1932

Abstract

Africa's fossil record of late Cenozoic mammals documents considerable ecological and evolutionary changes through time. Here, we synthesize those changes in the context of the mechanisms proposed to account for them, including bottom-up (e.g., climate change) and top-down (e.g., hominin impacts) processes. In doing so, we () examine how the incompleteness of the fossil record and the varied spatiotemporal scales of the evidence complicate efforts to establish cause-effect relationships; () evaluate hypothesized drivers of long-term ecological and evolutionary change, highlighting key unknowns; and () synthesize major taxonomic and functional trends through time (e.g., downsizing of faunal communities) considering the proposed drivers. Throughout our review, we point to unresolved questions and highlight research avenues that have potential to inform on the processes that have shaped the history of what are today the most diverse remaining large mammal communities on Earth.

  • ▪  The study of late Cenozoic African mammal communities is intertwined with questions about the context, causes, and consequences of hominin evolution.
  • ▪  The fossil record documents major functional (e.g., loss of megaherbivores) and taxonomic (e.g., rise of the Bovidae) changes over the past ∼7 Myr.
  • ▪  Complexities inherent to the fossil record have made it difficult to identify the processes that drove ecological and evolutionary changes.
  • ▪  Unanswered questions about the drivers of faunal change and the functioning of past ecosystems represent promising future research directions.
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-114105
2024-07-23
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-031621-114105.html?itemId=/content/journals/10.1146/annurev-earth-031621-114105&mimeType=html&fmt=ahah

Literature Cited

  1. Andrews CW. 1906.. A Descriptive Catalogue of the Tertiary Vertebrata of the Fayum, Egypt. London:: Br. Mus. (Nat. Hist.)
    [Google Scholar]
  2. Barnosky AD. 2001.. Distinguishing the effects of the red queen and court jester on Miocene mammal evolution in the northern Rocky Mountains. . J. Vertebr. Paleontol. 21::17285
    [Crossref] [Google Scholar]
  3. Barr WA. 2017.. Signal or noise? A null model for evaluating the significance of turnover pulses. . Paleobiology 43::65666
    [Crossref] [Google Scholar]
  4. Barr WA, Pobiner B, Rowan J, Du A, Faith J. 2022.. No sustained increase in zooarchaeological evidence for carnivory after the appearance of Homo erectus. . PNAS 119::e2115540119
    [Crossref] [Google Scholar]
  5. Behrensmeyer AK. 2006.. Climate change and human evolution. . Science 311::47678
    [Crossref] [Google Scholar]
  6. Behrensmeyer AK, Bobe R, Alemseged Z. 2007.. Approaches to the analysis of faunal change during the East African Pliocene. . See Bobe et al. 2007 , pp. 124
  7. Behrensmeyer AK, Todd NE, Potts R, McBrinn GE. 1997.. Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. . Science 278::158994
    [Crossref] [Google Scholar]
  8. Bibi F, Bukhsianidze M, Gentry A, Geraads D, Kostopoulos D, Vrba E. 2009.. The fossil record and evolution of Bovidae: state of the field. . Palaeontol. Electron. 12::10A
    [Google Scholar]
  9. Bibi F, Cantalapiedra JL 2023.. Plio-Pleistocene African megaherbivore losses associated with community biomass restructuring. . Science 380::107680
    [Crossref] [Google Scholar]
  10. Bibi F, Kiessling W. 2015.. Continuous evolutionary change in Plio-Pleistocene mammals of eastern Africa. . PNAS 112::1062328
    [Crossref] [Google Scholar]
