1932

Abstract

Each of the halogens constrains a different aspect of volatile cycling in the solid Earth. F is moderately incompatible in the mantle and has a low mobility at Earth's surface, meaning that it is preferentially retained in the mantle and continental crust. In contrast, Cl, Br, and I are strongly incompatible and highly soluble. Chloride is the dominant anion in seawater and many geofluids and a major component of evaporite minerals. Br and I are essential for life and significantly incorporated into organic matter that accumulates in marine sediments. Surficial fluids circulated into continental and oceanic crust incorporate surface-derived halogens into alteration minerals. As a result, subducting slabs and arc lavas are weakly enriched in F and strongly enriched in Cl, Br, and I. Subduction has maintained mantle Cl and Br concentrations at relatively constant levels since Earth's early differentiation, but mantle I/Cl has decreased over time.

  • ▪  Halogen abundances on the early Earth were affected by I partitioning into Earth's core and possible loss of hydrophilic Cl, Br, and I in an early formed ocean.
  • ▪  Halogens are powerful tracers of subduction zone processes on the modern Earth, with Cl, Br, and I having a dominantly subducted origin in Earth's mantle.
  • ▪  The deep subduction cycles of Cl, Br, and I are more similar to that of HO than they are to F, but the geochemical cycle of each halogen differs in detail.
  • ▪  Halogen abundance ratios and stable isotope ratios vary systematically in Earth's surface reservoirs, meaning that halogens are powerful tracers of geological fluids and melts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-111700
2024-07-23
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-031621-111700.html?itemId=/content/journals/10.1146/annurev-earth-031621-111700&mimeType=html&fmt=ahah

Literature Cited

  1. Agrinier P, Destrigneville C, Giunta T, Bonifacie M, Bardoux G, et al. 2019.. Strong impact of ion filtration on the isotopic composition of chlorine in young clay-rich oceanic sediment pore fluids. . Geochim. Cosmochim. Acta 245::52541
    [Crossref] [Google Scholar]
  2. Alt JC, Teagle DAH. 2003.. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. . Chem. Geol. 201::191211
    [Crossref] [Google Scholar]
  3. Armytage RMG, Jephcoat AP, Bouhifd MA, Porcelli D. 2013.. Metal-silicate partitioning of iodine at high pressures and temperatures: implications for the Earth's core and 129*Xe budgets. . Earth Planet. Sci. Lett. 373::14049
    [Crossref] [Google Scholar]
  4. Barnes JD, Cisneros M. 2012.. Mineralogical control on the chlorine isotope composition of altered oceanic crust. . Chem. Geol. 326–327::5160
    [Crossref] [Google Scholar]
  5. Barnes JD, Manning CE, Scambelluri M, Selverstone J. 2018.. The behaviour of halogens during subduction-zone processes. . In The Role of Halogens in Terrestrial and Extraterrestrial Processes, ed. DE Harlov, LY Aranovich , pp. 54590. Cham, Switz.:: Springer
    [Google Scholar]
  6. Barnes JD, Sharp ZD. 2006.. A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: insights into the serpentinization process. . Chem. Geol. 228::24665
    [Crossref] [Google Scholar]
  7. Barnes JD, Sharp ZD, Fischer TP. 2008.. Chlorine isotope variations across the Izu-Bonin-Mariana arc. . Geology 36::88386
    [Crossref] [Google Scholar]
  8. Barry PH, de Moor JM, Giovannelli D, Schrenk M, Hummer DR, et al. 2019.. Forearc carbon sink reduces long-term volatile recycling into the mantle. . Nature 568::48792
    [Crossref] [Google Scholar]
  9. Beaudoin GM, Barnes JD, John T, Hoffmann JE, Chatterjee R, Stockli DF. 2022.. Global halogen flux of subducting oceanic crust. . Earth Planet. Sci. Lett. 594::117750
    [Crossref] [Google Scholar]
  10. Bekaert DV, Turner SJ, Broadley MW, Barnes JD, Halldórsson SA, et al. 2021.. Subduction-driven volatile recycling: a global mass balance. . Annu. Rev. Earth Planet. Sci. 49::3770
    [Crossref] [Google Scholar]
  11. Bénard A, Koga KT, Shimizu N, Kendrick MA, Ionov DA, et al. 2017.. Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): implications for melt generation and volatile recycling processes in subduction zones. . Geochim. Cosmochim. Acta 199::32450
    [Crossref] [Google Scholar]
  12. Bernini D, Wiedenbeck M, Dolejs D, Keppler H. 2013.. Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones. . Contrib. Mineral. Petrol. 165::11728
    [Crossref] [Google Scholar]
