1932

Abstract

Future sea-level rise poses an existential threat for many river deltas, yet quantifying the effect of sea-level changes on these coastal landforms remains a challenge. Sea-level changes have been slow compared to other coastal processes during the instrumental record, such that our knowledge comes primarily from models, experiments, and the geologic record. Here we review the current state of science on river delta response to sea-level change, including models and observations from the Holocene until 2300 CE. We report on improvements in the detection and modeling of past and future regional sea-level change, including a better understanding of the underlying processes and sources of uncertainty. We also see significant improvements in morphodynamic delta models. Still, substantial uncertainties remain, notably on present and future subsidence rates in and near deltas. Observations of delta submergence and land loss due to modern sea-level rise also remain elusive, posing major challenges to model validation.

  • ▪  There are large differences in the initiation time and subsequent delta progradation during the Holocene, likely from different sea-level and sediment supply histories.
  • ▪  Modern deltas are larger and will face faster sea-level rise than during their Holocene growth, making them susceptible to forced transgression.
  • ▪  Regional sea-level projections have been much improved in the past decade and now also isolate dominant sources of uncertainty, such as the Antarctic ice sheet.
  • ▪  Vertical land motion in deltas can be the dominant source of relative sea-level change and the dominant source of uncertainty; limited observations complicate projections.
  • ▪  River deltas globally might lose 5% (∼35,000 km2) of their surface area by 2100 and 50% by 2300 due to relative sea-level rise under a high-emission scenario.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-093732
2023-05-31
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-093732.html?itemId=/content/journals/10.1146/annurev-earth-031621-093732&mimeType=html&fmt=ahah

Literature Cited

  1. Abidin HZ, Andreas H, Gumilar I, Fukuda Y, Pohan YE, Deguchi T. 2011.. Land subsidence of Jakarta (Indonesia) and its relation with urban development. . Nat. Hazards 59:(3):175371
    [Google Scholar]
  2. Allison M, Yuill B, Törnqvist T, Amelung F, Dixon T, et al. 2016.. Global risks and research priorities for coastal subsidence. . Eos 97:(19):2227
    [Google Scholar]
  3. Allison MA, Kuehl SA, Martin TC, Hassan A. 1998.. Importance of flood-plain sedimentation for river sediment budgets and terrigenous input to the oceans: insights from the Brahmaputra-Jamuna River. . Geology 26:(2):17578
    [Google Scholar]
  4. Amorosi A, Barbieri G, Bruno L, Campo B, Drexler TM, et al. 2019.. Three-fold nature of coastal progradation during the Holocene eustatic highstand, Po Plain, Italy—close correspondence of stratal character with distribution patterns. . Sedimentology 66:(7):302952
    [Google Scholar]
  5. Amorosi A, Maselli V, Trincardi F. 2016.. Onshore to offshore anatomy of a late Quaternary source-to-sink system (Po Plain‒Adriatic Sea, Italy). . Earth-Sci. Rev. 153::21237
    [Google Scholar]
  6. Anderson JB, Rodriguez AB, Milliken KT, Taviani M. 2008.. The Holocene evolution of the Galveston estuary complex, Texas: evidence for rapid change in estuarine environments. . GSA Spec. Pap. 443::89104
    [Google Scholar]
  7. Bakr M. 2015.. Influence of groundwater management on land subsidence in deltas. . Water Resour. Manag. 29:(5):154155
    [Google Scholar]
  8. Bamber JL, Oppenheimer M, Kopp RE, Aspinall WP, Cooke RM. 2019.. Ice sheet contributions to future sea-level rise from structured expert judgment. . PNAS 116:(23):11195200
    [Google Scholar]
  9. Berendsen HJA, Stouthamer E. 2000.. Late Weichselian and Holocene palaeogeography of the Rhine–Meuse delta, the Netherlands. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 161:(3–4):31135
    [Google Scholar]
  10. Bhattacharya JP. 2006.. Deltas. . In Facies Models Revisited, ed. HW Posamentier, RG Walker , pp. 23792 Tulsa, OK:: SEPM
    [Google Scholar]
