1932

Abstract

As atmospheric carbon dioxide concentrations rise and climate change becomes more destructive, geoengineering has become a subject of serious consideration. By reflecting a fraction of incoming sunlight, solar geoengineering could cool the planet quickly, but with uncertain effects on regional climatology, particularly hydrological patterns. Here, we review recent work on projected hydrologic outcomes of solar geoengineering, in the context of a robust literature on hydrological responses to climate change. While most approaches to solar geoengineering are expected to weaken the global hydrologic cycle, regional effects will vary based on implementation method and strategy. The literature on the hydrologic outcomes and impacts of geoengineering demonstrates that its implications for human welfare will depend on assumptions about underlying social conditions and objectives of intervention as well as the social lens through which projected effects are interpreted. We conclude with suggestions to reduce decision-relevant uncertainties in this novel field of Earth science inquiry.

  • ▪  The expected hydrological effects of reducing insolation are among the most uncertain and consequential impacts of solar geoengineering (SG).
  • ▪  Theoretical frameworks from broader climate science can help explain SG's effects on global precipitation, relative humidity, and other aspects of hydroclimate.
  • ▪  The state of the knowledge on hydrological impacts of SG is unevenly concentrated among regions.
  • ▪  Projected hydrological impacts from SG are scenario dependent and difficult to characterize as either harmful or beneficial.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031920-083456
2023-05-31
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031920-083456.html?itemId=/content/journals/10.1146/annurev-earth-031920-083456&mimeType=html&fmt=ahah

Literature Cited

  1. Abiodun BJ, Odoulami RC, Sawadogo W, Oloniyo OA, Abatan AA, et al. 2021.. Potential impacts of stratospheric aerosol injection on drought risk managements over major river basins in Africa. . Clim. Change 169:(3):31
    [Google Scholar]
  2. Alamou EA, Zandagba JE, Biao EI, Obada E, Da-Allada CY, et al. 2022.. Impact of stratospheric aerosol geoengineering on extreme precipitation and temperature indices in West Africa using GLENS simulations. . J. Geophys. Res. Atmos. 127:(9):e2021JD035855
    [Google Scholar]
  3. Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, et al. 2021.. Scientists’ warning to humanity on the freshwater biodiversity crisis. . Ambio 50:(1):8594
    [Google Scholar]
  4. Albrecht BA. 1989.. Aerosols, cloud microphysics, and fractional cloudiness. . Science 245:(4923):122730
    [Google Scholar]
  5. Allen MR, Ingram WJ. 2002.. Constraints on future changes in climate and the hydrologic cycle. . Nature 419:(6903):22832
    [Google Scholar]
  6. Alterskjær K, Kristjánsson JE. 2013.. The sign of the radiative forcing from marine cloud brightening depends on both particle size and injection amount. . Geophys. Res. Lett. 40:(1):21015
    [Google Scholar]
  7. Andrews T, Forster PM, Boucher O, Bellouin N, Jones A. 2010.. Precipitation, radiative forcing and global temperature change. . Geophys. Res. Lett. 37:(14):L14701
    [Google Scholar]
  8. Ayugi B, Zhihong J, Zhu H, Ngoma H, Babaousmail H, et al. 2021.. Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. . Int. J. Climatol. 41:(15):647496
    [Google Scholar]
  9. Bala G, Caldeira K, Nemani R, Cao L, Ban-Weiss G, Shin H-J. 2011.. Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle. . Clim. Dyn. 37:(5):91531
    [Google Scholar]