  11. Bibi F, Rowan J, Reed K. 2017.. Late Pliocene Bovidae from Ledi-Geraru (Lower Awash Valley, Ethiopia) and their implications for Afar paleoecology. . J. Vertebr. Paleontol. 37::e1337639
    [Crossref] [Google Scholar]
  12. Bibi F, Souron A, Bocherens H, Uno K, Boisserie J-R. 2013.. Ecological change in the lower Omo Valley around 2.8 Ma. . Biol. Lett. 9::20120890
    [Crossref] [Google Scholar]
  13. Bishop LC. 2010.. Suoidea. . See Werdelin & Sanders 2010 , pp. 82142
  14. Blois JL, Hadly EA. 2009.. Mammalian responses to Cenozoic climatic change. . Annu. Rev. Earth Planet. Sci. 37::181208
    [Crossref] [Google Scholar]
  15. Blumenthal SA, Levin NE, Brown FH, Brugal J-P, Chritz KL, et al. 2017.. Aridity and hominin environments. . PNAS 114::733136
    [Crossref] [Google Scholar]
  16. Bobe R. 2006.. The evolution of arid ecosystems in eastern Africa. . J. Arid Environ. 66::56484
    [Crossref] [Google Scholar]
  17. Bobe R. 2011.. Fossil mammals and paleoenvironments in the Omo-Turkana Basin. . Evolut. Anthropol. 20::25463
    [Crossref] [Google Scholar]
  18. Bobe R, Alemseged Z, Behrensmeyer AK, eds. 2007.. Hominin Environments in the East African Pliocene. Dordrecht, Neth.:: Springer
    [Google Scholar]
  19. Bobe R, Behrensmeyer AK. 2004.. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. . Paleogeogr. Paleoclimatol. Paleoecol. 207::399420
    [Crossref] [Google Scholar]
  20. Bobe R, Behrensmeyer AK, Chapman RE. 2002.. Faunal change, environmental variability and late Pliocene hominin evolution. . J. Hum. Evol. 42::47597
    [Crossref] [Google Scholar]
  21. Bobe R, Wood B. 2022.. Estimating origination times from the early hominin fossil record. . Evol. Anthropol. 31::92102
    [Crossref] [Google Scholar]
  22. Bosworth W, Huchon P, McClay K. 2005.. The Red Sea and Gulf of Aden basins. . J. Afr. Earth Sci. 43::33478
    [Crossref] [Google Scholar]
  23. Braun DR, Faith JT, Douglass MJ, Davies B, Power MJ, et al. 2021.. Ecosystem engineering in the Quaternary of the west coast of South Africa. . Evol. Anthropol. 30::5062
    [Crossref] [Google Scholar]
  24. Cerling TE, Andanje SA, Blumenthal SA, Brown FH, Chritz KL, et al. 2015.. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. . PNAS 112::1146772
    [Crossref] [Google Scholar]
  25. Cerling TE, Harris J, Ambrose S, Leakey M, Solounias N. 1997a.. Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan, Kenya. . J. Hum. Evol. 33::63550
    [Crossref] [Google Scholar]
  26. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, et al. 1997b.. Global vegetation change through the Miocene/Pliocene boundary. . Nature 389::15358
    [Crossref] [Google Scholar]
  27. Close RA, Evers SW, Alroy J, Butler RJ. 2018.. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardized discovery curves. . Methods Ecol. Evol. 9::1386400
    [Crossref] [Google Scholar]
  28. Cohen A, Du A, Rowan J, Yost C, Billingsley A, et al. 2022.. Plio-Pleistocene environmental variability in Africa and its implications for mammalian evolution. . PNAS 119::e2107393119
    [Crossref] [Google Scholar]
  29. de Vries D, Heritage S, Borths M, Sallam H, Seiffert E. 2021.. Widespread loss of mammalian lineage and dietary diversity in the early Oligocene of Afro-Arabia. . Commun. Biol. 4::1172
    [Crossref] [Google Scholar]
  30. deMenocal PB. 2004.. African climate change and faunal evolution during the Pliocene–Pleistocene. . Earth Planet. Sci. Lett. 220::324
    [Crossref] [Google Scholar]
  31. Du A, Alemseged Z. 2018.. Diversity analysis of Plio-Pleistocene large mammal communities in the Omo-Turkana Basin, eastern Africa. . J. Hum. Evol. 124::2539