  11. Bianchi TS. 2016.. Deltas and Humans. Oxford, UK:: Oxford Univ. Press, 1st ed.
    [Google Scholar]
  12. Bianchi TS, Allison MA. 2009.. Large-river delta-front estuaries as natural “recorders” of global environmental change. . PNAS 106:(20):808592
    [Google Scholar]
  13. Bijlsma L, Ehler C, Klein R, Kulshrestha S, McLean R, et al. 1995.. Coastal zones and small islands. . In Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, ed. RT Watson, MC Zinyowera, RH Moss , pp. 289324 Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  14. Blum MD, Martin J, Milliken K, Garvin M. 2013.. Paleovalley systems: insights from Quaternary analogs and experiments. . Earth-Sci. Rev. 116::12869
    [Google Scholar]
  15. Blum MD, Price DM. 1998.. Quaternary alluvial plain construction in response to glacio-eustatic and climatic controls, Texas Gulf Coastal Plain. . SEPM Spec. Publ. 59::3148
    [Google Scholar]
  16. Blum MD, Roberts HH. 2009.. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. . Nat. Geosci. 2:(7):48891
    [Google Scholar]
  17. Blum MD, Roberts HH. 2012.. The Mississippi delta region: past, present, and future. . Annu. Rev. Earth Planet. Sci. 40::65583
    [Google Scholar]
  18. Blum MD, Törnqvist TE. 2000.. Fluvial responses to climate and sea-level change: a review and look forward. . Sedimentology 47:(Suppl. 1):248
    [Google Scholar]
  19. Boyd R, Dalrymple R, Zaitlin BA. 1992.. Classification of clastic coastal depositional environments. . Sediment. Geol. 80:(3–4):13950
    [Google Scholar]
  20. Brooke S, Chadwick AJ, Silvestre J, Lamb MP, Edmonds DA, Ganti V. 2022.. Where rivers jump course. . Science 376:(6596):98790
    [Google Scholar]
  21. Bryant M, Falk P, Paola C. 1995.. Experimental study of avulsion frequency and rate of deposition. . Geology 23::36568
    [Google Scholar]
  22. Caldwell RL, Edmonds DA, Baumgardner S, Paola C, Roy S, Nienhuis JH. 2019.. A global delta dataset and the environmental variables that predict delta formation on marine coastlines. . Earth Surf. Dyn. 7::77387
    [Google Scholar]
  23. Carlson AE, Clark PU. 2012.. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. . Rev. Geophys. 50::RG4007
    [Google Scholar]
  24. Cazenave A, Gouzenes Y, Birol F, Leger F, Passaro M, et al. 2022.. Sea level along the world's coastlines can be measured by a network of virtual altimetry stations. . Commun. Earth Environ. 3::117
    [Google Scholar]
  25. Cazenave A, Meyssignac B, Ablain M, Balmaseda M, Bamber J, et al. 2018.. Global sea-level budget 1993–present. . Earth Syst. Sci. Data 10::155190
    [Google Scholar]
  26. Chadwick AJ, Lamb MP, Ganti V. 2020.. Accelerated river avulsion frequency on lowland deltas due to sea-level rise. . PNAS 117:(30):1758490
    [Google Scholar]
  27. Chamberlain EL, Shen Z, Kim W, McKinley S, Anderson S, Törnqvist TE. 2021.. Does load-induced shallow subsidence inhibit delta growth?. J. Geophys. Res. Earth Surf. 126:(11):e2021JF006153
    [Google Scholar]
  28. Chatanantavet P, Lamb MP, Nittrouer JA. 2012.. Backwater controls of avulsion location on deltas. . Geophys. Res. Lett. 39:(1):L01402
    [Google Scholar]
  29. Clark JA, Farrell WE, Peltier WR. 1978.. Global changes in postglacial sea level: a numerical calculation. . Quat. Res. 9:(3):26587
    [Google Scholar]
  30. Cooper JAG, Masselink G, Coco G, Short AD, Castelle B, et al. 2020.. Sandy beaches can survive sea-level rise. . Nat. Clim. Change 10:(11):99395
    [Google Scholar]
  31. Cox JR, Paauw M, Nienhuis JH, Dunn FE, van der Deijl E, et al. 2022.. A global synthesis of the effectiveness of sedimentation-enhancing strategies for river deltas and estuaries. . Glob. Planet. Change 214::103796
    [Google Scholar]
  32. Dalca AV, Ferrier KL, Mitrovica JX, Perron JT, Milne GA, Creveling JR. 2013.. On postglacial sea level—III. Incorporating sediment redistribution. . Geophys. J. Int. 194:(1):4560
    [Google Scholar]
  33. Dalton AS, Margold M, Stokes CR, Tarasov L, Dyke AS, et al. 2020.. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. . Quat. Sci. Rev. 234::106223
    [Google Scholar]
