1932

Abstract

Upon exhumation and cooling, contrasting compressibilities and thermal expansivities induce differential strains (volume mismatches) between a host crystal and its inclusions. These strains can be quantified in situ using Raman spectroscopy or X-ray diffraction. Knowing equations of state and elastic properties of minerals, elastic thermobarometry inverts measured strains to calculate the pressure-temperature conditions under which the stress state was uniform in the host and inclusion. These are commonly interpreted to represent the conditions of inclusion entrapment. Modeling and experiments quantify corrections for inclusion shape, proximity to surfaces, and (most importantly) crystal-axis anisotropy, and they permit accurate application of the more common elastic thermobarometers. New research is exploring the conditions of crystal growth, reaction overstepping, and the magnitudes of differential stresses, as well as inelastic resetting of inclusion and host strain, and potential new thermobarometers for lower-symmetry minerals.

  • ▪  A physics-based method is revolutionizing calculations of metamorphic pressures and temperatures.
  • ▪  Inclusion shape, crystal anisotropy, and proximity to boundaries affect calculations but can be corrected for.
  • ▪  New results are leading petrologists to reconsider pressure-temperature conditions, differential stresses, and thermodynamic equilibrium.
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-112720
2023-05-31
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-112720.html?itemId=/content/journals/10.1146/annurev-earth-031621-112720&mimeType=html&fmt=ahah

Literature Cited

  1. Adams HG, Cohen LH, Rosenfeld JL. 1975. Solid inclusion piezothermometry I: comparison dilatometry. Am. Mineral. 60:574–83
    [Google Scholar]
  2. Agard P, Yamato P, Soret M, Prigent C, Guillot S et al. 2016. Plate interface rheological switches during subduction infancy: control on slab penetration and metamorphic sole formation. Earth Planet. Sci. Lett. 451:208–20
    [Google Scholar]
  3. Alvaro M, Mazzucchelli ML, Angel RJ, Murri M, Campomenosi N et al. 2020. Fossil subduction recorded by quartz from the coesite stability field. Geology 48:24–28
    [Google Scholar]
  4. Angel RJ, Allan DR, Miletich R, Finger LW. 1997. The use of quartz as an internal pressure standard in high-pressure crystallography. J. Appl. Crystallogr. 30:4461–66
    [Google Scholar]
  5. Angel RJ, Alvaro M, Gonzalez-Platas J. 2014a. EosFit7c and a Fortran module (library) for equation of state calculations. Zeits. Kristall. Crystall. Matl. 229:5405–19
    [Google Scholar]
  6. Angel RJ, Alvaro M, Miletich R, Nestola F. 2017a. A simple and generalised P–T–V EoS for continuous phase transitions, implemented in EosFit and applied to quartz. Contrib. Mineral. Petrol. 172:529
    [Google Scholar]
  7. Angel RJ, Alvaro M, Nestola F. 2022a. Crystallographic methods for non-destructive characterization of mineral inclusions in diamonds. Rev. Mineral. Geochem. 88:1257–305
    [Google Scholar]
  8. Angel RJ, Gilio M, Mazzucchelli M, Alvaro M. 2022b. Garnet EoS: a critical review and synthesis. Contrib. Mineral. Petrol. 177:554
    [Google Scholar]
  9. Angel RJ, Mazzucchelli ML, Alvaro M, Nestola F. 2017b. EosFit-Pinc: a simple GUI for host-inclusion elastic thermobarometry. Am. Mineral. 102:91957–60
    [Google Scholar]
  10. Angel RJ, Mazzucchelli ML, Alvaro M, Nestola F 2020.. “ EosFit-Pinc: a simple GUI for host-inclusion elastic thermobarometry”—reply to Zhong et al. Am. Mineral. 105:101587–88
    [Google Scholar]
  11. Angel RJ, Mazzucchelli ML, Alvaro M, Nimis P, Nestola F. 2014b. Geobarometry from host-inclusion systems: the role of elastic relaxation. Am. Mineral. 99:102146–49
    [Google Scholar]