  13. Bischoff JL, Dickson FW. 1975.. Seawater-basalt interaction at 200 degrees C and 500 bars—implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry. . Earth Planet. Sci. Lett. 25::38597
    [Crossref] [Google Scholar]
  14. Blackburn G, McLeod S. 1983.. Salinity of atmospheric precipitation in the Murray-Darling drainage division, Australia. . Soil Res. 21::41134
    [Crossref] [Google Scholar]
  15. Böhlke JK, Irwin JJ. 1992.. Brine history indicated by argon, krypton, chlorine, bromine and iodine analyses of fluid inclusions from the Mississippi Valley type lead-fluorite-barite deposits at Hansonburg, New Mexico. . Earth Planet. Sci. Lett. 110::5166
    [Crossref] [Google Scholar]
  16. Bonifacie M, Busigny V, Mevel C, Philippot P, Agrinier P, et al. 2008.. Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. insights into oceanic serpentinization and subduction processes. . Geochim. Cosmochim. Acta 72::12639
    [Crossref] [Google Scholar]
  17. Bottomley DJ, Clark ID, Battye N, Kotzer T. 2005.. Geochemical and isotopic evidence for a genetic link between Canadian Shield brines, dolomitization in the Western Canada Sedimentary Basin, and Devonian calcium-chloridic seawater. . Can. J. Earth Sci. 42::205971
    [Crossref] [Google Scholar]
  18. Bouvier A, Boyet M. 2016.. Primitive Solar System materials and Earth share a common initial 142Nd abundance. . Nature 537::399402
    [Crossref] [Google Scholar]
  19. Bouvier AS, Manzini M, Rose-Koga EF, Nichols ARL, Baumgartner LP. 2019.. Tracing of Cl input into the sub-arc mantle through the combined analysis of B, O and Cl isotopes in melt inclusions. . Earth Planet. Sci. Lett. 507::3039
    [Crossref] [Google Scholar]
  20. Broadley MW, Ballentine CJ, Chavrit D, Dallai L, Burgess R. 2016.. Sedimentary halogens and noble gases within Western Antarctic xenoliths: implications of extensive volatile recycling to the sub continental lithospheric mantle. . Geochim. Cosmochim. Acta 176::13956
    [Crossref] [Google Scholar]
  21. Broadley MW, Barry PH, Ballentine CJ, Taylor LA, Burgess R. 2018.. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. . Nat. Geosci. 11::68287
    [Crossref] [Google Scholar]
  22. Burgess R, Cartigny P, Harrison D, Hobson E, Harris J. 2009.. Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: implications for chemical and isotopic heterogeneity in the mantle. . Geochim. Cosmochim. Acta 73::177994
    [Crossref] [Google Scholar]
  23. Burgess R, Layzelle E, Turner G, Harris JW. 2002.. Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds. . Earth Planet. Sci. Lett. 197::193203
    [Crossref] [Google Scholar]
  24. Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, et al. 2013.. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. . Nature 496::49093
    [Crossref] [Google Scholar]
  25. Cartwright I, Gilfedder B, Hofmann H. 2013.. Transient hydrological conditions implied by chloride mass balance in southeast Australian rivers. . Chem. Geol. 357::2940
    [Crossref] [Google Scholar]
  26. Chauvel C, Hofmann AW, Vidal P. 1992.. HIMU–EM: the French Polynesian connection. . Earth Planet. Sci. Lett. 110::99119
    [Crossref] [Google Scholar]
  27. Chavrit D, Burgess R, Sumino H, Teagle DAH, Droop G, et al. 2016.. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles. . Geochim. Cosmochim. Acta 183::10624
    [Crossref] [Google Scholar]
  28. Chiaradia M, Barnes JD, Cadet-Voisin S. 2014.. Chlorine isotope variations across the Quaternary volcanic arc of Ecuador. . Earth Planet. Sci. Lett. 396::2233
    [Crossref] [Google Scholar]
  29. Clay PL, Burgess R, Busemann H, Ruzié-Hamilton L, Joachim B, et al. 2017.. Halogens in chondritic meteorites and terrestrial accretion. . Nature 551::61418
    [Crossref] [Google Scholar]
  30. Coombs ML, Sisson TW, Kimura JI. 2004.. Ultra-high chlorine in submarine Kilauea glasses: evidence for direct assimilation of brine by magma. . Earth Planet. Sci. Lett. 217::297313
    [Crossref] [Google Scholar]
  31. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal J-L. 2012.. Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. . Contrib. Mineral. Petrol. 163::591609
    [Crossref] [Google Scholar]
  32. Debret B, Koga KT, Cattani F, Nicollet C, Van den Bleeken G, Schwartz S. 2016.. Volatile (Li, B, F and Cl) mobility during amphibole breakdown in subduction zones. . Lithos 244::16581
    [Crossref] [Google Scholar]
