1932

Abstract

The hydroxyl radical (OH) largely controls the tropospheric self-cleansing capacity by reacting with gases harmful to the environment and human health. OH concentrations are determined locally by competing production and loss processes. Lacking strong observational constraints, models differ in how they balance these processes, such that the sign of past and future OH changes is uncertain. In a warmer climate, OH production will increase due to its water vapor dependence, partially offset by faster OH-methane loss. Weather-sensitive emissions will also likely increase, although their net impact on global mean OH depends on the balance between source (nitrogen oxides) and sink (reactive carbon) gases. Lightning activity increases OH, but its response to climate warming is of uncertain sign. To enable confident projections of OH, we recommend efforts to reduce uncertainties in kinetic reactions, in measured and modeled OH, in proxies for past OH concentrations, and in source and sink gas emissions.

  • ▪  OH is strongly modulated by internal climate variability despite its lifetime of a few seconds at most, with implications for interpreting trends in methane.
  • ▪  Improved kinetic constraints on key reactions would strengthen confidence in regional and global OH budgets, and in the response of OH to climate change.
  • ▪  Future OH changes will depend on uncertain and compensating processes involving weather-sensitive chemistry and emissions, plus human choices.
  • ▪  Technological solutions to climate change will likely impact tropospheric oxidizing capacity and merit further study prior to implementation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-090307
2024-07-23
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-032320-090307.html?itemId=/content/journals/10.1146/annurev-earth-032320-090307&mimeType=html&fmt=ahah

Literature Cited

  1. Abalos M, Orbe C, Kinnison DE, Plummer D, Oman LD, et al. 2020.. Future trends in stratosphere-to-troposphere transport in CCMI models. . Atmos. Chem. Phys. 20::6883901. https://doi.org/10.5194/acp-20-6883-2020
    [Crossref] [Google Scholar]
  2. Abatzoglou JT, Williams AP. 2016.. Impact of anthropogenic climate change on wildfire across western US forests. . PNAS 113::1177075. https://doi.org/10.1073/pnas.1607171113
    [Crossref] [Google Scholar]
  3. Abel D, Holloway T, Kladar RM, Meier P, Ahl D, et al. 2017.. Response of power plant emissions to ambient temperature in the eastern United States. . Environ. Sci. Technol. 51::583846. https://doi.org/10.1021/acs.est.6b06201
    [Crossref] [Google Scholar]
  4. Achakulwisut P, Mickley LJ, Murray LT, Tai APK, Kaplan JO, Alexander B. 2015.. Uncertainties in isoprene photochemistry and emissions: implications for the oxidative capacity of past and present atmospheres and for climate forcing agents. . Atmos. Chem. Phys. 15::797798. https://doi.org/10.5194/acp-15-7977-2015
    [Crossref] [Google Scholar]
  5. Alexander B, Mickley LJ. 2015.. Paleo-perspectives on potential future changes in the oxidative capacity of the atmosphere due to climate change and anthropogenic emissions. . Curr. Pollut. Rep. 1::5769. https://doi.org/10.1007/s40726-015-0006-0
    [Crossref] [Google Scholar]
  6. Alexander B, Savarino J, Barkov NI, Delmas RJ, Thiemens MH. 2002.. Climate driven changes in the oxidation pathways of atmospheric sulfur. . Geophys. Res. Lett. 29::30130-4. https://doi.org/10.1029/2002GL014879
    [Google Scholar]
  7. Alexander B, Savarino J, Kreutz KJ, Thiemens MH. 2004.. Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen. . J. Geophys. Res. 109:(D8):D08303. https://doi.org/10.1029/2003JD004218
