1932

Abstract

The Paris Agreement calls for emissions reductions to limit climate change, but how will the carbon cycle change if it is successful? The land and oceans currently absorb roughly half of anthropogenic emissions, but this fraction will decline in the future. The amount of carbon that can be released before climate is mitigated depends on the amount of carbon the ocean and terrestrial ecosystems can absorb. Policy is based on model projections, but observations and theory suggest that climate effects emerging in today's climate will increase and carbon cycle tipping points may be crossed. Warming temperatures, drought, and a slowing growth rate of CO itself will reduce land and ocean sinks and create new sources, making carbon sequestration in forests, soils, and other land and aquatic vegetation more difficult. Observations, data-assimilative models, and prediction systems are needed for managing ongoing long-term changes to land and ocean systems after achieving net-zero emissions.

  • ▪  International agreements call for stabilizing climate at 1.5° above preindustrial, while the world is already seeing damaging extremes below that.
  • ▪  If climate is stabilized near the 1.5° target, the driving force for most sinks will slow, while feedbacks from the warmer climate will continue to cause sources.
  • ▪  Once emissions are reduced to net zero, carbon cycle-climate feedbacks will require observations to support ongoing active management to maintain storage.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-081700
2024-07-23
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-031621-081700.html?itemId=/content/journals/10.1146/annurev-earth-031621-081700&mimeType=html&fmt=ahah

Literature Cited

  1. Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, et al. 2005.. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. . PNAS 102:(31):1082327
    [Crossref] [Google Scholar]
  2. Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, et al. 2013.. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. . J. Clim. 26:(15):5289314
    [Crossref] [Google Scholar]
  3. Arora VK, Katavouta A, Williams RG, Jones CD, Brovkin V, et al. 2020.. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. . Biogeosciences 17:(16):4173222
    [Crossref] [Google Scholar]
  4. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, et al. 2001.. Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. . Bull. Am. Meteorol. Soc. 82:(11):241534
    [Crossref] [Google Scholar]
  5. Barkhordarian A, Bowman KW, Cressie N, Jewell J, Liu J. 2021.. Emergent constraints on tropical atmospheric aridity—carbon feedbacks and the future of carbon sequestration. . Environ. Res. Lett. 16:(11):114008
    [Crossref] [Google Scholar]
  6. Bossio DA, Cook-Patton SC, Ellis PW, Fargione J, Sanderman J, et al. 2020.. The role of soil carbon in natural climate solutions. . Nat. Sustain. 3:(5):39198
    [Crossref] [Google Scholar]
  7. Bowman KW, Liu J, Bloom AA, Parazoo NC, Lee M, et al. 2017.. Global and Brazilian carbon response to El Niño Modoki 2011–2010. . Earth Space Sci. 4::63760
    [Crossref] [Google Scholar]
  8. Brown PJ, McDonagh EL, Sanders R, Watson AJ, Wanninkhof R, et al. 2021.. Circulation-driven variability of Atlantic anthropogenic carbon transports and uptake. . Nat. Geosci. 14:(8):57177
    [Crossref] [Google Scholar]
  9. Bushinsky SM, Landschützer P, Rödenbeck C, Gray AR, Baker D, et al. 2019.. Reassessing Southern Ocean air-sea CO2 flux estimates with the addition of biogeochemical float observations. . Glob. Biogeochem. Cycles 33:(11):137088
    [Crossref] [Google Scholar]
  10. Caldeira K, Kasting JF. 1993.. Insensitivity of global warming potentials to carbon dioxide emission scenarios. . Nature 366:(6452):25153
    [Crossref] [Google Scholar]
  11. Canadell JG, Ciais P, Gurney K, Le Quéré C, Piao S, et al. 2011.. An international effort to quantify regional carbon fluxes. . Eos 92:(10):8182