  33. Deruelle B, Dreibus G, Jambon A. 1992.. Iodine abundances in oceanic basalts: implications for Earth dynamics. . Earth Planet. Sci. Lett. 108::21727
    [Crossref] [Google Scholar]
  34. Dixon JE, Bindeman IN, Kingsley RH, Simons KK, Le Roux PJ, et al. 2017.. Light stable isotopic compositions of enriched mantle sources: resolving the dehydration paradox. . Geochem. Geophys. Geosyst. 18::380139
    [Crossref] [Google Scholar]
  35. Dixon JE, Leist L, Langmuir C, Schilling J-G. 2002.. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. . Nature 420::38589
    [Crossref] [Google Scholar]
  36. Drever JI. 1997.. The Geochemistry of Natural Waters: Surface and Groundwater Environments. Upper Saddle River, NJ:: Prentice-Hall. , 3rd ed..
    [Google Scholar]
  37. Drever JI, Zobrist J. 1992.. Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps. . Geochim. Cosmochim. Acta 56::320916
    [Crossref] [Google Scholar]
  38. Elderfield H, Truesdale VW. 1980.. On the biophilic nature of iodine in seawater. . Earth Planet. Sci. Lett. 50::10514
    [Crossref] [Google Scholar]
  39. Fehn U, Lu Z, Tomaru H. 2006.. Data report: 129I/I ratios and halogen concentrations in pore water of Hydrate Ridge and their relevance for the origin of gas hydrates: a progress report. . Proc. Ocean Drill. Program Sci. Results 204::125
    [Google Scholar]
  40. Fischer TP. 2008.. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. . Geochem. J. 42::2138
    [Crossref] [Google Scholar]
  41. Fuge R, Johnson CC. 1986.. The geochemistry of iodine—a review. . Environ. Geochem. Health 8::3154
    [Crossref] [Google Scholar]
  42. Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, et al. 1998.. Chemical composition of the continental crust as revealed by studies in East China. . Geochim. Cosmochim. Acta 62::195975
    [Crossref] [Google Scholar]
  43. Gaschnig RM, Rudnick RL, McDonough WF, Kaufman AJ, Valley JW, et al. 2016.. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. . Geochim. Cosmochim. Acta 186::31643
    [Crossref] [Google Scholar]
  44. Green HW II, Chen W-P, Brudzinski MR. 2010.. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. . Nature 467::82831
    [Crossref] [Google Scholar]
  45. Gross J, Burchard M, Schertl HP, Maresch WV. 2008.. Common high-pressure metamorphic history of eclogite lenses and surrounding metasediments: a case study of calc-silicate reaction zones (Erzgebirge, Germany). . Eur. J. Mineral. 20::75775
    [Crossref] [Google Scholar]
  46. Guo M, Korenaga J. 2021.. A halogen budget of the bulk silicate Earth points to a history of early halogen degassing followed by net regassing. . PNAS 118::e2116083118
    [Crossref] [Google Scholar]
  47. Halldorsson SA, Barnes JD, Stefansson A, Hilton DR, Hauri EH, Marshall EW. 2016.. Subducted lithosphere controls halogen enrichments in the Iceland mantle plume source. . Geology 44::67982
    [Crossref] [Google Scholar]
  48. Han P-Y, Rudnick RL, He T, Marks MAW, Wang S-J, et al. 2023.. Halogen (F, Cl, Br, and I) concentrations of the upper continental crust through time as recorded in ancient glacial diamictite composites. . Geochim. Cosmochim. Acta 341::2845
    [Crossref] [Google Scholar]
  49. Hanor JS. 1994.. Origin of saline fluids in sedimentary basins. . Geol. Soc. Lond. Spec. Publ. 78::15174
    [Crossref] [Google Scholar]
  50. Hauri E, Wang JH, Dixon JE, King PL, Mandeville C, Newman S. 2002.. SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. . Chem. Geol. 183::99114
    [Crossref] [Google Scholar]
  51. Higashino F, Kawakami T, Satish-Kumar M, Ishikawa M, Maki K, et al. 2013.. Chlorine-rich fluid or melt activity during granulite facies metamorphism in the Late Proterozoic to Cambrian continental collision zone—an example from the Sor Rondane Mountains, East Antarctica. . Precambrian Res. 234::22946
    [Crossref] [Google Scholar]
  52. Hilton DR, Fischer TP, Marty B. 2002.. Noble gases and volatile recycling at subduction zones. . Rev. Mineral. Geochem. 47::31970
    [Crossref] [Google Scholar]
  53. Hirschmann MM. 2018.. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. . Earth Planet. Sci. Lett. 502::26273
    [Crossref] [Google Scholar]
  54. Holland G, Ballentine CJ. 2006.. Seawater subduction controls the heavy noble gas composition of the mantle. . Nature 441::18691
    [Crossref] [Google Scholar]
  55. Holser WT. 1979.. Trace elements and isotopes in evaporites. . In Marine Minerals: Mineralogical Society of America Short Course Notes, ed. RG Burns , pp. 295346. Washington, DC:: Mineral. Soc. Am.