  12. Angel RJ, Mazzucchelli ML, Gonzalez-Platas J, Alvaro M 2021. A self-consistent approach to describe unit-cell-parameter and volume variations with pressure and temperature. J. Appl. Cryst. 54:1621–30
    [Google Scholar]
  13. Angel RJ, Murri M, Mihailova B, Alvaro M. 2019. Stress, strain and Raman shifts. Zeits. Kristall. Crystall. Matl. 234:129–40
    [Google Scholar]
  14. Angel RJ, Nimis P, Mazzucchelli ML, Alvaro M, Nestola F 2015. How large are departures from lithostatic pressure? Constraints from host–inclusion elasticity. J. Metamorph. Geol. 33:8801–13
    [Google Scholar]
  15. Anzolini C, Nestola F, Mazzucchelli ML, Alvaro M, Nimis P et al. 2019. Depth of diamond formation obtained from single periclase inclusions. Geology 47:3219–22
    [Google Scholar]
  16. Ashchepkov IV, Pokhilenko NP, Vladykin NV, Logvinova AM, Afanasiev VP et al. 2010. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 485:1–417–41
    [Google Scholar]
  17. Ashley KT, Caddick MJ, Steele-MacInnis MJ, Bodnar RJ, Dragovic B. 2014. Geothermobarometric history of subduction recorded by quartz inclusions in garnet. Geochem. Geophys. Geosyst. 15:350–60
    [Google Scholar]
  18. Barron LM. 2003. A simple model for the pressure preservation index of inclusions in diamond. Am. Mineral. 88:101615–19
    [Google Scholar]
  19. Beall A, Fagereng Å, Ellis S 2019. Fracture and weakening of jammed subduction shear zones, leading to the generation of slow slip events. Geochem. Geophys. Geosyst. 20:114869–84
    [Google Scholar]
  20. Bonazzi M, Tumiati S, Thomas JB, Angel RJ, Alvaro M 2019. Assessment of the reliability of elastic geobarometry with quartz inclusions. Lithos 350–351:105201
    [Google Scholar]
  21. Bose K, Ganguly J. 1995. Quartz-coesite transition revisited: reversed experimental determination at 500–1200°C and retrieved thermochemical properties. Am. Mineral. 80:231–38
    [Google Scholar]
  22. Bower AF. 2010. Applied Mechanics of Solids Boca Raton, FL: CRC
  23. Brewster D. 1820. Notice respecting a singular structure in the diamond. Edinb. Philos. J. 3:98–100
    [Google Scholar]
  24. Campomenosi N, Angel RJ, Alvaro M, Mihailova B 2023. Resetting of zircon inclusions in garnet: implications for elastic thermobarometry. Geology 51:123–27
    [Google Scholar]
  25. Campomenosi N, Mazzucchelli ML, Mihailova B, Scambelluri M, Angel RJ et al. 2018. How geometry and anisotropy affect residual strain in host-inclusion systems: coupling experimental and numerical approaches. Am. Mineral. 103:122032–35
    [Google Scholar]
  26. Campomenosi N, Scambelluri M, Angel RJ, Hermann J, Mazzucchelli ML et al. 2021. Using the elastic properties of zircon-garnet host-inclusion pairs for thermobarometry of the ultrahigh-pressure Dora-Maira whiteschists: problems and perspectives. Contrib. Mineral. Petrol. 176:536
    [Google Scholar]
  27. Castro AE, Spear FS. 2017. Reaction overstepping and re-evaluation of peak P–T conditions of the blueschist unit Sifnos, Greece: implications for the Cyclades subduction zone. Int. Geol. Rev. 59:548–62
    [Google Scholar]
  28. Cesare B, Parisatto M, Mancini L, Peruzzo L, Franceschi M et al. 2021. Mineral inclusions are not immutable: evidence of post-entrapment thermally-induced shape change of quartz in garnet. Earth Planet. Sci. Lett. 555:116708
    [Google Scholar]
  29. Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib. Mineral. Petrol. 86:107–18
    [Google Scholar]
  30. Chou I-M, Wang A 2017. Application of laser Raman micro-analyses to Earth and planetary materials. J. Asian Earth Sci. 145:309–33
    [Google Scholar]
  31. Cisneros M, Ashley KT, Bodnar RJ. 2020. Evaluation and application of the quartz-inclusions-in-epidote mineral barometer. Am. Mineral. 105:81140–51
    [Google Scholar]
  32. Cisneros M, Befus KS. 2020. Applications and limitations of elastic thermobarometry: insights from elastic modeling of inclusion-host pairs and example case studies. Geochem. Geophys. Geosyst. 21:10e2020GC009231
