments of the seismites of the Neoproterozoic Wangshan Formation in North Anhui. J. Stratigr. 27:146–49
    [Google Scholar]
  51. Jia ZH, Ning XF, Hong TQ, Zheng WW 2011. The Neoproterozoic molar-tooth carbonate rock veins in northern Anhui and Jiangso Provinces and their forming mechanism. J. Palaeogeogr. 13:627–34
    [Google Scholar]
  52. Jüngst H. 1934. Zur geologischen Bedeutung der Synärese. Geol. Rundsch. 25:312–25
    [Google Scholar]
  53. Kah LC, Bartley JK. 2022. Carbonate fabric diversity and environmental heterogeneity in the late Mesoproterozoic Era. Geol. Mag. 159:(2):220–46
    [Google Scholar]
  54. Kah LC, Bartley JK, Milam K. 2007. Unusual breccias in the Proterozoic Atar Group, Mauritania-Mali-Algeria: potential deposition related to extraterrestrial impact and impact-related tsunamis. Geol. Soc. Am. Abstr. Prog. 39:311
    [Google Scholar]
  55. Kah LC, Bartley JK, Teal DA. 2012. Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: muted isotopic variability, facies correlation, and global isotopic trends. Precambrian Res. 200–203:82–103
    [Google Scholar]
  56. Kah LC, Knoll AH. 1996. Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations. Geology 24:79–82
    [Google Scholar]
  57. Kah LC, Lyons TW, Chesley JT. 2001. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution. Precambrian Res. 111:203–34
    [Google Scholar]
  58. Kaufman AJ, Hayes J, Knoll AH, Germs GJ. 1991. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian Res 49:301–27
    [Google Scholar]
  59. Kile DE, Eberl DD. 2003. On the origin of size-dependent and size-independent crystal growth: influence of advection and diffusion. Am. Minerol. 88:1514–21
    [Google Scholar]
  60. Kile DE, Eberl DD, Hoch AR, Reddy MM. 2000. An assessment of calcite crystal growth mechanisms based on crystal size distributions. Geochim. Cosmochim. Acta 64:2937–50
    [Google Scholar]
  61. Knoll A, Swett K. 1990. Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen. Am. J. Sci. 290:104–32
    [Google Scholar]
  62. Kuang HW. 2014. Review of molar tooth structure research. J. Palaeogeogr. 3:359–83
    [Google Scholar]
  63. Kuznetsov V. 2003. The “molar tooth” structure and its relation to bios evolution. Dokl. Earth Sci. 392:947–50
    [Google Scholar]
  64. Lee MR, Hodson ME, Langworthy GN. 2018. Crystallization of calcite from amorphous calcium carbonate: Earthworms show the way. Mineral. Mag. 72:257–61
    [Google Scholar]
  65. Littlewood JL, Shaw S, Peacock CL, Bots P, Trivedi D, Burke IT. 2017. Mechanism of enhanced strontium uptake into calcite via an amorphous calcium carbonate crystallization pathway. Cryst. Growth Des. 17:1214–23
    [Google Scholar]
  66. Long DGF. 2007. Tomographic study of Paleoproterozoic carbonates as key to understanding the formation of molar-tooth structure. Gondwana Res. 12:566–70
    [Google Scholar]
  67. Lyons TW, Anbar AD, Severmann S, Scott C, Gill BC 2009. Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annu. Rev. Earth Planet. Sci. 37:507–34
    [Google Scholar]
  68. Machel HG. 1985. Cathodoluminescence in calcite and dolomite and its chemical interpretation. Geosci. Can. 12:139–47
    [Google Scholar]
  69. Marshall D, Anglin C 2004. CO2-clathrate destabilization: a new model of formation for molar tooth structures. Precambrian Res 129:325–41
    [Google Scholar]
  70. Matsunuma S, Kagi H, Komatsu K, Maruyama K, Yoshino T. 2014. Doping incompatible elements into calcite through amorphous calcium carbonate. Cryst. Growth Des. 14:5344–48
    [Google Scholar]
  71. Mei M, Tucker ME 2011. Molar tooth structure: a contribution from the Mesoproterozoic Gaoyuzhuang Formation, Tianjin City, North China. Acta Geol. Sin. 85:1084–99
    [Google Scholar]
  72. Miller K, Simpson EL, Sherrod L, Wizevich MC, Malenda M et al. 2018. Gas bubble cavities in deltaic muds, Lake Powell delta, Glen Canyon National Recreation Area, Hite, Utah. Mar. Pet. Geol. 92:904–12
    [Google Scholar]
  73. Morse JW, Mackenzie FT. 1990. Geochemistry of Sedimentary Carbonates Amsterdam: Elsevier
    [Google Scholar]
  74. Moussine-Pouchkine A, Bertrand-Sarfati J. 1997. Tectonosedimentary subdivisions in the Neoproterozoic to Early Cambrian cover of the Taoudenni Basin (Algeria-Mauritania-Mali). J. Afr. Earth Sci. 24:425–43