    [Google Scholar]
  56. Hughes L, Burgess R, Chavrit D, Pawley A, Tartèse R, et al. 2018.. Halogen behaviour in subduction zones: eclogite facies rocks from the Western and Central Alps. . Geochim. Cosmochim. Acta 243::123
    [Crossref] [Google Scholar]
  57. Ito E, Harris DM, Anderson AT. 1983.. Alteration of oceanic crust and geologic cycling of chlorine and water. . Geochim. Cosmochim. Acta 47::161324
    [Crossref] [Google Scholar]
  58. Jackson CRM, Bennett NR, Du Z, Cottrell E, Fei Y. 2018.. Early episodes of high-pressure core formation preserved in plume mantle. . Nature 553::49195
    [Crossref] [Google Scholar]
  59. Jambon A, Deruelle B, Dreibus G, Pineau F. 1995.. Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. . Chem. Geol. 126::10117
    [Crossref] [Google Scholar]
  60. Jarrard RD. 2003.. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. . Geochem. Geophys. Geosyst. 4::8905
    [Crossref] [Google Scholar]
  61. Joachim B, Pawley A, Lyon IC, Marquardt K, Henkel T, et al. 2015.. Experimental partitioning of F and Cl between olivine, orthopyroxene and silicate melt at Earth's mantle conditions. . Chem. Geol. 416::6578
    [Crossref] [Google Scholar]
  62. Jochum KP, Hofmann AW, Seufert HM. 1993.. Tin in mantle-derived rocks: constraints on Earth evolution. . Geochim. Cosmochim. Acta 57::358595
    [Crossref] [Google Scholar]
  63. John T, Layne GD, Haase KM, Barnes JD. 2010.. Chlorine isotope evidence for crustal recycling into the Earth's mantle. . Earth Planet. Sci. Lett. 298::17582
    [Crossref] [Google Scholar]
  64. John T, Scambelluri M, Frische M, Barnes JD, Bach W. 2011.. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. . Earth Planet. Sci. Lett. 308::6576
    [Crossref] [Google Scholar]
  65. Johnson L, Burgess R, Turner G, Milledge JH, Harris JW. 2000.. Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. . Geochim. Cosmochim. Acta 64::71732
    [Crossref] [Google Scholar]
  66. Kamenetsky VS, Eggins SM. 2012.. Systematics of metals, metalloids, and volatiles in MORB melts: effects of partial melting, crystal fractionation and degassing (a case study of Macquarie Island glasses). . Chem. Geol. 302::7686
    [Crossref] [Google Scholar]
  67. Kendrick MA. 2018.. Halogens in seawater, marine sediments and the altered oceanic lithosphere. . In The Role of Halogens in Terrestrial and Extraterrestrial Processes, ed. DE Harlov, LY Aranovich , pp. 591648. Cham, Switz:.: Springer
    [Google Scholar]
  68. Kendrick MA. 2019a.. Halogens in altered ocean crust from the East Pacific Rise (ODP/IODP Hole 1256D). . Geochim. Cosmochim. Acta 261::93112
    [Crossref] [Google Scholar]
  69. Kendrick MA. 2019b.. Halogens in Atlantis Bank gabbros, SW Indian Ridge: implications for styles of seafloor alteration. . Earth Planet. Sci. Lett. 514::96107
    [Crossref] [Google Scholar]
  70. Kendrick MA, Arculus RJ, Burnard P, Honda M. 2013a.. Quantifying brine assimilation by submarine magmas: examples from the Galápagos Spreading Centre and Lau Basin. . Geochim. Cosmochim. Acta 123::15065
    [Crossref] [Google Scholar]
  71. Kendrick MA, Arculus RJ, Danyushevsky L, Kamenetsky VS, Woodhead J, Honda M. 2014a.. Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific backarc basins. . Earth Planet. Sci. Lett. 400::16576
    [Crossref] [Google Scholar]
  72. Kendrick MA, Barnes JD. 2022.. Sediments, serpentinites and subduction: halogen recycling from the surface to the deep Earth. . Elements 18::2126
    [Crossref] [Google Scholar]
  73. Kendrick MA, Burgess R, Pattrick RAD, Turner G. 2001.. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralising fluids. . Geochim. Cosmochim. Acta 65::265168
    [Crossref] [Google Scholar]
  74. Kendrick MA, Danyushevsky L, Falloon T, Woodhead JD, Arculus R, Ireland T. 2020.. SW Pacific arc and backarc lavas and the role of slab-bend serpentinites in the global halogen cycle. . Earth Planet. Sci. Lett. 530::115921