  10. Bala G, Duffy PB, Taylor KE. 2008.. Impact of geoengineering schemes on the global hydrological cycle. . PNAS 105:(22):766469
    [Google Scholar]
  11. Bastien-Olvera BA, Moore FC. 2021.. Use and non-use value of nature and the social cost of carbon. . Nat. Sustain. 4:(2):1018
    [Google Scholar]
  12. Bhowmick M, Mishra SK, Kravitz B, Sahany S, Salunke P. 2021.. Response of the Indian summer monsoon to global warming, solar geoengineering and its termination. . Sci. Rep. 11:(1):9791
    [Google Scholar]
  13. Biasutti M, Voigt A, Boos WR, Braconnot P, Hargreaves JC, et al. 2018.. Global energetics and local physics as drivers of past, present and future monsoons. . Nat. Geosci. 11:(6):392400
    [Google Scholar]
  14. Budyko MI. 1974.. Climate and Life. New York:: Academic
    [Google Scholar]
  15. Budyko MI, Sedunov YS. 1990.. Anthropogenic climatic changes. . In Climate and Development, ed. HJ Karpe, D Otten, SC Trinidade , pp. 27084 Berlin:: Springer
    [Google Scholar]
  16. Byrne MP, O'Gorman PA. 2015.. The response of precipitation minus evapotranspiration to climate warming: why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. . J. Clim. 28:(20):807892
    [Google Scholar]
  17. Caldeira K, Bala G, Cao L. 2013.. The science of geoengineering. . Annu. Rev. Earth Planet. Sci. 41::23156
    [Google Scholar]
  18. Caldeira K, Wood L. 2008.. Global and Arctic climate engineering: numerical model studies. . Philos. Trans. R. Soc. A 366:(1882):403956
    [Google Scholar]
  19. Cao L. 2018.. The effects of solar radiation management on the carbon cycle. . Curr. Clim. Change Rep. 4:(1):4150
    [Google Scholar]
  20. Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G. 2010.. Importance of carbon dioxide physiological forcing to future climate change. . PNAS 107:(21):951318
    [Google Scholar]
  21. Chadwick R, Boutle I, Martin G. 2013.. Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. . J. Clim. 26:(11):380322
    [Google Scholar]
  22. Chen Y-C, Christensen MW, Xue L, Sorooshian A, Stephens GL, et al. 2012.. Occurrence of lower cloud albedo in ship tracks. . Atmos. Chem. Phys. 12:(17):822335
    [Google Scholar]
  23. Cheng W, MacMartin DG, Dagon K, Kravitz B, Tilmes S, et al. 2019.. Soil moisture and other hydrological changes in a stratospheric aerosol geoengineering large ensemble. . J. Geophys. Res. Atmos. 124:(23):1277393
    [Google Scholar]
  24. Chiang JCH, Friedman AR. 2012.. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. . Annu. Rev. Earth Planet. Sci. 40::383412
    [Google Scholar]
  25. Chou C, Neelin JD. 2004.. Mechanisms of global warming impacts on regional tropical precipitation. . J. Clim. 17:(13):2688701
    [Google Scholar]
  26. Christensen MW, Stephens GL. 2011.. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: evidence of cloud deepening. . J. Geophys. Res. Atmos. 116:(D3):D03201
    [Google Scholar]
  27. Christensen MW, Stephens GL. 2012.. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds. . J. Geophys. Res. 117:(D11):D11203
    [Google Scholar]
  28. Christensen MW, Suzuki K, Zambri B, Stephens GL. 2014.. Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. . Geophys. Res. Lett. 41:(19):697077
    [Google Scholar]
  29. Cronin TW, Jansen MF. 2016.. Analytic radiative-advective equilibrium as a model for high-latitude climate. . Geophys. Res. Lett. 43:(1):44957
    [Google Scholar]
  30. Crook JA, Jackson LS, Osprey SM, Forster PM. 2015.. A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes. . J. Geophys. Res. Atmos. 120:(18):935273
    [Google Scholar]
  31. Crutzen PJ. 2006.. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?. Clim. Change 77:(3):21119