  34. Dangendorf S, Hay C, Calafat FM, Marcos M, Piecuch CG. 2019.. Persistent acceleration in global sea-level rise since the 1960s. . Nat. Clim. Change 9::70510
    [Google Scholar]
  35. de Bruijn JA, de Moel H, Jongman B, de Ruiter MC, Wagemaker J, Aerts JCJH. 2019.. A global database of historic and real-time flood events based on social media. . Sci. Data 6:(1):311
    [Google Scholar]
  36. Dethier EN, Renshaw CE, Magilligan FJ. 2022.. Rapid changes to global river suspended sediment flux by humans. . Science 376:(6600):144752
    [Google Scholar]
  37. Dunn FE, Minderhoud PSJ. 2022.. Sedimentation strategies provide effective but limited mitigation of relative sea-level rise in the Mekong delta. . Commun. Earth Environ. 3:(1):2
    [Google Scholar]
  38. Duong NT, Lieu NTH, Cuc NTT, Saito Y, Huong NTM, et al. 2020.. Holocene paleoshoreline changes of the Red River Delta, Vietnam. . Rev. Palaeobot. Palynol. 278::104235
    [Google Scholar]
  39. Edmonds DA, Caldwell RL, Brondizio ES, Siani SMO. 2020.. Coastal flooding will disproportionately impact people on river deltas. . Nat. Commun. 11:(1):4741
    [Google Scholar]
  40. Erban LE, Gorelick SM, Zebker HA. 2014.. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. . Environ. Res. Lett. 9:(8):084010
    [Google Scholar]
  41. Ericson JP, Vörösmarty CJ, Dingman SL, Ward LG, Meybeck M. 2006.. Effective sea-level rise and deltas: causes of change and human dimension implications. . Glob. Planet. Change 50::6382
    [Google Scholar]
  42. Esposito CR, Shen Z, Törnqvist TE, Marshak J, White C. 2017.. Efficient retention of mud drives land building on the Mississippi Delta plain. . Earth Surf. Dyn. 5:(3):38797
    [Google Scholar]
  43. Fisk HN, McFarlan E. 1955.. Late Quaternary deltaic deposits of the Mississippi River (local sedimentation and basin tectonics). . GSA Spec. Pap. 62::279302
    [Google Scholar]
  44. Fleming K, Johnston P, Zwartz D, Yokoyama Y, Lambeck K, Chappell J. 1998.. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. . Earth Planet. Sci. Lett. 163::32742
    [Google Scholar]
  45. Fox-Kemper B, Hewitt HT, Xiao C, Aðalgeirsdóttir G, Drijfhout SS, et al. 2021.. Ocean, cryosphere and sea level change. . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al. , pp. 1211362 New York:: Cambridge Univ. Press
    [Google Scholar]
  46. Fu L, Alsdorf D, Morrow R, Rodriguez E, Mognard N. 2012.. SWOT: the Surface Water and Ocean Topography Mission: wide-swath altimetric elevation on Earth. Pasadena, CA:: Jet Propuls. Lab
    [Google Scholar]
  47. Ganti V, Chu Z, Lamb MP, Nittrouer JA, Parker G. 2014.. Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China. . Geophys. Res. Lett. 41:(22):788290
    [Google Scholar]
  48. Giosan L, Clift PD, Macklin MG, Fuller DQ, Constantinescu S, et al. 2012.. Fluvial landscapes of the Harappan civilization. . PNAS 109:(26):E168894
    [Google Scholar]
  49. Giosan L, Syvitski J, Constantinescu S, Day J. 2014.. Protect the world's deltas. . Nature 516::3133
    [Google Scholar]
  50. Goodbred SL, Kuehl SA. 2000.. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon. . Geology 28:(12):108386
    [Google Scholar]
  51. Gregory JM, Griffies SM, Hughes CW, Lowe JA, Church JA, et al. 2019.. Concepts and terminology for sea level: mean, variability and change, both local and global. . Surv. Geophys. 40:(6):125189
    [Google Scholar]
  52. Hamlington BD, Gardner AS, Ivins E, Lenaerts JTM, Reager JT, et al. 2020.. Understanding of contemporary regional sea-level change and the implications for the future. . Rev. Geophys. 58:(3):e2019RG000672
    [Google Scholar]
  53. Harris PT. 2020.. The fate of microplastic in marine sedimentary environments: a review and synthesis. . Mar. Pollut. Bull. 158::111398
    [Google Scholar]
  54. Hauer ME, Fussell E, Mueller V, Burkett M, Call M, et al. 2020.. Sea-level rise and human migration. . Nat. Rev. Earth Environ. 1:(1):2839
    [Google Scholar]
  55. Helland-Hansen W, Hampson GJ. 2009.. Trajectory analysis: concepts and applications. . Basin Res. 21:(5):45483
    [Google Scholar]
  56. Helland-Hansen W, Martinsen OJ. 1996.. Shoreline trajectories and sequences: description of variable depositional-dip scenarios. . J. Sediment. Res. 66:(4):67088