    [Crossref] [Google Scholar]
  32. Du A, Behrensmeyer AK. 2018.. Spatial, temporal and taxonomic scaling of richness in an eastern African large mammal community. . Global Ecol. Biogeogr. 27::103142
    [Crossref] [Google Scholar]
  33. Du A, Rowan J, Wang SC, Wood BA, Alemseged Z. 2020.. Statistical estimates of hominin origination and extinction dates: a case study examining the Australopithecus anamensis–afarensis lineage. . J. Hum. Evol. 138::102688
    [Crossref] [Google Scholar]
  34. Dupont LM, Rommerskirchen F, Mollenhauer G, Schefuß E. 2013.. Miocene to Pliocene changes in South African hydrology in relation to the expansion of C4 plants. . Earth Planet. Sci. Lett. 375::40817
    [Crossref] [Google Scholar]
  35. Estes JA, Terbough J, Brashares JS, Power ME, Berger J, et al. 2011.. Trophic downgrading of planet Earth. . Science 333::3016
    [Crossref] [Google Scholar]
  36. Faith JT. 2011.. Late Quaternary dietary shifts of the Cape grysbok (Raphicerus melanotis) in southern Africa. . Quat. Res. 75::15965
    [Crossref] [Google Scholar]
  37. Faith JT. 2013.. Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, Western Cape, South Africa. . J. Hum. Evol. 65::71530
    [Crossref] [Google Scholar]
  38. Faith JT. 2014.. Late Pleistocene and Holocene mammal extinctions on continental Africa. . Earth-Sci. Rev. 128::10521
    [Crossref] [Google Scholar]
  39. Faith JT. 2022.. The Middle Pleistocene through the Holocene of Africa: a synthesis. . In African Paleoecology and Human Evolution, ed. SC Reynolds, R Bobe , pp. 3348. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  40. Faith JT, Behrensmeyer AK. 2013.. Climate change and faunal turnover: testing the mechanics of the turnover-pulse hypothesis with South African fossil data. . Paleobiology 39::60927
    [Crossref] [Google Scholar]
  41. Faith JT, Du A, Behrensmeyer AK, Davies B, Patterson DB, et al. 2021.. Rethinking the ecological drivers of hominin evolution. . Trends Ecol. Evol. 36::797807
    [Crossref] [Google Scholar]
  42. Faith JT, Lyman RL. 2019.. Paleozoology and Paleoenvironments: Fundamentals, Assumptions, Techniques. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  43. Faith JT, Rowan J, Du A. 2019.. Early hominins evolved within non-analog ecosystems. . PNAS 116::2147883
    [Crossref] [Google Scholar]
  44. Faith JT, Rowan J, Du A, Barr WA. 2020.. The uncertain case for human-driven extinctions prior to Homo sapiens. . Quat. Res. 96::88104
    [Crossref] [Google Scholar]
  45. Faith JT, Rowan J, Du A, Koch PL. 2018.. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. . Science 362::93841
    [Crossref] [Google Scholar]
  46. Fannin L, Yeakel J, Venkataraman V, Seyoum C, Geraads D, et al. 2021.. Carbon and strontium isotope ratios shed new light on the paleobiology and collapse of Theropithecus, a primate experiment in graminivory. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 572::110393
    [Crossref] [Google Scholar]
  47. Faurby S, Silvestro D, Werdelin L, Antonelli A. 2020.. Brain expansion in early hominins predicts carnivore extinctions in East Africa. . Ecol. Lett. 23::53744
    [Crossref] [Google Scholar]
  48. Fillion E, Harrison T, Kwekason A. 2022.. A nonanalog Pliocene ungulate community at Laetoli with implications for the paleoecology of Australopithecus afarensis. . J. Hum. Evol. 167::103182
    [Crossref] [Google Scholar]
  49. Fortelius M, Žliobaitė I, Kaya F, Bibi F, Bobe R, et al. 2016.. An ecometric analysis of the fossil mammal record of the Turkana Basin. . Philos. Trans. R. Soc. B 371::20150232