    [Crossref] [Google Scholar]
  8. Andersen ST, Nelson BS, Read KA, Punjabi S, Neves L, et al. 2022.. Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO2–O3 photostationary state. . Atmos. Chem. Phys. 22::1574765. https://doi.org/10.5194/acp-22-15747-2022
    [Crossref] [Google Scholar]
  9. Anderson DC, Duncan BN, Fiore AM, Baublitz CB, Follette-Cook MB, et al. 2021.. Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers. . Atmos. Chem. Phys. 21::6481508. https://doi.org/10.5194/acp-21-6481-2021
    [Crossref] [Google Scholar]
  10. Anderson DC, Follette-Cook MB, Strode SA, Nicely JM, Liu J, et al. 2022.. A machine learning methodology for the generation of a parameterization of the hydroxyl radical. . Geosci. Model Dev. 15::634158. https://doi.org/10.5194/gmd-15-6341-2022
    [Crossref] [Google Scholar]
  11. Bates KH, Jacob DJ. 2019.. A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol. . Atmos. Chem. Phys. 19::961340. https://doi.org/10.5194/acp-19-9613-2019
    [Crossref] [Google Scholar]
  12. Baublitz CB, Fiore AM, Ludwig SM, Nicely JM, Wolfe GM, et al. 2023.. An observation-based, reduced-form model for oxidation in the remote marine troposphere. . PNAS 120:(34):e2209735120. https://doi.org/10.1073/pnas.2209735120
    [Crossref] [Google Scholar]
  13. Bertagni MB, Pacala SW, Paulot F, Porporato A. 2022.. Risk of the hydrogen economy for atmospheric methane. . Nat. Commun. 13::7706. https://doi.org/10.1038/s41467-022-35419-7
    [Crossref] [Google Scholar]
  14. Bhetanabhotla MN, Crowell BA, Cowouvinos A, Hill RD, Rinker RG. 1985.. Simulation of trace species production by lightning and corona discharge in moist air. . Atmos. Environ. 19:(9):139197. https://doi.org/10.1016/0004-6981(85)90276-8
    [Crossref] [Google Scholar]
  15. Brune WH, McFarland PJ, Bruning E, Waugh S, MacGorman D, et al. 2021.. Extreme oxidant amounts produced by lightning in storm clouds. . Science 372::71115. https://doi.org/10.1126/science.abg0492
    [Crossref] [Google Scholar]
  16. Brune WH, Miller DO, Thames AB, Allen HM, Apel EC, et al. 2020.. Exploring oxidation in the remote free troposphere: insights from atmospheric tomography (ATom). . J. Geophys. Res. Atmos. 125::e2019JD031685. https://doi.org/10.1029/2019JD031685
    [Crossref] [Google Scholar]
  17. Burkholder JB, Sander SP, Abbatt J, Barker JR, Cappa C, et al. 2019.. Chemical kinetics and photochemical data for use in atmospheric studies, evaluation no. 19. JPL Publ. 19-5 , Jet Propuls. Lab., Pasadena, CA:
    [Google Scholar]
  18. Butler T, Lupascu A, Nalam A. 2020.. Attribution of ground-level ozone to anthropogenic and natural sources of nitrogen oxides and reactive carbon in a global chemical transport model. . Atmos. Chem. Phys. 20::1070731. https://doi.org/10.5194/acp-20-10707-2020
    [Crossref] [Google Scholar]
  19. Caram C, Szopa S, Cozic A, Bekki S, Cuevas C, Saiz-Lopez A. 2023.. Sensitivity of tropospheric ozone to halogen chemistry in the chemistry-climate model LMDZ-INCA vNMHC. . Geosci. Model Dev. 16::404162. https://doi.org/10.5194/gmd-16-4041-2023
    [Crossref] [Google Scholar]
  20. Chakraborty R, Chakraborty A, Basha G, Ratnam MV. 2021.. Lightning occurrences and intensity over the Indian region: long-term trends and future projections. . Atmos. Chem. Phys. 21::1116177. https://doi.org/10.5194/acp-21-11161-2021
    [Crossref] [Google Scholar]
  21. Chandra S, Ziemke JR, Min W, Read WG. 1998.. Effects of 1997–1998 El Niño on tropospheric ozone and water vapor. . Geophys. Res. Lett. 25::386770. https://doi.org/10.1029/98GL02695
    [Crossref] [Google Scholar]