    [Google Scholar]
  32. Curry CL, Sillmann J, Bronaugh D, Alterskjaer K, Cole JNS, et al. 2014.. A multimodel examination of climate extremes in an idealized geoengineering experiment. . J. Geophys. Res. Atmos. 119:(7):390023
    [Google Scholar]
  33. Da-Allada CY, Baloïtcha E, Alamou EA, Awo FM, Bonou F, et al. 2020.. Changes in West African summer monsoon precipitation under stratospheric aerosol geoengineering. . Earth's Future 8:(7):e2020EF001595
    [Google Scholar]
  34. Dagon K, Schrag DP. 2016.. Exploring the effects of solar radiation management on water cycling in a coupled land–atmosphere model. . J. Clim. 29:(7):263550
    [Google Scholar]
  35. Dagon K, Schrag DP. 2019.. Quantifying the effects of solar geoengineering on vegetation. . Clim. Change 153:(1):23551
    [Google Scholar]
  36. Diamond MS, Director HM, Eastman R, Possner A, Wood R. 2020.. Substantial cloud brightening from shipping in subtropical low clouds. . AGU Adv. 1:(1):e2019AV000111
    [Google Scholar]
  37. Dinh T, Fueglistaler S. 2017.. Mechanism of fast atmospheric energetic equilibration following radiative forcing by CO2. . J. Adv. Model. Earth Syst. 9:(7):246882
    [Google Scholar]
  38. Donohoe A, Marshall J, Ferreira D, Mcgee D. 2013.. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the Last Glacial Maximum. . J. Clim. 26:(11):3597618
    [Google Scholar]
  39. Elbaum E, Garfinkel CI, Adam O, Morin E, Rostkier-Edelstein D, Dayan U. 2022.. Uncertainty in projected changes in precipitation minus evaporation: dominant role of dynamic circulation changes and weak role for thermodynamic changes. . Geophys. Res. Lett. 49:(12):e2022GL097725
    [Google Scholar]
  40. Field CB, Jackson RB, Mooney HA. 1995.. Stomatal responses to increased CO2: implications from the plant to the global scale. . Plant Cell Environ. 18:(10):121425
    [Google Scholar]
  41. Flegal JA, Hubert A-M, Morrow DR, Moreno-Cruz JB. 2019.. Solar geoengineering: social science, legal, ethical, and economic frameworks. . Annu. Rev. Environ. Resour. 44::399423
    [Google Scholar]
  42. Gasparini B, McGraw Z, Storelvmo T, Lohmann U. 2020.. To what extent can cirrus cloud seeding counteract global warming?. Environ. Res. Lett. 15:(5):054002
    [Google Scholar]
  43. Geen R, Bordoni S, Battisti DS, Hui K. 2020.. Monsoons, ITCZs, and the concept of the global monsoon. . Rev. Geophys. 58:(4):e2020RG000700
    [Google Scholar]
  44. Glienke S, Irvine PJ, Lawrence MG. 2015.. The impact of geoengineering on vegetation in experiment G1 of the GeoMIP. . J. Geophys. Res. Atmos. 120:(19):10196213
    [Google Scholar]
  45. Govindasamy B, Caldeira K. 2000.. Geoengineering Earth's radiation balance to mitigate CO2-induced climate change. . Geophys. Res. Lett. 27:(14):214144
    [Google Scholar]
  46. Govindasamy B, Caldeira K, Duffy PB. 2003.. Geoengineering Earth's radiation balance to mitigate climate change from a quadrupling of CO2. . Glob. Planet. Change 37:(1–2):15768
    [Google Scholar]
  47. Gryspeerdt E, Goren T, Sourdeval O, Quaas J, Mülmenstädt J, et al. 2019a.. Constraining the aerosol influence on cloud liquid water path. . Atmos. Chem. Phys. 19:(8):533147
    [Google Scholar]
  48. Gryspeerdt E, Smith TWP, O'Keeffe E, Christensen MW, Goldsworth FW. 2019b.. The impact of ship emission controls recorded by cloud properties. . Geophys. Res. Lett. 46:(21):1254755
    [Google Scholar]
  49. Harding AR, Ricke K, Heyen D, MacMartin DG, Moreno-Cruz J. 2020.. Climate econometric models indicate solar geoengineering would reduce inter-country income inequality. . Nat. Commun. 11:(1):227
    [Google Scholar]