    [Crossref] [Google Scholar]
  75. Kendrick MA, Hémond C, Kamenetsky VS, Danyushevsky L, Devey CW, et al. 2017.. Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere. . Nat. Geosci. 10::22228
    [Crossref] [Google Scholar]
  76. Kendrick MA, Honda M, Pettke T, Scambelluri M, Phillips D, Giuliani A. 2013b.. Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. . Earth Planet. Sci. Lett. 365::8696
    [Crossref] [Google Scholar]
  77. Kendrick MA, Honda M, Vanko DA. 2015a.. Halogens and noble gases in Mathematician Ridge meta-gabbros, NE Pacific: implications for oceanic hydrothermal root zones and global volatile cycles. . Contrib. Mineral. Petrol. 170::43
    [Crossref] [Google Scholar]
  78. Kendrick MA, Jackson MG, Hauri E, Phillips D. 2015b.. The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: assimilated seawater, EM2 and high 3He/4He components. . Earth Planet. Sci. Lett. 410::197209
    [Crossref] [Google Scholar]
  79. Kendrick MA, Jackson MG, Kent AJR, Hauri EH, Wallace PJ, Woodhead J. 2014b.. Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. . Chem. Geol. 370::6981
    [Crossref] [Google Scholar]
  80. Kendrick MA, Kamenetsky VS, Phillips D, Honda M. 2012.. Halogen (Cl, Br, I) systematics of mid-ocean ridge basalts: a Macquarie Island case study. . Geochim. Cosmochim. Acta 81::8293
    [Crossref] [Google Scholar]
  81. Kendrick MA, Marks MAW, Godard M. 2022.. Halogens in serpentinised-troctolites from the Atlantis Massif: implications for alteration and global volatile cycling. . Contrib. Mineral. Petrol. 177::110
    [Crossref] [Google Scholar]
  82. Kendrick MA, Scambelluri M, Hermann J, Padrón-Navarta JA. 2018.. Halogens and noble gases in serpentinites and secondary peridotites: implications for seawater subduction and the origin of mantle neon. . Geochim. Cosmochim. Acta 235::285304
    [Crossref] [Google Scholar]
  83. Kendrick MA, Scambelluri M, Honda M, Phillips D. 2011.. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. . Nat. Geosci. 4::80712
    [Crossref] [Google Scholar]
  84. Kennedy HA, Elderfield H. 1987.. Iodine diagenesis in pelagic deep sea sediments. . Geochim. Cosmochim. Acta 51::2489504
    [Crossref] [Google Scholar]
  85. Kent AJR, Peate DW, Newman S, Stolper EM, Pearce JA. 2002.. Chlorine in submarine glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived fluids. . Earth Planet. Sci. Lett. 202::36177
    [Crossref] [Google Scholar]
  86. Klein-BenDavid O, Izraeli ES, Hauri E, Navon O. 2007.. Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. . Geochim. Cosmochim. Acta 71::72344
    [Crossref] [Google Scholar]
  87. Kobayashi M, Sumino H, Burgess R, Nakai S, Iizuka T, et al. 2019.. Halogen heterogeneity in the lithosphere and evolution of mantle halogen abundances inferred from intraplate mantle xenoliths. . Geochem. Geophys. Geosyst. 20::95273
    [Crossref] [Google Scholar]
  88. Kobayashi M, Sumino H, Nagao K, Ishimaru S, Arai S, et al. 2017.. Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge. . Earth Planet. Sci. Lett. 457::10616
    [Crossref] [Google Scholar]
  89. Kullerud K, Erambert M. 1999.. Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: implications for fluid compositional evolution during fluid-mineral interaction in the deep crust. . Geochim. Cosmochim. Acta 63::382944
    [Crossref] [Google Scholar]
  90. Le Voyer M, Hauri EH, Cottrell E, Kelley KA, Salters VJM, et al. 2019.. Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system. . Geochem. Geophys. Geosyst. 20::1387424
    [Crossref] [Google Scholar]
  91. Lodders K. 2003.. Solar system abundances and condensation temperatures of the elements. . Astrophys. J. 591::122047
    [Crossref] [Google Scholar]