    [Google Scholar]
  75. Nealson KH. 1997. Sediment bacteria: Who's there, what are they doing, and what's new?. Annu. Rev. Earth Planet. Sci. 25:403–34
    [Google Scholar]
  76. O'Connor MP. 1972. Classification and environmental interpretation of the cryptalgal organosedimentary “molar-tooth” structure from the late Precambrian Belt-Purcell Supergroup. J. Geol. 80:592–610
    [Google Scholar]
  77. Petrov PY. 2011. Molar tooth structures: formations and specificity of carbonate diagenesis in the Late Precambrian, Middle Riphean Sukhaya Tunguska Formation of the Turukhansk Uplift, Siberia. Stratigr. Geol. Correl. 19:247–67
    [Google Scholar]
  78. Plummer PS, Gostin VA. 1981. Shrinkage cracks: disiccation or synaeresis?. J. Sediment. Pet. 51:1147–56
    [Google Scholar]
  79. Pollock MD, Kah LC, Bartley JK. 2006. Morphology of molar-tooth structures in Precambrian carbonates: influence of substrate rheology and implications for genesis. J. Sediment. Res. 76:310–23
    [Google Scholar]
  80. Pope MC, Bartley JK, Knoll AH, Petrov PY. 2003. Molar tooth structures in calcareous nodules, early Neoproterozoic Burovaya Formation, Turukhansk region, Siberia. Sediment. Geol. 158:235–48
    [Google Scholar]
  81. Pratt BR 1998. Molar-tooth structure in Proterozoic carbonate rocks: origin from synsedimentary earthquakes, and implications for the nature and evolution of basins and marine sediment. GSA Bull. 110:1028–45
    [Google Scholar]
  82. Pratt BR. 2001. Oceanography, bathymetry and syndepositional tectonics of a Precambrian intracratonic basin: integrating sediments, storms, earthquakes and tsunamis in the Belt Supergroup (Helena Formation, ca. 1.45 Ga), western North America. Sediment. Geol. 141–142:371–94
    [Google Scholar]
  83. Pratt BR. 2002. Storms versus tsunamis: dynamic interplay of sedimentary, diagenetic, and tectonic processes in the Cambrian of Montana. Geology 30:423–26
    [Google Scholar]
  84. Pratt BR 2011. Molar-tooth structure. Encyclopedia of Geobiology J Reitner, V Thiel 662–66 London: Springer
    [Google Scholar]
  85. Present TM, Gomes ML, Trower EJ, Stein NT, Lingappa UF et al. 2021. Non-lithifying microbial ecosystem dissolves peritidal lime sand. Nat. Commun. 12:3037
    [Google Scholar]
  86. Purgstaller B, Goetschl KE, Mavromatis V, Dietzel M 2019. Solubility investigations in the amorphous calcium magnesium carbonate system. Cryst. Eng. Commun. 21:155–64
    [Google Scholar]
  87. Qiao X, Song T, Gao LZ, Peng Y, Li H et al. 1994. Seismic sequence in carbonate rocks by vibrational liquefaction. Acta Geol. Sin. 7:243–65
    [Google Scholar]
  88. Rezak R. 1957. Stromatolites of the Belt Series in Glacier National Park and Vicinity, Montana Washington, DC: US Gov. Print. Off.
    [Google Scholar]
  89. Rimstidt DJ, Balog A, Webb J. 1998. Distribution of trace elements between carbonate minerals and aqueous solutions. Geochim. Cosmochim. Acta 62:1851–63
    [Google Scholar]
  90. Roest-Ellis S, Strauss JV, Tosca NJ 2021. Experimental constraints on nonskeletal CaCO3 precipitation from Proterozoic seawater. Geology 49:561–65
    [Google Scholar]
  91. Ross CP. 1959. Geology of Glacier National Park and the Flathead region, northwestern Montana. Prof. Pap. 296 US Geol. Surv. Washington, DC:
    [Google Scholar]
  92. Rossetti DF. 2000. Molar-tooth carbonate: shallow subtidal facies of the Mid- to Late Proterozoic: discussion. J. Sediment. Res. 70:1246–48
    [Google Scholar]
  93. Rossetti DF, Góes AM. 2000. Deciphering the sedimentological imprint of paleoseismic events: an example from the Aptian Codó Formation, northern Brazil. Sediment. Geol. 135:137–56
    [Google Scholar]
  94. Sami TT, James NP. 1996. Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. J. Sediment. Res. 66:209–22
    [Google Scholar]
  95. Santschi P, Höhener P, Benoit G, Buchholtz-ten Brink M. 1990. Chemical processes at the sediment-water interface. Mar. Chem. 30:269–315
    [Google Scholar]
  96. Savard MM, Veizer J, Hinton R. 1995. Cathodoluminescence at low Fe and Mn concentrations: a SIMS study of zones in natural calcites. J. Sediment. Res. 65:1208–13