  50. Hartmann D. 2015.. Global Physical Climatology. Amsterdam:: Elsevier, 2nd ed.
    [Google Scholar]
  51. Haywood JM, Jones A, Bellouin N, Stephenson D. 2013.. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. . Nat. Clim. Change 3:(7):66065
    [Google Scholar]
  52. Held IM, Soden BJ. 2006.. Robust responses of the hydrological cycle to global warming. . J. Clim. 19:(21):568699
    [Google Scholar]
  53. Henry M, Merlis TM, Lutsko NJ, Rose BEJ. 2021.. Decomposing the drivers of polar amplification with a single-column model. . J. Clim. 34:(6):235565
    [Google Scholar]
  54. Hill S, Ming Y. 2012.. Nonlinear climate response to regional brightening of tropical marine stratocumulus. . Geophys. Res. Lett. 39:(15):L15707
    [Google Scholar]
  55. Hoffmann F, Feingold G. 2021.. Cloud microphysical implications for marine cloud brightening: the importance of the seeded particle size distribution. . J. Atmos. Sci. 78:(10):324762
    [Google Scholar]
  56. Huang Y, Xia Y, Tan X. 2017.. On the pattern of CO2 radiative forcing and poleward energy transport. . J. Geophys. Res. Atmos. 122:(20):1057893
    [Google Scholar]
  57. IPCC. 2022.. Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  58. Irvine P, Emanuel K, He J, Horowitz LW, Vecchi G, Keith D. 2019.. Halving warming with idealized solar geoengineering moderates key climate hazards. . Nat. Clim. Change 9:(4):295
    [Google Scholar]
  59. Irvine PJ, Kravitz B, Lawrence MG, Gerten D, Caminade C, et al. 2017.. Towards a comprehensive climate impacts assessment of solar geoengineering. . Earth's Future 5:(1):93106
    [Google Scholar]
  60. Irvine PJ, Kravitz B, Lawrence MG, Muri H. 2016.. An overview of the Earth system science of solar geoengineering. . Wiley Interdiscip. Rev. Clim. Change 7:(6):81533
    [Google Scholar]
  61. Jackson LS, Crook JA, Forster PM. 2016.. An intensified hydrological cycle in the simulation of geoengineering by cirrus cloud thinning using ice crystal fall speed changes. . J. Geophys. Res. Atmos. 121:(12):682240
    [Google Scholar]
  62. Jeevanjee N. 2018.. The physics of climate change: simple models in climate science. . arXiv:1802.02695 [physics.ao-ph]
  63. Ji D, Fang S, Curry CL, Kashimura H, Watanabe S, et al. 2018.. Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering. . Atmos. Chem. Phys. 18:(14):1013356
    [Google Scholar]
  64. Jones A, Haywood J, Boucher O. 2009.. Climate impacts of geoengineering marine stratocumulus clouds. . J. Geophys. Res. 114:(D10):D10106
    [Google Scholar]
  65. Jones A, Haywood JM. 2012.. Sea-spray geoengineering in the HadGEM2-ES earth-system model: radiative impact and climate response. . Atmos. Chem. Phys. 12:(22):1088798
    [Google Scholar]
  66. Kang SM, Held IM, Frierson DMW, Zhao M. 2008.. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. . J. Clim. 21:(14):352132
    [Google Scholar]
  67. Keith D. 2013.. A Case for Climate Engineering. Cambridge, MA:: MIT Press
    [Google Scholar]
  68. Keith DW. 2000.. Geoengineering the climate: history and prospect. . Annu. Rev. Energy Environ. 25::24584
    [Google Scholar]
  69. Keith DW, Weisenstein DK, Dykema JA, Keutsch FN. 2016.. Stratospheric solar geoengineering without ozone loss. . PNAS 113:(52):1491014
    [Google Scholar]
  70. Kotz M, Levermann A, Wenz L. 2022.. The effect of rainfall changes on economic production. . Nature 601:(7892):22327
    [Google Scholar]
  71. Kravitz B, MacMartin DG, Wang H, Rasch PJ. 2016.. Geoengineering as a design problem. . Earth Syst. Dyn. 7:(2):46997
    [Google Scholar]
  72. Kravitz B, Robock A, Boucher O, Schmidt H, Taylor KE, et al. 2011.. The Geoengineering Model Intercomparison Project (GeoMIP). . Atmos. Sci. Lett. 12:(2):16267