    [Google Scholar]
  57. Hijma MP, Cohen KM. 2011.. Holocene transgression of the Rhine river mouth area, the Netherlands/Southern North Sea: palaeogeography and sequence stratigraphy. . Sedimentology 58:(6):145385
    [Google Scholar]
  58. Hinkel J, Nicholls RJ, Vafeidis AT, Tol RSJ, Avagianou T. 2010.. Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. . Mitig. Adapt. Strategies Glob. Change 15:(7):70319
    [Google Scholar]
  59. Hoitink AJF, Nittrouer JA, Passalacqua P, Shaw JB, Langendoen EJ, et al. 2020.. Resilience of river deltas in the Anthropocene. . J. Geophys. Res. Earth Surf. 125:(3):e2019JF005201
    [Google Scholar]
  60. Hori K, Saito Y. 2007.. An early Holocene sea-level jump and delta initiation. . Geophys. Res. Lett. 34::L18401
    [Google Scholar]
  61. Horton BP, Khan NS, Cahill N, Lee JSH, Shaw TA, et al. 2020.. Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey. . NPJ Clim. Atmos. Sci. 3:(1):18
    [Google Scholar]
  62. Horton BP, Kopp RE, Garner AJ, Hay CC, Khan NS, et al. 2018.. Mapping sea-level change in time, space, and probability. . Annu. Rev. Environ. Resour. 43::481521
    [Google Scholar]
  63. Jelgersma S. 1996.. Land subsidence in coastal lowlands. . In Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and Strategies, ed. BU Haq, JD Milliman , pp. 4762 Dordrecht, Neth:.: Springer
    [Google Scholar]
  64. Jerolmack DJ. 2009.. Conceptual framework for assessing the response of delta channel networks to Holocene sea level rise. . Quat. Sci. Rev. 28:(17–18):1786800
    [Google Scholar]
  65. Jervey MT. 1988.. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. . SEPM Spec. Publ. 42::4769
    [Google Scholar]
  66. Jones CE, An K, Blom RG, Kent JD, Ivins ER, Bekaert D. 2016.. Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana. . J. Geophys. Res. Solid Earth 121::386787
    [Google Scholar]
  67. Kaneko S, Toyota T. 2011.. Long-term urbanization and land subsidence in Asian Megacities: an indicators system approach. . In Groundwater and Subsurface Environments, ed. M Taniguchi , pp. 24970 Tokyo:: Springer
    [Google Scholar]
  68. Karegar MA, Dixon TH, Malservisi R. 2015.. A three-dimensional surface velocity field for the Mississippi Delta: implications for coastal restoration and flood potential. . Geology 43:(6):51922
    [Google Scholar]
  69. Karpytchev M, Ballu V, Krien Y, Becker M, Goodbred S, et al. 2018.. Contributions of a strengthened early Holocene monsoon and sediment loading to present-day subsidence of the Ganges-Brahmaputra Delta. . Geophys. Res. Lett. 45::143342
    [Google Scholar]
  70. Keogh ME, Törnqvist TE. 2019.. Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: a critical evaluation. . Ocean Sci. 15:(1):6173
    [Google Scholar]
  71. Keogh ME, Törnqvist TE, Kolker AS, Erkens G, Bridgeman JG. 2021.. Organic matter accretion, shallow subsidence, and river delta sustainability. . J. Geophys. Res. Earth Surf. 126:(12):e2021JF006231
    [Google Scholar]
  72. Khan NS, Horton BP, Engelhart S, Rovere A, Vacchi M, et al. 2019.. Inception of a global atlas of sea levels since the Last Glacial Maximum. . Quat. Sci. Rev. 220::35971
    [Google Scholar]
  73. Kim W, Dai A, Muto T, Parker G. 2009.. Delta progradation driven by an advancing sediment source: coupled theory and experiment describing the evolution of elongated deltas. . Water Resour. Res. 45:(6):W06428
    [Google Scholar]
  74. Kim W, Paola C, Voller VR, Swenson JB. 2006.. Experimental measurement of the relative importance of controls on shoreline migration. . J. Sediment. Res. 76:(2):27083
    [Google Scholar]
  75. Kirezci E, Young IR, Ranasinghe R, Muis S, Nicholls RJ, et al. 2020.. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. . Sci. Rep. 10:(1):11629
    [Google Scholar]
  76. Kirwan ML, Guntenspergen GR. 2010.. Influence of tidal range on the stability of coastal marshland. . J. Geophys. Res. 115:(F2):F02009
    [Google Scholar]
  77. Kollegger M, Lorenzo-Trueba J, Fernandes AM, Singh A, Abeyta A. 2022.. Upstream propagation of sea-level signals in fluvio-deltaic environments: time-lags and the dynamics of the fluvial surface. . Geophys. Res. Lett. 49:(8):e2022GL097956