    [Crossref] [Google Scholar]
  12. Carroll D, Menemenlis D, Adkins JF, Bowman KW, Brix H, et al. 2020.. The ECCO-Darwin data-assimilative global ocean biogeochemistry model: estimates of seasonal to multidecadal surface ocean pCO2 and air-sea CO2 flux. . J. Adv. Model. Earth Syst. 12:(10):e2019MS001888
    [Crossref] [Google Scholar]
  13. Carroll D, Menemenlis D, Dutkiewicz S, Lauderdale JM, Adkins JF, et al. 2022.. Attribution of space-time variability in global-ocean dissolved inorganic carbon. . Glob. Biogeochem. Cycles 36:(3):e2021GB007162
    [Crossref] [Google Scholar]
  14. Chatterjee A, Gierach MM, Sutton AJ, Feely RA, Crisp D, et al. 2017.. Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: findings from NASA's OCO-2 mission. . Science 358:(6360):eaam5776
    [Crossref] [Google Scholar]
  15. Chen M, Vernon CR, Graham NT, Hejazi M, Huang M, et al. 2020.. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. . Sci. Data 7:(1):320
    [Crossref] [Google Scholar]
  16. Collier N, Hoffman FM, Lawrence DM, Keppel-Aleks G, Koven CD, et al. 2018.. The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. . J. Adv. Model. Earth Syst. 10:(11):273154
    [Crossref] [Google Scholar]
  17. Cox PM. 2019.. Emergent constraints on climate-carbon cycle feedbacks. . Curr. Clim. Change Rep. 5:(4):27581
    [Crossref] [Google Scholar]
  18. Cox PM, Huntingford C, Williamson MS. 2018.. Emergent constraint on equilibrium climate sensitivity from global temperature variability. . Nature 553:(7688):31922
    [Crossref] [Google Scholar]
  19. Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, et al. 2013.. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. . Nature 494:(7437):34144
    [Crossref] [Google Scholar]
  20. Crisp D, Dolman H, Tanhua T, McKinley GA, Hauck J, et al. 2022.. How well do we understand the land-ocean-atmosphere carbon cycle?. Rev. Geophys. 60:(2):e2021RG000736
    [Crossref] [Google Scholar]
  21. Deser C, Lehner F, Rodgers KB, Ault T, Delworth TL, et al. 2020.. Insights from Earth system model initial-condition large ensembles and future prospects. . Nat. Clim. Change 10:(4):27786
    [Crossref] [Google Scholar]
  22. Deser C, Phillips A, Bourdette V, Teng H. 2012.. Uncertainty in climate change projections: the role of internal variability. . Clim. Dyn. 38:(3–4):52746
    [Crossref] [Google Scholar]
  23. Doney SC, Schimel DS. 2007.. Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. . Annu. Rev. Environ. Resourc. 32::3166
    [Crossref] [Google Scholar]
  24. Duffy KA, Schwalm CR, Arcus VL, Koch GW, Liang LL, Schipper LA. 2021.. How close are we to the temperature tipping point of the terrestrial biosphere?. Sci. Adv. 7:(3):eaay1052
    [Crossref] [Google Scholar]
  25. Enting IG, Wigley T, Heimann M. 1994.. Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land Analyses, Vol. 31. Canberra, Aust.:: CSIRO Aust.
    [Google Scholar]
  26. Fassbender AJ, Sabine CL, Palevsky HI. 2017.. Nonuniform ocean acidification and attenuation of the ocean carbon sink. . Geophys. Res. Lett. 44:(16):840413
    [Crossref] [Google Scholar]
  27. Fox AM, Hoar TJ, Anderson JL, Arellano AF, Smith WK, et al. 2018.. Evaluation of a data assimilation system for land surface models using CLM4.5. . J. Adv. Model. Earth Syst. 10:(10):247194
    [Crossref] [Google Scholar]
  28. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, et al. 2006.. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. . J. Clim. 19:(14):333753
    [Crossref] [Google Scholar]
  29. Friedlingstein P, Jones MW, O'Sullivan M, Andrew RM, Bakker DCE, et al. 2022.. Global carbon budget 2021. . Earth Syst. Sci. Data 14:(4):19172005
    [Crossref] [Google Scholar]
  30. Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, et al. 2014.. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. . J. Clim. 27:(2):51126
    [Crossref] [Google Scholar]