    [Google Scholar]
  33. Cizina MF, Mikesell TD, Kohn MJ. 2023. Optimizing Raman spectral collection for quartz and zircon crystals for elastic thermobarometry. Am. Mineral. In press. https://doi.org/10.2138/am-2022-8423
    [Google Scholar]
  34. Dabrowski M, Powell R, Podladchikov Y. 2015. Viscous relaxation of grain-scale pressure variations. J. Metamorph. Geol. 33:859–68
    [Google Scholar]
  35. Dubessy J, Caumon M-C, Rull F, eds. 2012. Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage London: Eur. Mineral. Union
  36. Enami M, Nishiyama T, Mouri T. 2007. Laser Raman microspectrometry of metamorphic quartz: a simple method for comparison of metamorphic pressures. Am. Mineral. 92:8–91303–15
    [Google Scholar]
  37. Endo S, Wallis SR, Tsuboi M, Torres De Leon R, Solari LA. 2012. Metamorphic evolution of lawsonite eclogites from the southern Motagua fault zone, Guatemala: insights from phase equilibria and Raman spectroscopy. J. Metamorph. Geol. 30:2143–64
    [Google Scholar]
  38. Eshelby J. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241:376–96
    [Google Scholar]
  39. Futergendler S, Frank-Kamenetsky V. 1961. Oriented inclusions of olivine, garnet and chrome-spinel in diamonds. Zap. Vsesoy. Mineral. Obsh. 90:230–36
    [Google Scholar]
  40. Gaidies F, Pattison DRM, de Capitani C. 2011. Toward a quantitative model of metamorphic nucleation and growth. Contrib. Mineral. Petrol. 162:5975–93
    [Google Scholar]
  41. García-Casco A, Torres-Roldan RL, Millan G, Monie P, Schneider J. 2002. Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba: a record of tectonic instability during subduction?. J. Metamorph. Geol. 20:581–98
    [Google Scholar]
  42. Gilio M, Scambelluri M, Angel RJ, Alvaro M 2021. The contribution of elastic geothermobarometry to the debate on HP versus UHP metamorphism. J. Metamorph. Geol. 40:229–42
    [Google Scholar]
  43. Gonzalez JP, Mazzucchelli ML, Angel RJ, Alvaro M. 2021. Elastic geobarometry for anisotropic inclusions in anisotropic host minerals: quartz-in-zircon. J. Geophys. Res. Solid Earth 126:6e2021JB022080
    [Google Scholar]
  44. Goodier JN. 1933. Concentration of stress around spherical and cylindrical inclusions and flaws. J. Appl. Mech. 55:739–44
    [Google Scholar]
  45. Guiraud M, Powell R. 2006. P–V–T relationships and mineral equilibria in inclusions in minerals. Earth Planet. Sci. Lett. 244:3–4683–94
    [Google Scholar]
  46. Guo J, Zheng J, Cawood PA, Weinberg RF, Ping X, Li Y 2021. Archean trondhjemitic crust at depth in Yangtze Craton: evidence from TTG xenolith in mafic dyke and apatite inclusion pressure in zircon. Precambrian Res. 354:106055
    [Google Scholar]
  47. Harris JW. 1972. Black material on mineral inclusions and in internal fracture planes in diamond. Contrib. Mineral. Petrol. 35:22–33
    [Google Scholar]
  48. Harris JW, Milledge HJ, Barron THK, Munn RW. 1970. Thermal expansion of garnets included in diamond. J. Geophys. Res. 75:295775–92
    [Google Scholar]
  49. Harvey KM, Penniston-Dorland SC, Kohn MJ, Piccoli PM. 2021. Assessing P-T variability in mélange blocks from the Catalina Schist: Is there differential movement at the subduction interface?. J. Metamorph. Geol. 39:3271–95
    [Google Scholar]
  50. Holland TJB, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29:333–83
    [Google Scholar]
  51. Hopkins JB, Farrow LA. 1986. Raman microprobe determination of local crystal orientation. J. Appl. Phys. 59:1103–10
    [Google Scholar]
  52. Hoskin PWO, Rodgers KA. 1996. Raman spectral shift in the isomorphous series (Zr1-xHfx)SiO4. Eur. J. Solid State Inorg. Chem. 33:1111–21
    [Google Scholar]
  53. Izraeli ES, Harris JW, Navon O. 1999. Raman barometry of diamond formation. Earth Planet. Sci. Lett. 173:3351–60
    [Google Scholar]