    [Google Scholar]
  78. Kopp RE, Horton RM, Little CM, Mitrovica JX, Oppenheimer M, et al. 2014.. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. . Earth's Future 2:(8):383406
    [Google Scholar]
  79. Kopp RE, Kemp AC, Bittermann K, Horton BP, Donnelly JP, et al. 2016.. Temperature-driven global sea-level variability in the Common Era. . PNAS 113:(11):E143441
    [Google Scholar]
  80. Kuchar J, Milne G, Wolstencroft M, Love R, Tarasov L, et al. 2018.. The influence of sediment isostatic adjustment on sea level change and land motion along the U.S. Gulf Coast. . J. Geophys. Res. Solid Earth 123::78096
    [Google Scholar]
  81. Kuehl SA, Levy BM, Moore WS, Allison MA. 1997.. Subaqueous delta of the Ganges-Brahmaputra river system. . Mar. Geol. 144::8196
    [Google Scholar]
  82. Kulp SA, Strauss BH. 2019.. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. . Nat. Commun. 10::4844
    [Google Scholar]
  83. Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. 2014.. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. . PNAS 111:(43):15296303
    [Google Scholar]
  84. Leeder MR, Stewart MD. 1996.. Fluvial incision and sequence stratigraphy: alluvial responses to relative sea-level fall and their detection in the geological record. . Geol. Soc. Lond. Spec. Publ. 103::2539
    [Google Scholar]
  85. Li J, Ganti V, Li C, Wei H. 2022.. Upstream migration of avulsion sites on lowland deltas with river-mouth retreat. . Earth Planet. Sci. Lett. 577::117270
    [Google Scholar]
  86. Li Q, Yu L, Straub KM. 2016.. Storage thresholds for relative sea-level signals in the stratigraphic record. . Geology 44:(3):17982
    [Google Scholar]
  87. Mackey SD, Bridge JS. 1995.. Three-dimensional model of alluvial stratigraphy: theory and application. . J. Sediment. Res. B65::731
    [Google Scholar]
  88. Macklin MG, Lewin J. 2015.. The rivers of civilization. . Quat. Sci. Rev. 114::22844
    [Google Scholar]
  89. Maselli V, Trincardi F. 2013.. Man made deltas. . Sci. Rep. 3:(1):1926
    [Google Scholar]
  90. Meckel TA, ten Brink US, Williams SJ. 2006.. Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. . Geophys. Res. Lett. 33:(11):GL026300
    [Google Scholar]
  91. Miall AD. 1978.. Fluvial sedimentology: an historical review. . In Fluvial Sedimentology, ed. AD Miall , pp. 147 Calgary, Can.:: Can. Soc. Pet. Geol
    [Google Scholar]
  92. Middelkoop H, Erkens G, van der Perk M. 2010.. The Rhine delta—a record of sediment trapping over time scales from millennia to decades. . J. Soils Sediments 10:(4):62839
    [Google Scholar]
  93. Milne GA, Mitrovica JX. 2008.. Searching for eustasy in deglacial sea-level histories. . Quat. Sci. Rev. 27:(25–26):2292302
    [Google Scholar]
  94. Minderhoud PSJ, Middelkoop H, Erkens G, Stouthamer E. 2020.. Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. . Environ. Res. Commun. 2:(1):011005
    [Google Scholar]
  95. Moftakhari HR, Salvadori G, AghaKouchak A, Sanders BF, Matthew RA. 2017.. Compounding effects of sea level rise and fluvial flooding. . PNAS 114:(37):978590
    [Google Scholar]
  96. Moodie AJ, Nittrouer JA. 2021.. Optimized river diversion scenarios promote sustainability of urbanized deltas. . PNAS 118:(27):e2101649118
    [Google Scholar]
  97. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002.. Responses of coastal wetlands to rising sea level. . Ecology 83:(10):286977
    [Google Scholar]
  98. Murray NJ, Phinn SR, DeWitt M, Ferrari R, Johnston R, et al. 2019.. The global distribution and trajectory of tidal flats. . Nature 565:(7738):22225
    [Google Scholar]
  99. Murray NJ, Worthington TA, Bunting P, Duce S, Hagger V, et al. 2022.. High-resolution mapping of losses and gains of Earth's tidal wetlands. . Science 376:(6594):74449
    [Google Scholar]
  100. Muto T, Steel RJ. 1992.. Retreat of the front in a prograding delta. . Geology 20:(11):96770
    [Google Scholar]
  101. Muto T, Steel RJ. 2002.. Role of autoretreat and A/S changes in the understanding of deltaic shoreline trajectory: a semi-quantitative approach. . Basin Res. 14:(3):30318
    [Google Scholar]