  31. Gatti LV, Basso LS, Miller JB, Gloor M, Gatti Domingues L, et al. 2021.. Amazonia as a carbon source linked to deforestation and climate change. . Nature 595:(7867):38893
    [Crossref] [Google Scholar]
  32. Ghil M, Malanotte-Rizzoli P. 1991.. Data assimilation in meteorology and oceanography. . Adv. Geophys. 33::141266
    [Crossref] [Google Scholar]
  33. Gray AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL, et al. 2018.. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. . Geophys. Res. Lett. 45:(17):904957
    [Crossref] [Google Scholar]
  34. Gruber N, Bakker DCE, DeVries T, Gregor L, Hauck J, et al. 2023.. Trends and variability in the ocean carbon sink. . Nat. Rev. Earth Environ. 4:(2):11934
    [Crossref] [Google Scholar]
  35. Gruber N, Landschützer P, Lovenduski NS. 2019.. The variable Southern Ocean carbon sink. . Annu. Rev. Mar. Sci. 11::15986
    [Crossref] [Google Scholar]
  36. Halloran PR, Booth BBB, Jones CD, Lambert FH, McNeall DJ, et al. 2015.. The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble. . Biogeosciences 12:(14):4497508
    [Crossref] [Google Scholar]
  37. Hu J, Moore DJP, Burns SP, Monson RK. 2010.. Longer growing seasons lead to less carbon sequestration by a subalpine forest. . Glob. Change Biol. 16:(2):77183
    [Crossref] [Google Scholar]
  38. IPCC (Intergov. Panel Clim. Change). 1995.. IPCC Second Assessment: Climate Change 1995. Geneva:: IPCC
    [Google Scholar]
  39. IPCC (Intergov. Panel Clim. Change). 2013.. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  40. IPCC (Intergov. Panel Clim. Change). 2021.. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  41. Iudicone D, Rodgers KB, Plancherel Y, Aumont O, Ito T, et al. 2016.. The formation of the ocean's anthropogenic carbon reservoir. . Sci. Rep. 6:(1):35473
    [Crossref] [Google Scholar]
  42. Jeong SJ, Bloom AA, Schimel D, Sweeney C, Parazoo NC, et al. 2018.. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. . Sci. Adv. 4:(7):eaao1167
    [Crossref] [Google Scholar]
  43. Jones CD, Friedlingstein P. 2020.. Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets. . Environ. Res. Lett. 15:(7):074019
    [Crossref] [Google Scholar]
  44. Joos F, Bruno M, Fink R, Siegenthaler U, Stocker TF, et al. 1996.. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. . Tellus B 48:(3):394417
    [Crossref] [Google Scholar]
  45. Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, et al. 2011.. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. . J. Geophys. Res. 116:(G3):G00J07
    [Google Scholar]
  46. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, et al. 2005.. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. . Ecol. Stud. 177::83113
    [Crossref] [Google Scholar]
  47. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, et al. 2013.. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. . Nature 499:(7458):32427
    [Crossref] [Google Scholar]
  48. Kolby Smith W, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WRL, et al. 2016.. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. . Nat. Clim. Change 6:(3):30610
    [Crossref] [Google Scholar]
  49. Körner C, Morgan J, Norby R, Pataki DE, Pitelka LF. 2007.. CO2 Fertilization: When, Where, How Much? Berlin:: Springer
    [Google Scholar]
  50. Kwon EY, Primeau F, Sarmiento JL. 2009.. The impact of remineralization depth on the air–sea carbon balance. . Nat. Geosci. 2:(9):63035
    [Crossref] [Google Scholar]
  51. Landschützer P, Gruber N, Bakker DCE, Schuster U, Nakaoka S, et al. 2013.. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. . Biogeosciences 10:(11):7793815
    [Crossref] [Google Scholar]
  52. Liu J, Baskaran L, Bowman K, Schimel D, Bloom AA, et al. 2021.. Carbon monitoring system flux net biosphere exchange 2020 (CMS-flux NBE 2020). . Earth Syst. Sci. Data 13:(2):299330
    [Crossref] [Google Scholar]