    [Crossref] [Google Scholar]
  50. Friscia A, Macharwas M, Muteti S, Ndiritu F, Rasmussen D. 2020.. A transitional mammalian carnivore community from the Paleogene–Neogene boundary in northern Kenya. . J. Vertebr. Paleontol. 40::e1833895
    [Crossref] [Google Scholar]
  51. Frost SR. 2007.. African Pliocene and Pleistocene cercopithecid evolution and global climate change. . See Bobe et al. 2007 , pp. 5176
  52. Gentry AW. 2010.. Bovidae. . See Werdelin & Sanders 2010 , pp. 74196
  53. Geraads D. 2008.. Plio-Pleistocene Carnivora of northwestern Africa: a short review. . C. R. Palevol 7::59199
    [Crossref] [Google Scholar]
  54. Geraads D. 2010.. Rhinocerotidae. . See Werdelin & Sanders 2010 , pp. 66983
  55. Geraads D. 2019.. A reassessment of the Bovidae (Mammalia) from the Nawata Formation of Lothagam, Kenya, and the late Miocene diversification of the family in Africa. . J. Syst. Palaeontol. 17::16982
    [Crossref] [Google Scholar]
  56. Gheerbrant E, Schmitt A, Kocsis L. 2018.. Early African fossils elucidate the origin of embrithopod mammals. . Curr. Biol. 28::216773
    [Crossref] [Google Scholar]
  57. Grohe C, Uno K, Boisserie J. 2022.. Lutrinae Bonaparte, 1838 (Carnivora, Mustelidae) from the Plio-Pleistocene of the Lower Omo Valley, southwestern Ethiopia: systematics and new insights into the paleoecology and paleobiogeography of the Turkana otters. . C. R. Palevol 21::681705
    [Google Scholar]
  58. Harris JM, Cerling TE. 2002.. Dietary adaptations of extant and Neogene African suids. . J. Zool. Soc. Lond. 256::4554
    [Crossref] [Google Scholar]
  59. Harris JM, Solounias N, Geraads D. 2010.. Giraffoidea. . See Werdelin & Sanders 2010 , pp. 797811
  60. Harris JM, White TD. 1979.. Evolution of the Plio-Pleistocene African suidae. . Trans. Am. Philos. Soc. 69::1128
    [Crossref] [Google Scholar]
  61. Hempson GP, Archibald S, Bond WJ. 2015.. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. . Science 350::105661
    [Crossref] [Google Scholar]
  62. Herbert T, Lawrence K, Tzanova A, Peterson L, Caballero-Gill R, Kelly C. 2016.. Late Miocene global cooling and the rise of modern ecosystems. . Nat. Geosci. 9::84347
    [Crossref] [Google Scholar]
  63. Hill A. 1987.. Causes of perceived faunal change in the later Neogene of East Africa. . J. Hum. Evol. 16::58396
    [Crossref] [Google Scholar]
  64. Hoetzel S, Dupont LM, Wefer G. 2015.. Miocene–Pliocene vegetation change in south-western Africa (ODP Site 1081, offshore Namibia). . Palaeogeogr. Palaeoclimatol. Palaeoecol. 423::1028
    [Crossref] [Google Scholar]
  65. Holroyd PA, Lihoreau F, Gunnell G, Miller ER. 2010.. Anthracotheriidae. See Werdelin & Sanders 2010 , pp. 84352
  66. Johnson CN, Balmford A, Brook BW, Buettel JC, Galetti M, et al. 2017.. Biodiversity losses and conservation response in the Anthropocene. . Science 356::27075
    [Crossref] [Google Scholar]
  67. Kappelman J, Rasmussen D, Sanders W, Feseha M, Bown T, et al. 2003.. Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia. . Nature 426::54952
    [Crossref] [Google Scholar]
  68. Karp A, Uno K, Polissar P, Freeman K. 2021.. Late Miocene C4 grassland fire feedbacks on the Indian subcontinent. . Paleoceanogr. Paleoclimatol. 36::e2020PA004106
    [Crossref] [Google Scholar]
  69. Keeley JE, Rundel PW. 2005.. Fire and the Miocene expansion of C4 grasslands. . Ecol. Lett. 8::68390
    [Crossref] [Google Scholar]
  70. Kingston JD. 2007.. Shifting adaptive landscapes: progress and challenges in reconstructing early hominid environments. . Yearb. Phys. Anthropol. 50::2058