  102. Nakada M, Lambeck K. 1989.. Late Pleistocene and Holocene sea-level change in the Australian region and mantle rheology. . Geophys. J. Int. 96:(3):497517
    [Google Scholar]
  103. Nauels A, Meinshausen M, Mengel M, Lorbacher K, Wigley TML. 2017.. Synthesizing long-term sea level rise projections—the MAGICC sea level model v2.0. . Geosci. Model Dev. 10:(6):2495524
    [Google Scholar]
  104. Nienhuis JH, Ashton AD, Edmonds DA, Hoitink AJF, Kettner AJ, et al. 2020.. Global-scale human impact on delta morphology has led to net land area gain. . Nature 577:(7791):51418
    [Google Scholar]
  105. Nienhuis JH, Törnqvist TE, Esposito CR. 2018.. Crevasse splays versus avulsions: a recipe for land building with levee breaches. . Geophys. Res. Lett. 45:(9):405867
    [Google Scholar]
  106. Nienhuis JH, Törnqvist TE, Jankowski KL, Fernandes AM, Keogh ME. 2017.. A new subsidence map for coastal Louisiana. . GSA Today 27:(9):5859
    [Google Scholar]
  107. Nienhuis JH, Van de Wal RSW. 2021.. Projections of global delta land loss from sea-level rise in the 21st century. . Geophys. Res. Lett. 48:(14):e2021GL093368
    [Google Scholar]
  108. Nittrouer CA, Kuehl SA, DeMaster DJ, Kowsmann RO. 1986.. The deltaic nature of Amazon shelf sedimentation. . Geol. Soc. Am. Bull. 97::44458
    [Google Scholar]
  109. O'Dell J, Nienhuis JH, Cox JR, Edmonds DA, Scussolini P. 2021.. A global open-source database of flood-protection levees on river deltas (openDELvE). . Nat. Hazards Earth Syst. Sci. Discuss. 2021::116
    [Google Scholar]
  110. Overeem I, Nienhuis JH, Piliouras A. 2022.. Ice-dominated Arctic deltas. . Nat. Rev. Earth Environ. 3::22540
    [Google Scholar]
  111. Palmer MD, Domingues CM, Slangen ABA, Boeira Dias F. 2021.. An ensemble approach to quantify global mean sea-level rise over the 20th century from tide gauge reconstructions. . Environ. Res. Lett. 16::044043
    [Google Scholar]
  112. Palmer MD, Gregory JM, Bagge M, Calvert D, Hagedoorn JM, et al. 2020.. Exploring the drivers of global and local sea-level change over the 21st century and beyond. . Earth's Future 8:(9):e2019EF001413
    [Google Scholar]
  113. Paola C, Twilley RR, Edmonds DA, Kim W, Mohrig D, et al. 2011.. Natural processes in delta restoration: application to the Mississippi Delta. . Annu. Rev. Mar. Sci. 3::6791
    [Google Scholar]
  114. Parker G, Muto T, Akamatsu Y, Dietrich WE, Lauer W. 2008.. Unravelling the conundrum of river response to rising sea-level from laboratory to field. Part II. The Fly-Strickland River system, Papua New Guinea. . Sedimentology 55::165786
    [Google Scholar]
  115. Passalacqua P, Giosan L, Goodbred S, Overeem I. 2021.. Stable ≠ sustainable: delta dynamics versus the human need for stability. . Earth's Future 9:(7):e2021EF002121
    [Google Scholar]
  116. Pekel J-F, Cottam A, Gorelick N, Belward AS. 2016.. High-resolution mapping of global surface water and its long-term changes. . Nature 540:(7633):41822
    [Google Scholar]
  117. Peltier WR, Argus DF, Drummond R. 2015.. Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G C (VM5a) model. . J. Geophys. Res. Solid Earth 120::450487
    [Google Scholar]
  118. Pickering MD, Horsburgh KJ, Blundell JR, Hirschi JJ-M, Nicholls RJ, et al. 2017.. The impact of future sea-level rise on the global tides. . Cont. Shelf Res. 142::5068
    [Google Scholar]
  119. Posamentier HW, Allen GP 1999.. Siliciclastic Sequence Stratigraphy: Concepts and Applications. Tulsa, OK:: SEPM
    [Google Scholar]
  120. Posamentier HW, Vail PR. 1988.. Eustatic controls on clastic deposition II—sequence and systems tract models. . SEPM Spec. Publ. 42::12554
    [Google Scholar]
  121. Prandi P, Meyssignac B, Ablain M, Spada G, Ribes A, Benveniste J. 2021.. Local sea level trends, accelerations and uncertainties over 1993–2019. . Sci. Data 8::1
    [Google Scholar]
  122. Ratliff KM, Hutton EHW, Murray AB. 2018.. Exploring wave and sea-level rise effects on delta morphodynamics with a coupled river-ocean model. . J. Geophys. Res. Earth Surf. 123:(11):2887900
    [Google Scholar]