  53. Liu J, Bowman KW, Schimel DS, Parazoo NC, Jiang Z, et al. 2017.. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. . Science 358:(6360):eaam5690
    [Crossref] [Google Scholar]
  54. Long MC, Stephens BB, McKain K, Sweeney C, Keeling RF, et al. 2021.. Strong Southern Ocean carbon uptake evident in airborne observations. . Science 374:(6572):127580
    [Crossref] [Google Scholar]
  55. Lovenduski NS, Bonan GB. 2017.. Reducing uncertainty in projections of terrestrial carbon uptake. . Environ. Res. Lett. 12:(4):044020
    [Crossref] [Google Scholar]
  56. Lovenduski NS, Chatterjee A, Swart NC, Fyfe JC, Keeling RF, Schimel D. 2021.. On the detection of COVID-driven changes in atmospheric carbon dioxide. . Geophys. Res. Lett. 48:(22):e2021GL095396
    [Crossref] [Google Scholar]
  57. Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, et al. 2008.. Old-growth forests as global carbon sinks. . Nature 455:(7210):21315
    [Crossref] [Google Scholar]
  58. Matthews HD, Tokarska KB, Nicholls ZRJ, Rogelj J, Canadell JG, et al. 2020.. Opportunities and challenges in using remaining carbon budgets to guide climate policy. . Nat. Geosci. 13:(12):76979
    [Crossref] [Google Scholar]
  59. McKinley GA, Fay AR, Eddebbar YA, Gloege L, Lovenduski NS. 2020.. External forcing explains recent decadal variability of the ocean carbon sink. . AGU Adv. 1:(2):e2019AV000149
    [Crossref] [Google Scholar]
  60. McKinley GA, Fay AR, Lovenduski NS, Pilcher DJ. 2017.. Natural variability and anthropogenic trends in the ocean carbon sink. . Annu. Rev. Mar. Sci. 9::12550
    [Crossref] [Google Scholar]
  61. McKinley GA, Follows MJ, Marshall J. 2004.. Mechanisms of air-sea CO2 flux variability in the equatorial Pacific and the North Atlantic. . Glob. Biogeochem. Cycles 18:(2):GB2011
    [Crossref] [Google Scholar]
  62. McKinley GA, Pilcher DJ, Fay AR, Lindsay K, Long MC, Lovenduski NS. 2016.. Timescales for detection of trends in the ocean carbon sink. . Nature 530:(7591):46972
    [Crossref] [Google Scholar]
  63. Meinshausen M, Raper SCB, Wigley TML. 2011.. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. . Atmos. Chem. Phys. 11:(4):141756
    [Crossref] [Google Scholar]
  64. Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, et al. 2017.. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. . Science 358:(6359):1015
    [Crossref] [Google Scholar]
  65. Middelburg JJ, Soetaert K, Hagens M. 2020.. Ocean alkalinity, buffering and biogeochemical processes. . Rev. Geophys. 58:(3):e2019RG000681
    [Crossref] [Google Scholar]
  66. Miner KR, Turetsky MR, Malina E, Bartsch A, Tamminen J, et al. 2022.. Permafrost carbon emissions in a changing Arctic. . Nat. Rev. Earth Environ. 3:(1):5567
    [Crossref] [Google Scholar]
  67. Nicholls ZRJ, Meinshausen M, Lewis J, Gieseke R, Dommenget D, et al. 2020.. Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response. . Geosci. Model Dev. 13:(11):517590
    [Crossref] [Google Scholar]
  68. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, et al. 2011.. A large and persistent carbon sink in the world's forests. . Science 333:(6045):98893
    [Crossref] [Google Scholar]
  69. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, et al. 2014.. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. . Nature 509:(7502):6003
    [Crossref] [Google Scholar]
  70. Randerson JT, Lindsay K, Munoz E, Fu W, Moore JK, et al. 2015.. Multicentury changes in ocean and land contributions to the climate-carbon feedback. . Glob. Biogeochem. Cycles 29:(6):74459
    [Crossref] [Google Scholar]
  71. Raupach MR, Gloor M, Sarmiento JL, Canadell JG, Frolicher TL, et al. 2014.. The declining uptake rate of atmospheric CO2 by land and ocean sinks. . Biogeosciences 11:(13):345375
    [Crossref] [Google Scholar]
  72. Rayner PJ, Law RM, Dargaville R. 1999.. The relationship between tropical CO2 fluxes and the El Niño-Southern Oscillation. . Geophys. Res. Lett. 26:(4):49396