  54. Knittle E, Williams Q. 1993. High-pressure Raman spectroscopy of ZrSiO4: observation of the zircon to scheelite transition at 300 K. Am. Mineral. 78:3–4245–52
    [Google Scholar]
  55. Kohn MJ. 2004. Oscillatory- and sector-zoned garnets record cyclic (?) rapid thrusting in central Nepal. Geochem. Geophys. Geosyst. 5:e2004GC000737
    [Google Scholar]
  56. Kohn MJ. 2014.. “ Thermoba-Raman-try”: calibration of spectroscopic barometers and thermometers for mineral inclusions. Earth Planet. Sci. Lett. 388:187–96
    [Google Scholar]
  57. Kohn MJ. 2016. Metamorphic chronology—a tool for all ages: past achievements and future prospects. Am. Mineral. 100:1–225–42
    [Google Scholar]
  58. Kohn MJ. 2020. A refined zirconium-in-rutile thermometer. Am. Mineral. 105:963–71
    [Google Scholar]
  59. Kohn MJ, Castro AE, Kerswell B, Ranero CR, Spear FS. 2018. Shear heating reconciles thermal models with the metamorphic rock record of subduction. PNAS 115:11706–11
    [Google Scholar]
  60. Kohn MJ, Spear FS. 1991. Error propagation for barometers: 2. Application to rocks. Am. Mineral. 76:138–47
    [Google Scholar]
  61. Korsakov AV, Perraki M, Zhukov VP, De Gussem K, Vandenabeele P, Tomilenko AA. 2009. Is quartz a potential indicator of ultrahigh-pressure metamorphism? Laser Raman spectroscopy of quartz inclusions in ultrahigh-pressure garnets. Eur. J. Mineral. 21:61313–23
    [Google Scholar]
  62. Mazzucchelli ML, Angel RJ, Alvaro M 2021. EntraPT: an online platform for elastic geothermobarometry. Am. Mineral. 106:5830–37
    [Google Scholar]
  63. Mazzucchelli ML, Burnley P, Angel RJ, Morganti S, Domeneghetti MCC et al. 2018. Elastic geothermobarometry: corrections for the geometry of the host-inclusion system. Geology 46:3231–34
    [Google Scholar]
  64. Mazzucchelli ML, Reali A, Morganti S, Angel RJ, Alvaro M. 2019. Elastic geobarometry for anisotropic inclusions in cubic hosts. Lithos 350–351:105218
    [Google Scholar]
  65. Mitchell R, Giardini A. 1953. Oriented olivine inclusions in diamond. Am. Mineral. 38:136–38
    [Google Scholar]
  66. Morganti S, Mazzucchelli ML, Alvaro M, Reali A 2020. A numerical application of the Eshelby theory for geobarometry of non-ideal host-inclusion systems. Meccanica 55:751–64
    [Google Scholar]
  67. Moulas E, Kostopoulos D, Podladchikov Y, Chatzitheodoridis E, Schenker FL et al. 2020. Calculating pressure with elastic geobarometry: a comparison of different elastic solutions with application to a calc-silicate gneiss from the Rhodope Metamorphic Province. Lithos 378–379:105803
    [Google Scholar]
  68. Moulas E, Podladchikov Y, Zingerman K, Vershinin A, Levin V 2023. Large-strain elastic and elasto-plastic formulations for host-inclusion systems and their applications in thermobarometry and geodynamics. Am. J. Sci In press
  69. Mura T. 1987. Micromechanics of Defects in Solids Dordrecht, Neth.: Springer
  70. Murri M, Gonzalez JP, Mazzucchelli ML, Prencipe M, Mihailova B et al. 2022. The role of symmetry-breaking strains on quartz inclusions in anisotropic hosts: implications for Raman elastic geobarometry. Lithos 422–423:106716
    [Google Scholar]
  71. Murri M, Mazzucchelli ML, Campomenosi N, Korsakov AV, Prencipe M et al. 2018. Raman elastic geobarometry for anisotropic mineral inclusions. Am. Mineral. 103:111869–72
    [Google Scholar]
  72. Nestola F, Pasqual D, Smyth JR, Novella D, Secco L et al. 2011. New accurate elastic parameters for the forsterite-fayalite solid solution. Am. Mineral. 96:11–121742–47
    [Google Scholar]
  73. Nimis P, Angel RJ, Alvaro M, Nestola F, Harris JW et al. 2019. Crystallographic orientations of magnesiochromite inclusions in diamonds: What do they tell us?. Contrib. Mineral. Petrol. 174:429
    [Google Scholar]
  74. Nye JF. 1985. Physical Properties of Crystals: Their Representation by Tensors and Matrices Oxford, UK: Oxford Univ. Press. , 2nd ed..