    [Crossref] [Google Scholar]
  71. Klein RG, Cruz-Uribe K. 1996.. Size variation in the rock hyrax (Procavia capensis) and late Quaternary climatic change in South Africa. . Quat. Res. 46::193207
    [Crossref] [Google Scholar]
  72. Koch PL, Barnosky AD. 2006.. Late Quaternary extinctions: state of the debate. . Annu. Rev. Ecol. Evol. Syst. 37::21550
    [Crossref] [Google Scholar]
  73. Langergraber K, Prufer K, Rowney C, Boesch C, Crockford C, et al. 2012.. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. . PNAS 109::1571621
    [Crossref] [Google Scholar]
  74. Levin NE. 2015.. Environment and climate of early human evolution. . Annu. Rev. Earth Planet. Sci. 43::40529
    [Crossref] [Google Scholar]
  75. Lewis ME, Werdelin L. 2007.. Patterns of change in the Plio-Pleistocene carnivorans of eastern Africa. . See Bobe et al. 2007 , pp. 77105
  76. Lihoreau F, Boisserie J, Manthi F, Ducrocq S. 2015.. Hippos stem from the longest sequence of terrestrial cetartiodactyl evolution in Africa. . Nat. Commun. 6::6264
    [Crossref] [Google Scholar]
  77. Liow LH, Nichols JD. 2010.. Estimating rates and probabilities of origination and extinction using taxonomic occurrence data: capture-mark-recapture (CMR) approaches. . In Short Courses in Paleontology: Quantitative Paleobiology, ed. J Alroy, G Hunt , pp. 8194. Boulder, CO:: Paleontol. Soc.
    [Google Scholar]
  78. Lister AM. 2013.. The role of behaviour in adaptive morphological evolution of African proboscideans. . Nature 500::33134
    [Crossref] [Google Scholar]
  79. Lyons SK, Smith FA, Brown JH. 2004.. Of mice, mastodons and men: human-mediated extinctions on four continents. . Evol. Ecol. Res. 6::33958
    [Google Scholar]
  80. Madsen O, Scally M, Douady C, Kao D, DeBry R, et al. 2001.. Parallel adaptive radiations in two major clades of placental mammals. . Nature 409::61014
    [Crossref] [Google Scholar]
  81. Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning J-C, Terbough JW. 2016.. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. . PNAS 113::83846
    [Crossref] [Google Scholar]
  82. Marshall CR. 2010.. Using confidence intervals to quantify the uncertainty in the end-points of stratigraphic ranges. . Paleontol. Soc. Pap. 16::291316
    [Crossref] [Google Scholar]
  83. Maslin MA, Brierly CM, Milner AM, Shultz S, Trauth MH, Wilson KE. 2014.. East African climate pulses and early human evolution. . Quat. Sci. Rev. 101::117
    [Crossref] [Google Scholar]
  84. Maslin MA, Shultz S, Trauth MH. 2015.. A synthesis of the theories and concepts of early human evolution. . Philos. Trans. R. Soc. B 370::20140064
    [Crossref] [Google Scholar]
  85. Maslin MA, Trauth MH. 2009.. Plio-Pleistocene East African pulsed climate variability and its influence on early human evolution. . In The First Humans: Origin and Early Evolution of the Genus Homo, ed. FE Grine, JG Fleagle, RE Leakey , pp. 15158. London:: Springer
    [Google Scholar]
  86. Maxwell SJ, Hopley PJ, Upchurch P, Soligo C. 2018.. Sporadic sampling, not climatic forcing, drives early hominin diversity. . PNAS 115::489196
    [Crossref] [Google Scholar]
  87. McKee JK. 2001.. Faunal turnover rates and mammalian biodiversity of the late Pliocene and Pleistocene of eastern Africa. . Paleobiology 27::50011
    [Crossref] [Google Scholar]
  88. McLoughlin S. 2001.. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. . Aust. J. Bot. 49::271300
    [Crossref] [Google Scholar]