    [Crossref] [Google Scholar]
  73. Resplandy L, Séférian R, Bopp L. 2015.. Natural variability of CO2 and O2 fluxes: What can we learn from centuries-long climate models simulations?. J. Geophys. Res. Oceans 120:(1):384404
    [Crossref] [Google Scholar]
  74. Ridge SM, McKinley GA. 2021.. Ocean carbon uptake under aggressive emission mitigation. . Biogeosciences 18:(8):271125
    [Crossref] [Google Scholar]
  75. Riser S, Freeland HJ, Roemmich D, Wijffels S, Troisi A, et al. 2016.. Fifteen years of ocean observations with the global Argo array. . Nat. Clim. Change 6::14553
    [Crossref] [Google Scholar]
  76. Rödenbeck C, Bakker DCE, Gruber N, Iida Y, Jacobson AR, et al. 2015.. Data-based estimates of the ocean carbon sink variability—first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). . Biogeosciences 12:(23):725178
    [Crossref] [Google Scholar]
  77. Rödenbeck C, Keeling RF, Bakker DCE, Metzl N, Olsen A, et al. 2013.. Global surface-ocean pCO2 and sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. . Ocean Sci. 9:(2):193216
    [Crossref] [Google Scholar]
  78. Rodgers KB, Schlunegger S, Slater RD, Ishii M, Frölicher TL, et al. 2020.. Reemergence of anthropogenic carbon into the ocean's mixed layer strongly amplifies transient climate sensitivity. . Geophys. Res. Lett. 47:(18):e2020GL089275
    [Crossref] [Google Scholar]
  79. Rogelj J, Forster PM, Kriegler E, Smith CJ, Séférian R. 2019.. Estimating and tracking the remaining carbon budget for stringent climate targets. . Nature 571:(7765):33542
    [Crossref] [Google Scholar]
  80. Rogelj J, McCollum DL, O'Neill BC, Riahi K. 2013.. 2020 emissions levels required to limit warming to below 2°C. . Nat. Clim. Change 3:(4):40512
    [Crossref] [Google Scholar]
  81. Saatchi S, Asefi-Najafabady S, Malhi Y, Aragão LEOC, Anderson LO, et al. 2013.. Persistent effects of a severe drought on Amazonian forest canopy. . PNAS 110:(2):56570
    [Crossref] [Google Scholar]
  82. Sarmiento JL, Gruber N. 2002.. Sinks for anthropogenic carbon. . Phys. Today 55:(8):3036
    [Crossref] [Google Scholar]
  83. Schimel D, Baker D. 2002.. The wildfire factor. . Nature 420:(6911):2930
    [Crossref] [Google Scholar]
  84. Schimel D, Schneider FD, JPL Carbon & Ecosyst. Particip. 2019.. Flux towers in the sky: global ecology from space. . New Phytol. 224:(2):57084
    [Crossref] [Google Scholar]
  85. Schimel D, Stephens BB, Fisher JB. 2015.. Effect of increasing CO2 on the terrestrial carbon cycle. . PNAS 112:(2):43641
    [Crossref] [Google Scholar]
  86. Schimel DS. 1995.. Terrestrial ecosystems and the carbon cycle. . Glob. Change Biol. 1:(1):7791
    [Crossref] [Google Scholar]
  87. Schlunegger S, Rodgers KB, Sarmiento JL, Frölicher TL, Dunne JP, et al. 2019.. Emergence of anthropogenic signals in the ocean carbon cycle. . Nat. Clim. Change 9:(9):71925
    [Crossref] [Google Scholar]
  88. Schlunegger S, Rodgers KB, Sarmiento JL, Ilyina T, Dunne JP, et al. 2020.. Time of emergence and large ensemble intercomparison for ocean biogeochemical trends. . Glob. Biogeochem. Cycles 34:(8):e2019GB006453
    [Crossref] [Google Scholar]
  89. Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, et al. 2015.. Climate change and the permafrost carbon feedback. . Nature 520:(7546):17179
    [Crossref] [Google Scholar]
  90. Schwinger J, Tjiputra J. 2018.. Ocean carbon cycle feedbacks under negative emissions. . Geophys. Res. Lett. 45:(10):506270
    [Crossref] [Google Scholar]
  91. Sellers PJ, Schimel DS, Moore B, Liu J, Eldering A. 2018.. Observing carbon cycle–climate feedbacks from space. . PNAS 115:(31):786068
    [Crossref] [Google Scholar]
  92. Shi Z, Hoffman F, Xu M, Mishra U, Allison S, et al. 2023.. Uncertain predictions of soil carbon change during the 21st century. . Research Square. https://doi.org/10.21203/rs.3.rs-2973284/v1
    [Google Scholar]