  92. Lodders K, Fegley B. 2023.. Solar system abundances and condensation temperatures of the halogens fluorine, chlorine, bromine, and iodine. . Geochemistry 83::125957
    [Crossref] [Google Scholar]
  93. Lu ZL, Jenkyns HC, Rickaby REM. 2010.. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. . Geology 38::110710
    [Crossref] [Google Scholar]
  94. Lyubetskaya T, Korenaga J. 2007.. Chemical composition of Earth's primitive mantle and its variance: 1. Method and results. . J. Geophys. Res. 112:(B3):B03211
    [Google Scholar]
  95. Markl G, Bucher K. 1998.. Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. . Nature 391::78183
    [Crossref] [Google Scholar]
  96. Martin JB, Gieskes JM, Torres M, Kastner M. 1993.. Bromine and iodine in Peru margin sediments and pore fluids: implications for fluid origins. . Geochim. Cosmochim. Acta 57::437789
    [Crossref] [Google Scholar]
  97. Marty B, Avice G, Bekaert DV, Broadley MW. 2018.. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. . C. R. Geosci. 350::15463
    [Crossref] [Google Scholar]
  98. Maunder BL, Kendrick MA, Ribeiro JM, Nebel O. 2024.. A negligible role for forearc serpentinites and mélange diapirism in contributing halogens to Mariana arc magmas. . Earth Planet. Sci. Lett. 625::118498
    [Crossref] [Google Scholar]
  99. McCaffrey MA, Lazar B, Holland HD. 1987.. The evaporation path of seawater and the composition of Br and K+ with halite. . J. Sediment. Petrol. 57::92837
    [Google Scholar]
  100. McDonough WF, Sun S-S. 1995.. The composition of the Earth. . Chem. Geol. 120::22353
    [Crossref] [Google Scholar]
  101. Michael PJ, Cornell WC. 1998.. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. . J. Geophys. Res. 103:(B8):1832556
    [Crossref] [Google Scholar]
  102. Mukhopadhyay S, Parai R. 2019.. Noble gases: a record of earth's evolution and mantle dynamics. . Annu. Rev. Earth Planet. Sci. 47::389419
    [Crossref] [Google Scholar]
  103. Muramatsu Y, Doi T, Tomaru H, Fehn U, Takeuchi R, Matsumoto R. 2007.. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: implications for the origin of gas hydrates. . Appl. Geochem. 22::53456
    [Crossref] [Google Scholar]
  104. Muramatsu Y, Fehn U, Yoshida S. 2001.. Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan. . Earth Planet. Sci. Lett. 192::58393
    [Crossref] [Google Scholar]
  105. Muramatsu Y, Wedepohl KH. 1998.. The distribution of iodine in the earth's crust. . Chem. Geol. 147::20116
    [Crossref] [Google Scholar]
  106. Nissenbaum A. 1977.. Minor and trace elements in Dead Sea water. . Chem. Geol. 19::99111
    [Crossref] [Google Scholar]
  107. Ohtani E. 2015.. Hydrous minerals and the storage of water in the deep mantle. . Chem. Geol. 418::615
    [Crossref] [Google Scholar]
  108. Pagé L, Hattori K. 2017.. Tracing halogen and B cycling in subduction zones based on obducted, subducted and forearc serpentinites of the Dominican Republic. . Sci. Rep. 7::17776
    [Crossref] [Google Scholar]
  109. Pagé L, Hattori K, de Hoog JCM, Okay AI. 2016.. Halogen (F, Cl, Br, I) behaviour in subducting slabs: a study of lawsonite blueschists in western Turkey. . Earth Planet. Sci. Lett. 442::13342
    [Crossref] [Google Scholar]
  110. Palme H, O'Neill HSC. 2014.. Cosmochemical estimates of mantle composition. . In Treatise on Geochemistry, ed. HDHK Turekian , pp. 139. Oxford, UK:: Elsevier
    [Google Scholar]
  111. Palme H, Zipfel J. 2022.. The composition of CI chondrites and their contents of chlorine and bromine: results from instrumental neutron activation analysis. . Meteorit. Planet. Sci. 57::31733
    [Crossref] [Google Scholar]
  112. Pearce J, Stern RJ. 2006.. Origin of back-arc basin magmas: trace element and isotope perspectives. . In Back-Arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions, ed. DM Christie , pp. 6386. Washington, DC:. Am. Geophys. Union