  89. Murphy W, Eizirik E, Johnson W, Zhang Y, Ryder O, O'Brien S. 2001.. Molecular phylogenetics and the origins of placental mammals. . Nature 409::61418
    [Crossref] [Google Scholar]
  90. Negash EW, Alemseged Z, Bobe R, Grine F, Sponheimer M, Wynn J. 2020.. Dietary trends in herbivores from the Shungura Formation, southwestern Ethiopia. . PNAS 117::2192127
    [Crossref] [Google Scholar]
  91. O'Brien K, Patterson DB, Biernat MD, Braun DR, Cerling TE, et al. 2020.. Ungulate turnover in the Koobi Fora Formation: spatial and temporal variation in the Early Pleistocene. . J. Afr. Earth Sci. 161::103658
    [Crossref] [Google Scholar]
  92. O'Regan HJ, Reynolds SC. 2009.. An ecological reassessment of the southern African carnivore guild: a case study from Member 4, Sterkfontein, South Africa. . J. Hum. Evol. 57::21222
    [Crossref] [Google Scholar]
  93. Orliac M, Boisserie J, MacLatchy L, Lihoreau F. 2010.. Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin. . PNAS 107::1187176
    [Crossref] [Google Scholar]
  94. Osborne CP. 2008.. Atmosphere, ecology and evolution: What drove the Miocene expansion of C4 grasslands?. J. Ecol. 96::3545
    [Crossref] [Google Scholar]
  95. Owen-Smith RN. 1988.. Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  96. Peppe DJ, Cote SM, Deino AL, Fox DL, Kingston JD, et al. 2023.. Oldest evidence of abundant C4 grasses and habitat heterogeneity in eastern Africa. . Science 380::17377
    [Crossref] [Google Scholar]
  97. Polissar PJ, Rose C, Uno KT, Phelps SR, deMenocal P. 2019.. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. . Nat. Geosci. 12::65760
    [Crossref] [Google Scholar]
  98. Potts R. 1998.. Variability selection in hominid evolution. . Evol. Anthropol. 7::8196
    [Crossref] [Google Scholar]
  99. Potts R. 2013.. Hominin evolution in settings of strong environmental variability. . Quat. Sci. Rev. 73::113
    [Crossref] [Google Scholar]
  100. Potts R, Dommain R, Moerman JW, Behrensmeyer AK, Deino AL, et al. 2020.. Increased ecological resource variability during a critical transition in hominin evolution. . Sci. Adv. 6::eabc8975
    [Crossref] [Google Scholar]
  101. Potts R, Faith JT. 2015.. Alternating high and low climate variability: the context of natural selection and speciation in Plio-Pleistocene hominin evolution. . J. Hum. Evol. 87::520
    [Crossref] [Google Scholar]
  102. Pugh K. 2022.. Phylogenetic analysis of Middle-Late Miocene apes. . J. Hum. Evol. 165::103140
    [Crossref] [Google Scholar]
  103. Rapacciuolo G, Blois J. 2019.. Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. . Ecography 42::124766
    [Crossref] [Google Scholar]
  104. Reed KE. 1997.. Early hominid evolution and ecological change through the African Plio-Pleistocene. . J. Hum. Evol. 32::289322
    [Crossref] [Google Scholar]
  105. Reed KE. 1998.. Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. . Paleobiology 24::384408
    [Google Scholar]
  106. Reed KE. 2008.. Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. . J. Hum. Evol. 54::74368
    [Crossref] [Google Scholar]
  107. Ripple WJ, Estes J, Beschta R, Wilmers C, Ritchie E, et al. 2014.. Status and ecological effects of the world's largest carnivores. . Science 343::1241484
    [Crossref] [Google Scholar]
  108. Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, et al. 2015.. Collapse of the world's largest herbivores. . Sci. Adv. 1::e1400103
    [Crossref] [Google Scholar]
  109. Ritchie ME, Penner JF. 2020.. Episodic herbivory, plant density dependence, and stimulation of aboveground plant production. . Ecol. Evol. 10::530214
    [Crossref] [Google Scholar]