  93. Sun W, Luo X, Fang Y, Shiga YP, Zhang Y, et al. 2023.. Biome-scale temperature sensitivity of ecosystem respiration revealed by atmospheric CO2 observations. . Nat. Ecol. Evol. 7::1199210
    [Crossref] [Google Scholar]
  94. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, et al. 2002.. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. . Deep Sea Res. Part II 49:(9):160122
    [Crossref] [Google Scholar]
  95. Talley LD, Rosso I, Kamenkovich I, Mazloff MR, Wang J, et al. 2019.. Southern Ocean biogeochemical float deployment strategy, with example from the Greenwich Meridian Line (GO-SHIP A12). . J. Geophys. Res. Oceans 124:(1):40331
    [Crossref] [Google Scholar]
  96. Tans PP, Fung IY, Takahashi T. 1990.. Observational contraints on the global atmospheric CO2 budget. . Science 247:(4949):143138
    [Crossref] [Google Scholar]
  97. Taylor JA, Lloyd J. 1992.. Sources and sinks of atmospheric CO2. . Aust. J. Bot. 40:(5):40718
    [Crossref] [Google Scholar]
  98. Thompson MV, Randerson JT, Malmström CM, Field CB. 1996.. Change in net primary production and heterotrophic respiration: How much is necessary to sustain the terrestrial carbon sink?. Glob. Biogeochem. Cycles 10:(4):71126
    [Crossref] [Google Scholar]
  99. Varney RM, Chadburn SE, Burke EJ, Cox PM. 2022.. Evaluation of soil carbon simulation in CMIP6 Earth system models. . Biogeosciences 19:(19):4671704
    [Crossref] [Google Scholar]
  100. Wang JA, Friedl MA. 2019.. The role of land cover change in Arctic-Boreal greening and browning trends. . Environ. Res. Lett. 14:(12):125007
    [Crossref] [Google Scholar]
  101. Wang S, Zhang Y, Ju W, Chen JM, Ciais P, et al. 2020.. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. . Science 370:(6522):1295300
    [Crossref] [Google Scholar]
  102. Wang YP, Trudinger CM, Enting IG. 2009.. A review of applications of model–data fusion to studies of terrestrial carbon fluxes at different scales. . Agric. Forest Meteorol. 149:(11):182942
    [Crossref] [Google Scholar]
  103. Wanninkhof R, Park GH, Takahashi T, Sweeney C, Feely R, et al. 2013.. Global ocean carbon uptake: magnitude, variability and trends. . Biogeosciences 10:(3):19832000
    [Crossref] [Google Scholar]
  104. Wigley TML, Richels R, Edmonds JA. 1996.. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. . Nature 379:(6562):24043
    [Crossref] [Google Scholar]
  105. Woodwell GM, MacKenzie FT, Houghton RA, Apps MJ, Gorham E, et al. 1995.. Will the warming speed the warming?. In Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming?, ed. GM Woodwell, FT MacKenzie , pp. 393411. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  106. Wunderling N, Staal A, Sakschewski B, Hirota M, Tuinenburg OA, et al. 2022.. Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. . PNAS 119:(32):e2120777119
    [Crossref] [Google Scholar]
  107. Xu L, Saatchi SS, Yang Y, Yu Y, Pongratz J, et al. 2021.. Changes in global terrestrial live biomass over the 21st century. . Sci. Adv. 7:(27):eabe9829
    [Crossref] [Google Scholar]
  108. Yun J, Jeong S, Gruber N, Gregor L, Ho CH, et al. 2022.. Enhance seasonal amplitude of atmospheric CO2 by the changing Southern Ocean carbon sink. . Sci. Adv. 8:(41):eabq0220
    [Crossref] [Google Scholar]
  109. Zeebe RE, Wolf-Gladrow D. 2001.. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Amsterdam:: Elsevier
    [Google Scholar]
  110. Zhang Z, Cescatti A, Wang YP, Gentine P, Xiao J, et al. 2023.. Large diurnal compensatory effects mitigate the response of Amazonian forests to atmospheric warming and drying. . Sci. Adv. 9:(21):eabq4974
    [Crossref] [Google Scholar]
  111. Zickfeld K, MacDougall AH, Matthews HD. 2016.. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. . Environ. Res. Lett. 11:(5):055006
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-081700
Loading
/content/journals/10.1146/annurev-earth-031621-081700
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error