  22. Chen Y, Romps DM, Seeley JT, Veraverbeke S, Riley WJ, et al. 2021.. Future increases in Arctic lightning and fire risk for permafrost carbon. . Nat. Clim. Change 11::40410. https://doi.org/10.1038/s41558-021-01011-y
    [Crossref] [Google Scholar]
  23. Christian KE, Brune WH, Mao J. 2017.. Global sensitivity analysis of the GEOS-Chem chemical transport model: ozone and hydrogen oxides during ARCTAS 2008. . Atmos. Chem. Phys. 17:(5):376984. https://doi.org/10.5194/acp-17-3769-2017
    [Crossref] [Google Scholar]
  24. Christian KE, Brune WH, Mao J, Ren X. 2018.. Global sensitivity analysis of GEOS-Chem modeled ozone and hydrogen oxides during the INTEX campaigns. . Atmos. Chem. Phys. 18:(4):244360. https://doi.org/10.5194/acp-18-2443-2018
    [Crossref] [Google Scholar]
  25. Chua G, Naik V, Horowitz LW. 2023.. Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry-climate model. . Atmos. Chem. Phys. 23::495575. https://doi.org/10.5194/acp-23-4955-2023
    [Crossref] [Google Scholar]
  26. Dang R, Jacob DJ, Shah V, Eastham SD, Fritz TM, et al. 2023.. Background nitrogen dioxide (NO2) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires. . Atmos. Chem. Phys. 23::627184. https://doi.org/10.5194/acp-23-6271-2023
    [Crossref] [Google Scholar]
  27. Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, et al. 2018.. Methane feedbacks to the global climate system in a warmer world. . Rev. Geophys. 56::20750. https://doi.org/10.1002/2017RG000559
    [Crossref] [Google Scholar]
  28. Deser C, Knutti R, Solomon S, Phillips AS. 2012.. Communication of the role of natural variability in future North American climate. . Nat. Clim. Change 2::888. https://doi.org/10.1038/nclimate1779
    [Crossref] [Google Scholar]
  29. Duncan BN, Bey I, Chin M, Mickley LJ, Fairlie TD, et al. 2003.. Indonesian wildfires of 1997: impact on tropospheric chemistry. . J. Geophys. Res. 108:(D15):4458. https://doi.org/10.1029/2002JD003195
    [Crossref] [Google Scholar]
  30. Duncan BN, Logan JA. 2008.. Model analysis of the factors regulating the trends and variability of carbon monoxide between 1988 and 1997. . Atmos. Chem. Phys. 8::7389403. https://doi.org/10.5194/acp-8-7389-2008
    [Crossref] [Google Scholar]
  31. Eastham SD, Jacob DJ. 2017.. Limits on the ability of global Eulerian models to resolve intercontinental transport of chemical plumes. . Atmos. Chem. Phys. 17::254353. https://doi.org/10.5194/acp-17-2543-2017
    [Crossref] [Google Scholar]
  32. Faïn X, Chappellaz J, Rhodes RH, Stowasser C, Blunier T, et al. 2014.. High resolution measurements of carbon monoxide along a late Holocene Greenland ice core: evidence for in situ production. . Clim. Past 10::9871000. https://doi.org/10.5194/cp-10-987-2014
    [Crossref] [Google Scholar]
  33. Finney DL, Doherty RM, Wild O, Stevenson DS, MacKenzie IA, Blyth AM. 2018.. A projected decrease in lightning under climate change. . Nat. Clim. Change 8::21013. https://doi.org/10.1038/s41558-018-0072-6
    [Crossref] [Google Scholar]
  34. Fiore AM, Hancock SE, Lamarque J-F, Correa GP, Chang K-L, et al. 2022.. Understanding recent tropospheric ozone trends in the context of large internal variability: a new perspective from chemistry-climate model ensembles. . Environ. Res. Clim. 1::025008. https://doi.org/10.1088/2752-5295/ac9cc2
    [Crossref] [Google Scholar]
  35. Fiore AM, West JJ, Horowitz LW, Naik V, Schwarzkopf MD. 2008.. Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. . J. Geophys. Res. 113:(D8):D08307. https://doi.org/10.1029/2007jd009162
    [Crossref] [Google Scholar]
  36. Frey MM, Bales RC, McConnell JR. 2006.. Climate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica. . J. Geophys. Res. 111:(D21):D21301. https://doi.org/10.1029/2005JD006816
    [Crossref] [Google Scholar]