    [Google Scholar]
  73. Kravitz B, Robock A, Oman L, Stenchikov G, Marquardt AB. 2009.. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. . J. Geophys. Res. 114:(D14):D14109
    [Google Scholar]
  74. Kristjánsson JE, Muri H, Schmidt H. 2015.. The hydrological cycle response to cirrus cloud thinning. . Geophys. Res. Lett. 42:(24):1080715
    [Google Scholar]
  75. Lapenis A. 2020.. A 50-year-old global warming forecast that still holds up. . Eos, Nov. 5. https://eos.org/features/a-50-year-old-global-warming-forecast-that-still-holds-up
    [Google Scholar]
  76. Latham J. 1990.. Control of global warming?. Nature 347:(6291):33940
    [Google Scholar]
  77. Latham J. 2002.. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. . Atmos. Sci. Lett. 3:(2):5258
    [Google Scholar]
  78. Latham J, Parkes B, Gadian A, Salter S. 2012.. Weakening of hurricanes via marine cloud brightening (MCB). . Atmos. Sci. Lett. 13:(4):23137
    [Google Scholar]
  79. Lunt DJ, Ridgwell A, Valdes PJ, Seale A. 2008. Sunshade World”: a fully coupled GCM evaluation of the climatic impacts of geoengineering. . Geophys. Res. Lett. 35:(12):L12710
    [Google Scholar]
  80. Lutsko NJ, Seeley JT, Keith DW. 2020.. Estimating impacts and trade-offs in solar geoengineering scenarios with a moist energy balance model. . Geophys. Res. Lett. 47:(9):e2020GL087290
    [Google Scholar]
  81. MacMartin DG, Kravitz B, Tilmes S, Richter JH, Mills MJ, et al. 2017.. The climate response to stratospheric aerosol geoengineering can be tailored using multiple injection locations. . J. Geophys. Res. Atmos. 122:(23):1257490
    [Google Scholar]
  82. Mitchell DL, Finnegan W. 2009.. Modification of cirrus clouds to reduce global warming. . Environ. Res. Lett. 4:(4):045102
    [Google Scholar]
  83. Muri H, Kristjánsson JE, Storelvmo T, Pfeffer MA. 2014.. The climatic effects of modifying cirrus clouds in a climate engineering framework. . J. Geophys. Res. Atmos. 119:(7):417491
    [Google Scholar]
  84. Nalam A, Bala G, Modak A. 2018.. Effects of Arctic geoengineering on precipitation in the tropical monsoon regions. . Clim. Dyn. 50:(9):337595
    [Google Scholar]
  85. Natl. Acad. Sci. Eng. Med. 1992.. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC:: Natl. Acad
    [Google Scholar]
  86. Natl. Acad. Sci. Eng. Med. 2021.. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. Washington, DC:: Natl. Acad.
    [Google Scholar]
  87. Natl. Res. Counc. 2015.. Climate Intervention: Reflecting Sunlight to Cool Earth. Washington, DC:: Natl. Acad
    [Google Scholar]
  88. Niemeier U, Schmidt H, Alterskjær K, Kristjánsson JE. 2013.. Solar irradiance reduction via climate engineering: impact of different techniques on the energy balance and the hydrological cycle. . J. Geophys. Res. Atmos. 118:(21):1190517
    [Google Scholar]
  89. Odoulami RC, New M, Wolski P, Guillemet G, Pinto I, et al. 2020.. Stratospheric aerosol geoengineering could lower future risk of ‘day zero’ level droughts in Cape Town. . Environ. Res. Lett. 15:(12):124007
    [Google Scholar]
  90. Park C-E, Jeong S-J, Fan Y, Tjiputra J, Muri H, Zheng C. 2019.. Inequal responses of drylands to radiative forcing geoengineering methods. . Geophys. Res. Lett. 46:(23):1401120
    [Google Scholar]
  91. Parkes B, Challinor A, Nicklin K. 2015.. Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening. . Environ. Res. Lett. 10:(8):084003
    [Google Scholar]
  92. Pendergrass AG, Hartmann DL. 2014.. The atmospheric energy constraint on global-mean precipitation change. . J. Clim. 27:(2):75768
    [Google Scholar]