    [Google Scholar]
  113. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, et al. 2014.. Hydrous mantle transition zone indicated by ringwoodite included within diamond. . Nature 507::22124
    [Crossref] [Google Scholar]
  114. Philippot P, Agrinier P, Scambelluri M. 1998.. Chlorine cycling during subduction of altered oceanic crust. . Earth Planet. Sci. Lett. 161::3344
    [Crossref] [Google Scholar]
  115. Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S. 2007.. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. . Earth Planet. Sci. Lett. 255::5369
    [Crossref] [Google Scholar]
  116. Price NB, Calvert SE. 1977.. Contrasting geochemical behaviours of iodine and bromine in recent sediments from Namibian Shelf. . Geochim. Cosmochim. Acta 41::176975
    [Crossref] [Google Scholar]
  117. Ranero CR, Phipps Morgan J, McIntosh K, Reichert C. 2003.. Bending-related faulting and mantle serpentinization at the Middle America trench. . Nature 425::36773
    [Crossref] [Google Scholar]
  118. Rubey WW. 1951.. Geologic history of seawater—an attempt to state the problem. . Geol. Soc. Am. Bull. 62::111147
    [Crossref] [Google Scholar]
  119. Rude PD, Aller RC. 1994.. Fluorine uptake by Amazon continental shelf sediment and its impact on the global fluorine cycle. . Cont. Shelf Res. 14::883907
    [Crossref] [Google Scholar]
  120. Rüpke LH, Phipps Morgan J, Hort M, Connolly JAD. 2004.. Serpentine and the subduction zone water cycle. . Earth Planet. Sci. Lett. 223::1734
    [Crossref] [Google Scholar]
  121. Saal AE, Hauri EH, Langmuir CH, Perfit MR. 2002.. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. . Nature 419::45155
    [Crossref] [Google Scholar]
  122. Scambelluri M, Müntener O, Hermann J, Piccardo GB, Trommsdorff V. 1995.. Subduction of water into the mantle—history of an Alpine peridotite. . Geology 23::45962
    [Crossref] [Google Scholar]
  123. Scambelluri M, Müntener O, Ottolini L, Pettke TT, Vannucci R. 2004.. The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. . Earth Planet. Sci. Lett. 222::21734
    [Crossref] [Google Scholar]
  124. Scambelluri M, Pettke T, Cannaò E. 2015.. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). . Earth Planet. Sci. Lett. 429::4559
    [Crossref] [Google Scholar]
  125. Schilling JG, Bergeron MB, Evans R. 1980.. Halogens in the mantle beneath the North Atlantic. . Philos. Trans. R. Soc. A 297::14778
    [Google Scholar]
  126. Schilling JG, Unni CK, Bender ML. 1978.. Origin of chlorine and bromine in the oceans. . Nature 273::63136
    [Crossref] [Google Scholar]
  127. Segee-Wright G, Barnes JD, Lassiter JC, Holmes DJ, Beaudoin GM, et al. 2023.. Halogen enrichment in the North American lithospheric mantle from the dehydration of the Farallon plate. . Geochim. Cosmochim. Acta 348::187205
    [Crossref] [Google Scholar]
  128. Seyfried WE, Ding K. 1995.. The hydrothermal chemistry of fluoride in seawater. . Geochim. Cosmochim. Acta 59::106371
    [Crossref] [Google Scholar]
  129. Sharp ZD, Barnes JD. 2004.. Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. . Earth Planet. Sci. Lett. 226::24354
    [Crossref] [Google Scholar]
  130. Sharp ZD, Barnes JD, Brearley AJ, Chaussidon M, Fischer TP, Kamenetsky VS. 2007.. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. . Nature 446::106265
    [Crossref] [Google Scholar]
  131. Sharp ZD, Draper DS. 2013.. The chlorine abundance of Earth: implications for a habitable planet. . Earth Planet. Sci. Lett. 369–370::7177
    [Crossref] [Google Scholar]
  132. Sharp ZD, Mercer JA, Jones RH, Brearley AJ, Selverstone J, et al. 2013.. The chlorine isotope composition of chondrites and Earth. . Geochim. Cosmochim. Acta 107::189204
    [Crossref] [Google Scholar]
  133. Shaw DM, Reilly GA, Muysson JR, Pattenden GE, Campbell FE. 1967.. An estimate of the chemical composition of the Canadian Precambrian Shield. . Can. J. Earth Sci. 4::82953