    [Google Scholar]
  97. Shen B, Dong L, Xiao S, Lang X, Huang K et al. 2016. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans. Nat. Commun. 7:10317
    [Google Scholar]
  98. Shields GA. 2002.. ‘ Molar-tooth microspar’: a chemical explanation for its disappearance ∼750 Ma. Terra Nova 14:108–13
    [Google Scholar]
  99. Shields-Zhou GA, Hill AC, MacGabhann BA 2012. The Cryogenian period. The Geologic Time Scale FM Gradstein, JG Ogg, MD Schmitz, GM Ogg 393–411 Boston: Elsevier
    [Google Scholar]
  100. Smith AG. 1968. The origin and deformation of some “molar-tooth” structures in the Precambrian Belt-Purcell Supergroup. J. Geol. 76:426–43
    [Google Scholar]
  101. Smith AG. 2016. A review of molar-tooth structures with some speculations on their origin. Geol. Soc. Am. Spec. Pap. 522:71–99
    [Google Scholar]
  102. Soetaert K, Hofmann AF, Middelburg JJ, Meysman FJ, Greenwood J. 2007. Reprint of “The effect of biogeochemical processes on pH. .” Mar. Chem. 106:380–401
    [Google Scholar]
  103. Stagner AF, Bartley JK, Kah LC. 2004. Variation in deformation style of molar-tooth structure during fluidization: Tawaz Formation, Atar Group, Mauritania. Geol. Soc. Am. Abstr. Prog. 36:88
    [Google Scholar]
  104. Stewart EK, Mauk JL. 2017. Sedimentology, sequence-stratigraphy, and geochemical variations in the Mesoproterozoic Nonesuch Formation, northern Wisconsin, USA. Precambrian Res 294:111–32
    [Google Scholar]
  105. Strauss JV, Tosca NJ. 2020. Mineralogical constraints on Neoproterozoic pCO2 and marine carbonate chemistry. Geology 48:599–603
    [Google Scholar]
  106. Sumner DY. 1997. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. Am. J. Sci. 297:455–87
    [Google Scholar]
  107. Sumner DY. 2000. Microbial versus environmental influences on the morphology of Late Archean fenestrate microbialites. Microbial Sediments RE Riding, SM Awramik 307–14 Berlin: Springer
    [Google Scholar]
  108. Sumner DY, Grotzinger JP. 1996. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?. Geology 24:119–22
    [Google Scholar]
  109. Sundby B, Silverberg N. 1985. Manganese fluxes in the benthic boundary layer. Limnol. Oceanogr. 30:372–81
    [Google Scholar]
  110. Tanner P. 1998. Interstratal dewatering origin for polygonal patterns of sand-filled cracks: a case study from late Proterozoic metasediments of Islay, Scotland. Sedimentology 45:71–89
    [Google Scholar]
  111. Thamdrup B, Fossing H, Jørgensen BB. 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 23:5115–29
    [Google Scholar]
  112. Tosca NJ, Macdonald FA, Strauss JV, Johnston DT, Knoll AH. 2011. Sedimentary talc in Neoproterozoic carbonate successions. Earth Planet. Sci. Lett. 306:11–22
    [Google Scholar]
  113. Walter LM, Bischof SA, Patterson WP, Lyons TW. 1993. Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry. Philos. Trans. R. Soc. A 344:27–36
    [Google Scholar]
  114. Warren JK, Kendall CGSC. 1985. Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings—modern and ancient. AAPG Bull. 69:1013–23
    [Google Scholar]
  115. Winston D, Rittel JF, Furniss G. 1999. Gas bubble and expansion crack origin of molar-tooth calcite structures in the Middle Proterozoic Belt Supergroup, western Montana—reply. J. Sediment. Res. 69:1140–45
    [Google Scholar]
  116. Wu H, Wang G, Ding X, Wang H 2020. Geochemistry of the Neoproterozoic molar tooth carbonate in the Benxi Area, North China Craton: the paleo-ocean environment. J. Coast. Res. 115:446–50
    [Google Scholar]
  117. Young G, Jefferson C. 1975. Late Precambrian shallow water deposits, Banks and Victoria Islands, Arctic Archipelago. Can. J. Earth Sci. 12:1734–48
    [Google Scholar]
  118. Young G, Long D 1977. Carbonate sedimentation in a late Precambrian shelf sea, Victoria Island, Canadian Arctic Archipelago. J. Sediment. Res. 47:943–55
    [Google Scholar]
  119. Zhou Y, Pogge von Strandmann PAE, Zhu M, Ling H, Manning C et al. 2020. Reconstructing Tonian seawater 87Sr/86Sr using calcite microspar. Geology 48:462–67
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-080804
Loading
/content/journals/10.1146/annurev-earth-031621-080804
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error