  93. Pinto I, Jack C, Lennard C, Tilmes S, Odoulami RC. 2020.. Africa's climate response to solar radiation management with stratospheric aerosol. . Geophys. Res. Lett. 47:(2):e2019GL086047
    [Google Scholar]
  94. Pongratz J, Lobell DB, Cao L, Caldeira K. 2012.. Crop yields in a geoengineered climate. . Nat. Clim. Change 2:(2):1015
    [Google Scholar]
  95. Possner A, Ekman AML, Lohmann U. 2017.. Cloud response and feedback processes in stratiform mixed-phase clouds perturbed by ship exhaust. . Geophys. Res. Lett. 44:(4):196472
    [Google Scholar]
  96. Proctor J, Rigden A, Chan D, Huybers P. 2021.. Accurate specification of water availability shows its importance for global crop production. . Earth ArXiv. https://doi.org/10.31223/X5ZS7P
  97. Rasch PJ, Latham J, Chen C-C. 2009.. Geoengineering by cloud seeding: influence on sea ice and climate system. . Environ. Res. Lett. 4:(4):045112
    [Google Scholar]
  98. Reynolds JL, Parker A, Irvine P. 2016.. Five solar geoengineering tropes that have outstayed their welcome. . Earth's Future 4:(12):56268
    [Google Scholar]
  99. Ricke KL, Morgan MG, Allen MR. 2010.. Regional climate response to solar-radiation management. . Nat. Geosci. 3:(8):53741
    [Google Scholar]
  100. Robock A, MacMartin DG, Duren R, Christensen MW. 2013.. Studying geoengineering with natural and anthropogenic analogs. . Clim. Change 121:(3):44558
    [Google Scholar]
  101. Robock A, Oman L, Stenchikov GL. 2008.. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. . J. Geophys. Res. 113:(D16):D16101
    [Google Scholar]
  102. Schneider T, Bischoff T, Haug GH. 2014.. Migrations and dynamics of the intertropical convergence zone. . Nature 513:(7516):4553
    [Google Scholar]
  103. Schneider T, O'Gorman PA, Levine XJ. 2010.. Water vapor and the dynamics of climate changes. . Rev. Geophys. 48:(3):RG3001
    [Google Scholar]
  104. Seeley JT, Lutsko NJ, Keith DW. 2021.. Designing a radiative antidote to CO2. . Geophys. Res. Lett. 48:(1):e2020GL090876
    [Google Scholar]
  105. Shaw TA, Baldwin M, Barnes EA, Caballero R, Garfinkel CI, et al. 2016.. Storm track processes and the opposing influences of climate change. . Nat. Geosci. 9:(9):65664
    [Google Scholar]
  106. Shepherd TG. 2014.. Atmospheric circulation as a source of uncertainty in climate change projections. . Nat. Geosci. 7:(10):7038
    [Google Scholar]
  107. Simpson IR, Tilmes S, Richter JH, Kravitz B, MacMartin DG, et al. 2019.. The regional hydroclimate response to stratospheric sulfate geoengineering and the role of stratospheric heating. . J. Geophys. Res. Atmos. 124:(23):12587616
    [Google Scholar]
  108. Smith JP, Dykema JA, Keith DW. 2018.. Production of sulfates onboard an aircraft: implications for the cost and feasibility of stratospheric solar geoengineering. . Earth Space Sci. 5:(4):15062
    [Google Scholar]
  109. Stevenson A, Lindberg CA 2011.. New Oxford American Dictionary. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  110. Stjern CW, Muri H, Ahlm L, Boucher O, Cole JNS, et al. 2018.. Response to marine cloud brightening in a multi-model ensemble. . Atmos. Chem. Phys. 18:(2):62134
    [Google Scholar]
  111. Storelvmo T, Herger N. 2014.. Cirrus cloud susceptibility to the injection of ice nuclei in the upper troposphere. . J. Geophys. Res. Atmos. 119:(5):237589
    [Google Scholar]
  112. Storelvmo T, Kristjansson JE, Muri H, Pfeffer M, Barahona D, Nenes A. 2013.. Cirrus cloud seeding has potential to cool climate. . Geophys. Res. Lett. 40:(1):17882
    [Google Scholar]
  113. Sun W, Wang B, Chen D, Gao C, Lu G, Liu J. 2020.. Global monsoon response to tropical and Arctic stratospheric aerosol injection. . Clim. Dyn. 55:(7):210721