  110. Robinson JR, Rowan J, Campisano CJ, Wynn JG, Reed KE. 2017.. Late Pliocene environmental change during the transition from Australopithecus to Homo. . Nat. Ecol. Evol. 1::0159
    [Crossref] [Google Scholar]
  111. Rowan J, Lazagabaster I, Campisano C, Bibi F, Bobe R, et al. 2022.. Early Pleistocene large mammals from Maka'amitalu, Hadar, lower Awash Valley, Ethiopia. . PeerJ 10::e13210
    [Crossref] [Google Scholar]
  112. Sanders WJ. 2020.. Proboscidea from Kanapoi, Kenya. . J. Hum. Evol. 140::102547
    [Crossref] [Google Scholar]
  113. Sanders WJ, Gheerbrant E, Harris JM, Saegusa H, Delmer C. 2010.. Proboscidea. . See Werdelin & Sanders 2010 , pp. 161251
  114. Seiffert E. 2007.. Evolution and extinction of Afro-Arabian primates near the Eocene-Oligocene boundary. . Folia Primatol. 78::31427
    [Crossref] [Google Scholar]
  115. Seiffert E. 2012.. Early primate evolution in Afro-Arabia. . Evol. Anthropol. 21::23953
    [Crossref] [Google Scholar]
  116. Shultz S, Maslin M. 2013.. Early human speciation, brain expansion and dispersal influenced by African climate pulses. . PLOS ONE 8::e76750
    [Crossref] [Google Scholar]
  117. Sinclair A, Mduma S, Brashares J. 2003.. Patterns of predation in a diverse predator–prey system. . Nature 425::28890
    [Crossref] [Google Scholar]
  118. Sole F, Gheerbrant E, Amaghzaz M, Bouya B. 2009.. Further evidence of the African antiquity of hyaenodontid (‘Creodonta’, Mammalia) evolution. . Zool. J. Linn. Soc. 156::82746
    [Crossref] [Google Scholar]
  119. Springer M. 2022.. Afrotheria. . Curr. Biol. 32::R20510
    [Crossref] [Google Scholar]
  120. Staver AC, Abraham JO, Hempson GP, Karp AT, Faith JT. 2021.. The past, present, and future of herbivore impacts on savanna vegetation. . J. Ecol. 109::280422
    [Crossref] [Google Scholar]
  121. Steinthorsdottir M, Coxall HK, de Boer AM, Huber M, Barbolini N, et al. 2021.. The Miocene: the future of the past. . Paleoeceanogr. Paleoclimatol. 36::e2020PA004037
    [Crossref] [Google Scholar]
  122. Stevens NJ, Gottfried MD, Roberts EM, Kapilima S, Ngasala S, et al. 2008.. Paleontological exploration in Africa: a view from the Rukwa Rift Basin of Tanzania. . In Elwyn Simmons: A Search for Origins, ed. JG Fleagle, CC Gilbert , pp. 15980. New York:: Springer
    [Google Scholar]
  123. Stevens NJ, Seiffert E, O'Connor P, Roberts E, Schmitz M, et al. 2013.. Palaeontological evidence for an Oligocene divergence between Old World monkeys and apes. . Nature 497::61114
    [Crossref] [Google Scholar]
  124. Strömberg C. 2011.. Evolution of grasses and grassland ecosystems. . Annu. Rev. Earth Planet. Sci. 39::51744
    [Crossref] [Google Scholar]
  125. Surovell TA, Waguespack NM, Brantingham PJ. 2005.. Global archaeological evidence for proboscidean overkill. . PNAS 102::623136
    [Crossref] [Google Scholar]
  126. Trauth MH, Maslin MA, Deino AL, Junginger A, Lesoloyia M, et al. 2010.. Human evolution in variable climate: the amplifier lakes of Eastern Africa. . Quat. Sci. Rev. 29::298188
    [Crossref] [Google Scholar]
  127. Trauth MH, Maslin MA, Deino AL, Strecker MR, Bergner AGN, Dühnforth M. 2007.. High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. . J. Hum. Evol. 53::47586
    [Crossref] [Google Scholar]
  128. Uno KT, Cerling TE, Harris JM, Kunimatsu Y, Leakey MG, et al. 2011.. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. . PNAS 108::650914
    [Crossref] [Google Scholar]
  129. Uno KT, Polissar PJ, Jackson KE, deMenocal PB. 2016.. Neogene biomarker record of vegetation change in eastern Africa. . PNAS 113::635563