  37. Gaudel Cooper OR, Chang K-L, Bourgeois I, Ziemke JR, et al. 2020.. Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere. . Sci. Adv. 6::eaba8272. https://doi.org/10.1126/sciadv.aba8272
    [Crossref] [Google Scholar]
  38. Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, et al. 2012.. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. . Geosci. Model Dev. 5::147192. https://doi.org/10.5194/gmd-5-1471-2012
    [Crossref] [Google Scholar]
  39. Guo H, Flynn CM, Prather MJ, Strode SA, Steenrod SD, et al. 2023.. Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements—corrected. . Atmos. Chem. Phys. 23::99117. https://doi.org/10.5194/acp-23-99-2023
    [Crossref] [Google Scholar]
  40. Hawkins E, Ortega P, Suckling E, Schurer A, Hegerl G, et al. 2017.. Estimating changes in global temperature since the preindustrial period. . Bull. Am. Meteorol. Soc. 98::184156. https://doi.org/10.1175/BAMS-D-16-0007.1
    [Crossref] [Google Scholar]
  41. Hawkins E, Sutton R. 2009.. The potential to narrow uncertainty in regional climate predictions. . Bull. Am. Meteorol. Soc. 90::1095108. https://doi.org/10.1175/2009BAMS2607.1
    [Crossref] [Google Scholar]
  42. He J, Naik V, Horowitz LW, Dlugokencky E, Thoning K. 2020.. Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1. . Atmos. Chem. Phys. 20::80527. https://doi.org/10.5194/acp-20-805-2020
    [Crossref] [Google Scholar]
  43. Hegglin MI, Shepherd TG. 2009.. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. . Nat. Geosci. 2::68791. https://doi.org/10.1038/ngeo604
    [Crossref] [Google Scholar]
  44. Held IM, Soden BJ. 2006.. Robust responses of the hydrological cycle to global warming. . J. Clim. 19::568699. https://doi.org/10.1175/JCLI3990.1
    [Crossref] [Google Scholar]
  45. Holmes CD. 2018.. Methane feedback on atmospheric chemistry: methods, models, and mechanisms. . J. Adv. Model. Earth Syst. 10::108799. https://doi.org/10.1002/2017MS001196
    [Crossref] [Google Scholar]
  46. Horowitz HM, Holmes C, Wright A, Sherwen T, Wang X, et al. 2020.. Effects of sea salt aerosol emissions for marine cloud brightening on atmospheric chemistry: implications for radiative forcing. . Geophys. Res. Lett. 47::e2019GL085838. https://doi.org/10.1029/2019GL085838
    [Crossref] [Google Scholar]
  47. Hudman RC, Moore NE, Mebust AK, Martin RV, Russell AR, et al. 2012.. Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. . Atmos. Chem. Phys. 12::777995. https://doi.org/10.5194/Acp-12-7779-2012
    [Crossref] [Google Scholar]
  48. Hutterli MA, McConnell JR, Chen G, Bales RC, Davis DD, Lenschow DH. 2004.. Formaldehyde and hydrogen peroxide in air, snow and interstitial air at South Pole. . Atmos. Environ. 38::543950. https://doi.org/10.1016/j.atmosenv.2004.06.003
    [Crossref] [Google Scholar]
  49. Iglesias-Suarez F, Badia A, Fernandez RP, Cuevas CA, Kinnison DE, et al. 2020.. Natural halogens buffer tropospheric ozone in a changing climate. . Nat. Clim. Change 10::14754. https://doi.org/10.1038/s41558-019-0675-6
    [Crossref] [Google Scholar]
  50. IPCC. 2023.. Summary for policymakers. . In Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al. , pp. 332. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781009157896.001
    [Google Scholar]
  51. Irvine P, Emanuel K, He J, Horowitz LW, Vecchi G, Keith D. 2019.. Halving warming with idealized solar geoengineering moderates key climate hazards. . Nat. Clim. Change 9::29599. https://doi.org/10.1038/s41558-019-0398-8
    [Crossref] [Google Scholar]
  52. Jackson RB, Abernethy S, Canadell JG, Cargnello M, Davis SJ, et al. 2021.. Atmospheric methane removal: a research agenda. . Philos. Trans. R. Soc. A 379::20200454. https://doi.org/10.1098/rsta.2020.0454