    [Google Scholar]
  114. Tilmes S, Fasullo J, Lamarque J-F, Marsh DR, Mills M, et al. 2013.. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). . J. Geophys. Res. Atmos. 118:(19):1103658
    [Google Scholar]
  115. Tilmes S, MacMartin DG, Lenaerts JTM, van Kampenhout L, Muntjewerf L, et al. 2020.. Reaching 1.5 and 2.0°C global surface temperature targets using stratospheric aerosol geoengineering. . Earth Syst. Dyn. 11:(3):579601
    [Google Scholar]
  116. Tilmes S, Richter JH, Kravitz B, MacMartin DG, Mills MJ, et al. 2018.. CESM1(WACCM) stratospheric aerosol geoengineering large ensemble project. . Bull. Am. Meteorol. Soc. 99:(11):236171
    [Google Scholar]
  117. Toll V, Christensen M, Quaas J, Bellouin N. 2019.. Weak average liquid-cloud-water response to anthropogenic aerosols. . Nature 572:(7767):5155
    [Google Scholar]
  118. Trenberth KE, Dai A. 2007.. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. . Geophys. Res. Lett. 34:(15):L15702
    [Google Scholar]
  119. Trisos CH, Amatulli G, Gurevitch J, Robock A, Xia L, Zambri B. 2018.. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. . Nat. Ecol. Evol. 2:(3):47582
    [Google Scholar]
  120. Twomey S. 1977.. The influence of pollution on the shortwave albedo of clouds. . J. Atmos. Sci. 34::114952
    [Google Scholar]
  121. Visioni D, Slessarev E, MacMartin DG, Mahowald NM, Goodale CL, Xia L. 2020.. What goes up must come down: impacts of deposition in a sulfate geoengineering scenario. . Environ. Res. Lett. 15:(9):094063
    [Google Scholar]
  122. Wang H, Rasch PJ, Feingold G. 2011.. Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei. . Atmos. Chem. Phys. 11:(9):423749
    [Google Scholar]
  123. Weisenstein DK, Keith DW, Dykema JA. 2015.. Solar geoengineering using solid aerosol in the stratosphere. . Atmos. Chem. Phys. 15:(20):1183559
    [Google Scholar]
  124. Wigley TML. 2006.. A combined mitigation/geoengineering approach to climate stabilization. . Science 314:(5798):45254
    [Google Scholar]
  125. Wrathall DJ, Hoek J, Walters A, Devenish A. 2018.. Water stress and human migration: a global, georeferenced review of empirical research. FAO Land Water Discuss. Pap. 11, United Nations, Rome:
    [Google Scholar]
  126. Xia L, Robock A, Cole J, Curry CL, Ji D, et al. 2014.. Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP). . J. Geophys. Res. Atmos. 119:(14):8695711
    [Google Scholar]
  127. Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT. 2010.. Global warming pattern formation: sea surface temperature and rainfall. . J. Clim. 23:(4):96686
    [Google Scholar]
  128. Yang C-E, Hoffman FM, Ricciuto DM, Tilmes S, Xia L, et al. 2020.. Assessing terrestrial biogeochemical feedbacks in a strategically geoengineered climate. . Environ. Res. Lett. 15:(10):104043
    [Google Scholar]
  129. Yang H, Dobbie S, Ramirez-Villegas J, Feng K, Challinor AJ, et al. 2016.. Potential negative consequences of geoengineering on crop production: a study of Indian groundnut. . Geophys. Res. Lett. 43:(22):1178695
    [Google Scholar]
  130. Zarnetske PL, Gurevitch J, Franklin J, Groffman PM, Harrison CS, et al. 2021.. Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. . PNAS 118:(15):e1921854118
    [Google Scholar]
  131. Zhang J, Zhou X, Goren T, Feingold G. 2022.. Albedo susceptibility of northeastern Pacific stratocumulus: the role of covarying meteorological conditions. . Atmos. Chem. Phys. 22:(2):86180
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031920-083456
Loading
/content/journals/10.1146/annurev-earth-031920-083456
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error