    [Crossref] [Google Scholar]
  130. Van Valkenburgh B, Hayward MW, Ripple WJ, Meloro C, Roth VL. 2016.. The impact of large terrestrial carnivores on Pleistocene ecosystems. . PNAS 113::86267
    [Crossref] [Google Scholar]
  131. Vrba ES. 1985a.. Ecological and adaptive changes associated with early hominid evolution. . In Ancestors: The Hard Evidence, ed. E Delson , pp. 6371. New York:: Alan R. Liss
    [Google Scholar]
  132. Vrba ES. 1985b.. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. . South Afr. J. Sci. 81::22936
    [Google Scholar]
  133. Vrba ES. 1987.. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. . Evol. Ecol. 1::283300
    [Crossref] [Google Scholar]
  134. Vrba ES. 1988.. Late Pliocene climatic events and hominid evolution. . In Evolutionary History of the “Robust” Australopithecines, ed. FE Grine , pp. 40526. New York:: Aldine
    [Google Scholar]
  135. Vrba ES. 1992.. Mammals as a key to evolutionary theory. . J. Mammal. 73::128
    [Crossref] [Google Scholar]
  136. Vrba ES. 1993.. Turnover-pulses, the Red Queen, and related topics. . Am. J. Sci. 293A::41852
    [Crossref] [Google Scholar]
  137. Vrba ES. 1995.. The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. . In Paleoclimate and Evolution with Emphasis on Human Origins, ed. ES Vrba, GH Denton, TC Partridge, LH Burckle , pp. 385424. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  138. Wang SC, Marshall CR. 2016.. Estimating times of extinction in the fossil record. . Biol. Lett. 12::20150989
    [Crossref] [Google Scholar]
  139. Werdelin L. 1999.. Pachycrocuta (hyaenids) from the Pliocene of east Africa. . Paläontol. Z. 73::15765
    [Crossref] [Google Scholar]
  140. Werdelin L. 2010.. Chronology of Neogene mammal localities. . See Werdelin & Sanders 2010 , pp. 2744
  141. Werdelin L. 2011.. A new genus and species of Felidae (Mammalia) from Rusinga Island, Kenya, with notes on early Felidae of Africa. . Estud. Geol. 67::21722
    [Crossref] [Google Scholar]
  142. Werdelin L, Lewis ME. 2005.. Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. . Zool. J. Linn. Soc. 144::12144
    [Crossref] [Google Scholar]
  143. Werdelin L, Lewis ME. 2008.. New species of Crocuta from the early Pliocene of Kenya, with an overview of early Pliocene hyenas of eastern Africa. . J. Vertebr. Paleontol. 28::116270
    [Crossref] [Google Scholar]
  144. Werdelin L, Lewis ME. 2013.. Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. . PLOS ONE 8::e57944
    [Crossref] [Google Scholar]
  145. Werdelin L, Lewis ME. 2020.. A contextual review of the Carnivora of Kanapoi. . J. Hum. Evol. 140::102334
    [Crossref] [Google Scholar]
  146. Werdelin L, Sanders WJ, eds. 2010.. Cenozoic Mammals of Africa. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  147. Weston E, Boisserie JR. 2010.. Hippopotamidae. . See Werdelin & Sanders 2010 , pp. 86179
  148. White TD, Ambrose SH, Suwa G, Su DF, DeGusta D, et al. 2009.. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. . Science 326::6793
    [Crossref] [Google Scholar]
  149. Wood B, Boyle E. 2016.. Hominin taxic diversity: fact or fantasy?. Am. J. Phys. Anthropol. 159::3778
    [Crossref] [Google Scholar]
  150. Zalmout I, Sanders W, MacLatchy L, Gunnell G, Al-Mufarreh Y, et al. 2010.. New Oligocene primate from Saudi Arabia and the divergence of apes and Old World monkeys. . Nature 466::36064
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-114105
Loading
/content/journals/10.1146/annurev-earth-031621-114105
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error