    [Crossref] [Google Scholar]
  134. Snyder G, Savov IP, Muramatsu Y. 2005.. 5. Iodine and boron in Mariana serpentinite mud volcanoes (ODP legs 125 and 195): implications for forearc processes and subduction recycling. . Proc. Ocean Drill. Program Sci. Results 195::118
    [Google Scholar]
  135. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, et al. 2007.. The amount of recycled crust in sources of mantle-derived melts. . Science 316::41217
    [Crossref] [Google Scholar]
  136. Staudacher T, Allègre CJ. 1988.. Recycling of oceanic crust and sediments: the noble gas subduction barrier. . Earth Planet. Sci. Lett. 89::17383
    [Crossref] [Google Scholar]
  137. Stracke A. 2012.. Earth's heterogeneous mantle: a product of convection-driven interaction between crust and mantle. . Chem. Geol. 330::27499
    [Crossref] [Google Scholar]
  138. Straub SM, Layne GD. 2003.. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. . Geochim. Cosmochim. Acta 67::4179203
    [Crossref] [Google Scholar]
  139. Stroncik NA, Haase KM. 2004.. Chlorine in oceanic intraplate basalts: constraints on mantle sources and recycling processes. . Geology 32::94548
    [Crossref] [Google Scholar]
  140. Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ. 2010.. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. . Earth Planet. Sci. Lett. 294::16372
    [Crossref] [Google Scholar]
  141. Svensen H, Banks DA, Austreim H. 2001.. Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway. . J. Metamorph. Geol. 19::16578
    [Crossref] [Google Scholar]
  142. Ulmer P, Trommsdorff V. 1995.. Serpentine stability to mantle depths and subduction-related magmatism. . Science 268::85861
    [Crossref] [Google Scholar]
  143. Unni CK, Schilling JG. 1978.. Cl and Br degassing by volcanism along Reykjanes Ridge and Iceland. . Nature 272::1923
    [Crossref] [Google Scholar]
  144. Urann BM, Le Roux V, Hammond K, Marschall HR, Lee CTA, Monteleone BD. 2017.. Fluorine and chlorine in mantle minerals and the halogen budget of the Earth's mantle. . Contrib. Mineral. Petrol. 172::51
    [Crossref] [Google Scholar]
  145. Urann BM, Le Roux V, John T, Beaudoin GM, Barnes JD. 2020.. The distribution and abundance of halogens in eclogites: an in situ SIMS perspective of the Raspas Complex (Ecuador). . Am. Miner. 105::30718
    [Crossref] [Google Scholar]
  146. Vanko DA. 1986.. High-chlorine amphiboles from oceanic rocks: product of highly-saline hydrothermal fluids?. Am. Miner. 71::5159
    [Google Scholar]
  147. Wallace PJ. 2005.. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. . J. Volcanol. Geotherm. Res. 140::21740
    [Crossref] [Google Scholar]
  148. Wedepohl KH. 1995.. The composition of the continental crust. . Geochim. Cosmochim. Acta 59::121732
    [Crossref] [Google Scholar]
  149. White WM, Hofmann AW. 1982.. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. . Nature 296::82125
    [Crossref] [Google Scholar]
  150. Workman RK, Hart SR. 2005.. Major and trace element composition of the depleted MORB mantle (DMM). . Earth Planet. Sci. Lett. 231::5372
    [Crossref] [Google Scholar]
  151. Workman RK, Hauri E, Hart SR, Wang J, Blusztajn J. 2006.. Volatile and trace elements in basaltic glasses from Samoa: implications for water distribution in the mantle. . Earth Planet. Sci. Lett. 241::93251
    [Crossref] [Google Scholar]
  152. Zherebtsova IK, Volkova NN. 1966.. Experimental study of behaviour of trace elements in the process of natural solar evaporation of Black Sea water and Lake Sasky-Sivash brine. . Geochem. Int. 3::65670
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-111700
Loading
/content/journals/10.1146/annurev-earth-031621-111700
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error