  123. Rossi VM, Kim W, Leva JL, Edmonds D, Geleynse N, et al. 2016.. Impact of tidal currents on delta-channel deepening, stratigraphic architecture and sediment bypass beyond the shoreline. . Geology 44::92730
    [Google Scholar]
  124. Santos MJ, Dekker SC. 2020.. Locked-in and living delta pathways in the Anthropocene. . Sci. Rep. 10:(1):19598
    [Google Scholar]
  125. Schumm SA. 1993.. River response to baselevel change: implications for sequence stratigraphy. . J. Geol. 101::27994
    [Google Scholar]
  126. Scussolini P, Aerts JCJH, Jongman B, Bouwer LM, Winsemius HC, et al. 2016.. FLOPROS: an evolving global database of flood protection standards. . Nat. Hazards Earth Syst. Sci. 16:(5):104961
    [Google Scholar]
  127. Sheets BA, Hickson TA, Paola C. 2002.. Assembling the stratigraphic record: depositional patterns and time-scales in an experimental alluvial basin. . Basin Res. 14::287301
    [Google Scholar]
  128. Shen Z, Törnqvist TE, Autin WJ, Mateo ZRP, Straub KM, Mauz B. 2012.. Rapid and widespread response of the Lower Mississippi River to eustatic forcing during the last glacial-interglacial cycle. . Geol. Soc. Am. Bull. 124::690704
    [Google Scholar]
  129. Shennan I. 1989.. Holocene crustal movements and sea-level changes in Great Britain. . J. Quat. Sci. 4::7789
    [Google Scholar]
  130. Shirzaei M, Freymueller J, Törnqvist TE, Galloway DL, Dura T, Minderhoud PSJ. 2021.. Measuring, modelling and projecting coastal land subsidence. . Nat. Rev. Earth Environ. 2:(1):4058
    [Google Scholar]
  131. Simms AR, Anderson JB, Taha ZP, Rodriguez AB. 2006.. Overfilled versus underfilled incised valleys: examples from the Quaternary Gulf of Mexico. . SEPM Spec. Publ. 85::11739
    [Google Scholar]
  132. Slingerland R, Smith ND. 2004.. River avulsions and their deposits. . Annu. Rev. Earth Planet. Sci. 32::25785
    [Google Scholar]
  133. Smith JM, Cialone MA, Wamsley TV, McAlpin TO. 2010.. Potential impact of sea level rise on coastal surges in southeast Louisiana. . Ocean Eng. 37:(1):3747
    [Google Scholar]
  134. Spencer T, Schuerch M, Nicholls RJ, Hinkel J, Lincke D, et al. 2016.. Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland Change Model. . Glob. Planet. Change 139::1530
    [Google Scholar]
  135. Stanley DJ, Warne AG. 1994.. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. . Science 265:(5169):22831
    [Google Scholar]
  136. Steckler MS, Oryan B, Wilson CA, Grall C, Nooner SL, et al. 2022.. Synthesis of the distribution of subsidence of the lower Ganges-Brahmaputra Delta, Bangladesh. . Earth-Sci. Rev. 224::103887
    [Google Scholar]
  137. Stevenson JC, Ward LG, Kearney MS. 1986.. Vertical accretion in marshes with varying rates of sea level rise. . In Estuarine Variability, ed. DA Wolfe , pp. 24159 Orlando, FL:: Academic
    [Google Scholar]
  138. Stouthamer E, Berendsen HJA. 2000.. Factors controlling the Holocene avulsion history of the Rhine-Meuse Delta (the Netherlands). . J. Sediment. Res. 70::105164
    [Google Scholar]
  139. Straub KM, Duller RA, Foreman BZ, Hajek EA. 2020.. Buffered, incomplete, and shredded: the challenges of reading an imperfect stratigraphic record. . J. Geophys. Res. Earth Surf. 125::e2019JF005079
    [Google Scholar]
  140. Strong N, Paola C. 2008.. Valleys that never were: time surfaces versus stratigraphic surfaces. . J. Sediment. Res. 78::57993
    [Google Scholar]
  141. Swenson JB. 2005a.. Fluviodeltaic response to sea level perturbations: amplitude and timing of shoreline translation and coastal onlap. . J. Geophys. Res. 110:(F3):F03007
    [Google Scholar]
  142. Swenson JB. 2005b.. Relative importance of fluvial input and wave energy in controlling the timescale for distributary-channel avulsion. . Geophys. Res. Lett. 32::L23404
    [Google Scholar]
  143. Tanabe S, Nakashima R, Ishihara Y. 2022.. Transition from a transgressive to a regressive river-mouth sediment body in Tokyo Bay during the early Holocene: sedimentary facies, geometry, and stacking pattern. . Sediment. Geol. 428::106059
    [Google Scholar]
  144. Teatini P, Tosi L, Strozzi T. 2011.. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. . J. Geophys. Res. 116:(B8):B08407
    [Google Scholar]