  75. Osborne ZR, Thomas JB, Nachlas WO, Baldwin SL, Holycross ME et al. 2019. An experimentally calibrated thermobarometric solubility model for titanium in coesite (TitaniC). Contrib. Mineral. Petrol. 174:434
    [Google Scholar]
  76. Parkinson CD. 2000. Coesite inclusions and prograde compositional zonation of garnet in whiteschist of the HP-UHPM Kokchetav massif, Kazakhstan: a record of progressive UHP metamorphism. Lithos 52:1–4215–33
    [Google Scholar]
  77. Parkinson CD, Katayama I. 1999. Present-day ultrahigh-pressure conditions of coesite inclusion in zircon and garnet: evidence from laser Raman microspectroscopy. Geology 27:979–82
    [Google Scholar]
  78. Pattison DRM, De Capitani C, Gaidies F. 2011. Petrological consequences of variations in metamorphic reaction affinity. J. Metamorph. Geol. 29:953–77
    [Google Scholar]
  79. Penniston-Dorland SC, Kohn MJ, Manning CE. 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet. Sci. Lett. 428:243–54
    [Google Scholar]
  80. Pliny the Elder 1855. Naturalis Historia transl. J Bostock London: Taylor & Francis http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:latinLit:phi0978.phi001.perseus-eng1
  81. Puhan B. 2021. Investigation of microscale fracture opening in host inclusion systems. MS Thesis Univ. Pavia, Italy:
    [Google Scholar]
  82. Reher C, Frison G. 1991. Rarity, clarity, symmetry: quartz crystal utilization in hunter-gatherer stone tool assemblages. Raw Material Economies Among Prehistoric Hunter-Gatherers A Montet-White, S Holen 375–97. Lawrence: Univ. Kansas
    [Google Scholar]
  83. Rosenfeld JL, Chase AB. 1961. Pressure and temperature of crystallization from elastic effects around solid inclusions in minerals?. Am. J. Sci. 259:519–41
    [Google Scholar]
  84. Russell JK, Sparks RSJ, Kavanagh JL. 2019. Kimberlite volcanology: transport, ascent, and eruption. Elements 15:6405–10
    [Google Scholar]
  85. Schmidt C, Steele-MacInnis M, Watenphul A, Wilke M. 2013. Calibration of zircon as a Raman spectroscopic pressure sensor to high temperatures and application to water-silicate melt systems. Am. Mineral. 98:4643–50
    [Google Scholar]
  86. Schmidt C, Ziemann MA. 2000. In-situ Raman spectroscopy of quartz: a pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. Am. Mineral. 85:11–121725–34
    [Google Scholar]
  87. Sobolev NV, Fursenko BA, Goryainov SV, Shu JF, Hemley RJ et al. 2000. Fossilized high pressure from the Earth's deep interior: the coesite-in-diamond barometer. PNAS 97:11875–79
    [Google Scholar]
  88. Sorby HC, Butler PJ. 1869. On the structure of rubies, sapphires, diamonds, and some other minerals. Proc. R. Soc. 17:291–302
    [Google Scholar]
  89. Spear FS. 2017. Garnet growth after overstepping. Chem. Geol. 466:491–99
    [Google Scholar]
  90. Spear FS, Thomas JB, Hallett BW. 2014. Overstepping the garnet isograd: a comparison of QuiG barometry and thermodynamic modeling. Contrib. Mineral. Petrol. 168:1059
    [Google Scholar]
  91. Stangarone C, Angel R, Prencipe M, Mihailova B, Alvaro M. 2019. New insights into the zircon-reidite phase transition. Am. Mineral. 104:830–37
    [Google Scholar]
  92. Steno N. 1669. De Solido Intra Solidum Naturaliter Contento Dissertationis Prodromus Florence, Italy: Ex typographia sub signo stellae
  93. Taguchi T, Igami Y, Miyake A, Enami M. 2019. Factors affecting preservation of coesite in ultrahigh-pressure metamorphic rocks: insights from TEM observations of dislocations within kyanite. J. Metamorph. Geol. 37:401–14
    [Google Scholar]
  94. Tait S. 1992. Selective preservation of melt inclusions in igneous phenocrysts. Am. Mineral. 77:1–2146–55
    [Google Scholar]