  145. Tellman B, Sullivan JA, Kuhn C, Kettner AJ, Doyle CS, et al. 2021.. Satellite imaging reveals increased proportion of population exposed to floods. . Nature 596:(7870):8086
    [Google Scholar]
  146. Törnqvist TE. 1994.. Middle and late Holocene avulsion history of the River Rhine (Rhine-Meuse delta, Netherlands). . Geology 22::71114
    [Google Scholar]
  147. Törnqvist TE, Jankowski KL, Li Y-X, González JL. 2020.. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise. . Sci. Adv. 6:(21):eaaz5512
    [Google Scholar]
  148. Törnqvist TE, Wallace D, Storms JEA, Wallinga J, van Dam RL, et al. 2008.. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. . Nat. Geosci. 1::17376
    [Google Scholar]
  149. van Asselen S, Karssenberg D, Stouthamer E. 2011.. Contribution of peat compaction to relative sea-level rise within Holocene deltas. . Geophys. Res. Lett. 38:(24):L24401
    [Google Scholar]
  150. van de Lageweg W, Slangen A. 2017.. Predicting dynamic coastal delta change in response to sea-level rise. . J. Mar. Sci. Eng. 5:(2):24
    [Google Scholar]
  151. van den Top GM. 2019.. Houdbaarheid Nederlandse waterveiligheidsstrategieën bij versnelde zeespiegelstijging. Brief 19-08 , Expertise Netwerk Waterveiligheid. Den Haag, the Netherlands:. https://www.enwinfo.nl/publish/pages/183279/enw-19-08-advies-aan-minister-van-ienw-inzake-houdbaarheid-nederlandse-waterveiligheidsstrategieen-b.pdf
    [Google Scholar]
  152. Vousdoukas MI, Ranasinghe R, Mentaschi L, Plomaritis TA, Athanasiou P, et al. 2020.. Sandy coastlines under threat of erosion. . Nat. Clim. Change 10:(3):26063
    [Google Scholar]
  153. Whitehouse PL, Allen MB, Milne GA. 2007.. Glacial isostatic adjustment as a control on coastal processes: an example from the Siberian Arctic. . Geology 35:(8):74750
    [Google Scholar]
  154. Whitehouse PL, Bradley SL. 2013.. Eustatic sea-level changes since the Last Glacial Maximum. . In Encyclopedia of Quaternary Science, ed. SA Elias, CJ Mock , pp. 43951 New York:: Elsevier
    [Google Scholar]
  155. Wickert AD, Martin JM, Tal M, Kim W, Sheets B, Paola C. 2013.. River channel lateral mobility: metrics, time scales, and controls. . J. Geophys. Res. Earth Surf. 118:(2):396412
    [Google Scholar]
  156. Wilson CA, Goodbred SL. 2015.. Construction and maintenance of the Ganges-Brahmaputra-Meghna Delta: linking process, morphology, and stratigraphy. . Annu. Rev. Mar. Sci. 7::6788
    [Google Scholar]
  157. Wolstencroft M, Shen Z, Törnqvist TE, Milne GA, Kulp M. 2014.. Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: insights from geophysical modeling. . J. Geophys. Res. Solid Earth 119::383856
    [Google Scholar]
  158. Wood LJ, Ethridge FG, Schumm SA. 1993.. The effects of rate of base-level fluctuation on coastal-plain, shelf and slope depositional systems: an experimental approach. . Int. Assoc. Sedimentol. Spec. Publ. 18::4355
    [Google Scholar]
  159. Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O'Loughlin F, et al. 2017.. A high-accuracy map of global terrain elevations. . Geophys. Res. Lett. 44:(11):584453
    [Google Scholar]
  160. Yu Q, Lau AKH, Tsang KT, Fung JCH. 2018.. Human damage assessments of coastal flooding for Hong Kong and the Pearl River Delta due to climate change-related sea level rise in the twenty-first century. . Nat. Hazards 92:(2):101138
    [Google Scholar]
  161. Yu SY, Törnqvist TE, Hu P. 2012.. Quantifying Holocene lithospheric subsidence rates underneath the Mississippi Delta. . Earth Planet. Sci. Lett. 33132:21–30
    [Google Scholar]
  162. Yuill B, Lavoie D, Reed DJ. 2009.. Understanding subsidence processes in coastal Louisiana. . J. Coast. Res. 2009:(10054):2336
    [Google Scholar]
  163. Zaitlin BA, Dalrymple RW, Boyd R. 1994.. The stratigraphic organization of incised-valley systems associated with relative sea-level change. . SEPM Spec. Publ. 51::4560
    [Google Scholar]
  164. Zoccarato C, Minderhoud PSJ, Teatini P. 2018.. The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam. . Sci. Rep. 8:(1):11437
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-093732
Loading
/content/journals/10.1146/annurev-earth-031621-093732
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error