  95. Thomas JB, Spear FS. 2018. Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic thermobarometer. Contrib. Mineral. Petrol. 173:42
    [Google Scholar]
  96. van der Molen I, van Roermund HLM. 1986. The pressure path of solid inclusions in minerals: the retention of coesite inclusions during uplift. Lithos 19:3317–24
    [Google Scholar]
  97. Viete DR, Hacker BR, Allen MB, Seward GGE, Tobin MJ et al. 2018. Metamorphic records of multiple seismic cycles during subduction. Sci. Adv. 4:eaaq0234
    [Google Scholar]
  98. Wallis D, Hansen LN, Britton TB, Wilkinson AJ. 2019. High-angular resolution electron backscatter diffraction as a new tool for mapping lattice distortion in geological minerals. J. Geophys. Res. Solid Earth 124:76337–58
    [Google Scholar]
  99. Whitney DL, Broz M, Cook RF. 2007. Hardness, toughness, and modulus of some common metamorphic minerals. Am. Mineral. 92:281–88
    [Google Scholar]
  100. Whitney DL, Cooke ML, Du Frane SA. 2000. Modeling of radial microcracks at corners of inclusions in garnet using fracture mechanics. J. Geophys. Res. 105:B22843–53
    [Google Scholar]
  101. Wolfe OM, Spear FS 2020. Regional quartz inclusion barometry and comparison with conventional thermobarometry and intersecting isopleths from the Connecticut Valley Trough, Vermont and Massachusetts, USA. J. Petrol. 61:83gaa076
    [Google Scholar]
  102. Wurz S. 2013. Technological trends in the Middle Stone Age of South Africa between MIS7 and MIS3. Curr. Anthropol. 54:S305–19
    [Google Scholar]
  103. Zhang Y. 1998. Mechanical and phase equilibria in inclusion-host systems. Earth Planet. Sci. Lett. 157:3–4209–22
    [Google Scholar]
  104. Zhong X, Andersen NH, Dabrowski M, Jamtveit B. 2019a. Zircon and quartz inclusions in garnet used for complementary Raman thermobarometry: application to the Holsnøy eclogite, Bergen Arcs, Western Norway. Contrib. Mineral. Petrol. 174:650
    [Google Scholar]
  105. Zhong X, Dabrowski M, Jamtveit B. 2019b. Analytical solution for the stress field in elastic half-space with a spherical pressurized cavity or inclusion containing eigenstrain. Geophys. J. Int. 216:21100–15
    [Google Scholar]
  106. Zhong X, Dabrowski M, Jamtveit B. 2021a. Analytical solution for residual stress and strain preserved in anisotropic inclusion entrapped in an isotropic host. Solid Earth 12:4817–33
    [Google Scholar]
  107. Zhong X, Dabrowski M, Powell R, Jamtveit B. 2020a.. “ EosFit-Pinc: a simple GUI for host-inclusion elastic thermobarometry” by Angel et al. (2017)—discussion. Am. Mineral. 105:101585–86
    [Google Scholar]
  108. Zhong X, Loges A, Roddatis V, John T. 2021b. Measurement of crystallographic orientation of quartz crystal using Raman spectroscopy: application to entrapped inclusions. Contrib. Mineral. Petrol. 176:1189
    [Google Scholar]
  109. Zhong X, Moulas E, Tajčmanová L. 2018. Tiny timekeepers witnessing high-rate exhumation processes. Sci. Rep. 8:12234
    [Google Scholar]
  110. Zhong X, Moulas E, Tajčmanová L. 2020b. Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry. Solid Earth 11:1223–40
    [Google Scholar]
  111. Zhong X, Petley-Ragan AJ, Incel SHM, Dabrowski M, Andersen NH, Jamtveit B. 2021c. Lower crustal earthquake associated with highly pressurized frictional melts. Nat. Geosci. 14:519–25
    [Google Scholar]
  112. Zhukov VP, Korsakov AV. 2015. Evolution of host-inclusion systems: a visco-elastic model. J. Metamorph. Geol. 33:815–28
    [Google Scholar]
  113. Ziman JM. 1960. Electrons and Phonons: The Theory of Transport Phenomena in Solids Oxford, UK: Oxford Univ. Press
/content/journals/10.1146/annurev-earth-031621-112720
Loading
/content/journals/10.1146/annurev-earth-031621-112720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error