    [Crossref] [Google Scholar]
  53. Jaeglé L, Jacob DJ, Brune WH, Wennberg PO. 2001.. Chemistry of HOx radicals in the upper troposphere. . Atmos. Environ. 35::46989. https://doi.org/10.1016/S1352-2310(00)00376-9
    [Crossref] [Google Scholar]
  54. Jenkins JM, Brune WH, Miller DO. 2021.. Electrical discharges produce prodigious amounts of hydroxyl and hydroperoxyl radicals. . J. Geophys. Res. Atmos. 126::e2021JD034557. https://doi.org/10.1029/2021JD034557
    [Crossref] [Google Scholar]
  55. John JG, Fiore AM, Naik V, Horowitz LW, Dunne JP. 2012.. Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860–2100. . Atmos. Chem. Phys. 12::1202136. https://doi.org/10.5194/acp-12-12021-2012
    [Crossref] [Google Scholar]
  56. Johnson CE, Collins WJ, Stevenson DS, Derwent RG. 1999.. Relative roles of climate and emissions changes on future tropospheric oxidant concentrations. . J. Geophys. Res. 104:(D15):1863145. https://doi.org/10.1029/1999jd900204
    [Crossref] [Google Scholar]
  57. Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G, et al. 2022.. Global and regional trends and drivers of fire under climate change. . Rev. Geophys. 60::e2020RG000726. https://doi.org/10.1029/2020RG000726
    [Crossref] [Google Scholar]
  58. Kahraman A, Kendon EJ, Fowler HJ, Wilkinson JM. 2022.. Contrasting future lightning stories across Europe. . Environ. Res. Lett. 17::114023. https://doi.org/10.1088/1748-9326/ac9b78
    [Crossref] [Google Scholar]
  59. Kaplan JO, Folberth G, Hauglustaine DA. 2006.. Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. . Global Biogeochem. Cycles 20::GB2016. https://doi.org/10.1029/2005GB002590
    [Crossref] [Google Scholar]
  60. Kleinen T, Gromov S, Steil B, Brovkin V. 2021.. Atmospheric methane underestimated in future climate projections. . Environ. Res. Lett. 16::094006. https://doi.org/10.1088/1748-9326/ac1814
    [Crossref] [Google Scholar]
  61. Kostinskiy AY, Marshall TC, Stolzenburg M. 2020.. The mechanism of the origin and development of lightning from initiating event to initial breakdown pulses (v.2). . J. Geophys. Res. Atmos. 125::e2020JD033191. https://doi.org/10.1029/2020JD033191
    [Crossref] [Google Scholar]
  62. Labrador LJ, von Kuhlmann R, Lawrence MG. 2004.. Strong sensitivity of the global mean OH concentration and the tropospheric oxidizing efficiency to the source of NOx from lightning. . Geophys. Res. Lett. 31::L06102. https://doi.org/10.1029/2003GL019229
    [Crossref] [Google Scholar]
  63. Lamarque J-F, McConnell JR, Shindell DT, Orlando JJ, Tyndall GS. 2011.. Understanding the drivers for the 20th century change of hydrogen peroxide in Antarctic ice-cores. . Geophys. Res. Lett. 38::L04810. https://doi.org/10.1029/2010GL045992
    [Crossref] [Google Scholar]
  64. Latham J, Bower K, Choularton T, Coe H, Connolly P, et al. 2012.. Marine cloud brightening. . Philos. Trans. R. Soc. A 370::421762. https://doi.org/10.1098/rsta.2012.0086
    [Crossref] [Google Scholar]
  65. Lawrence MG, Jöckel P, von Kuhlmann R. 2001.. What does the global mean OH concentration tell us?. Atmos. Chem. Phys. 1::3749. https://doi.org/10.5194/acp-1-37-2001
    [Crossref] [Google Scholar]
  66. Lee J-Y, Marotzke J, Bala G, Cao L, Corti S, et al. 2021.. Future global climate: scenario-based projections and near-term information. . In Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al. , pp. 553672. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781009157896.006
    [Google Scholar]
  67. Lehner F, Deser C. 2023.. Origin, importance, and predictive limits of internal climate variability. . Environ. Res. Clim. 2::023001. https://doi.org/10.1088/2752-5295/accf30
    [Crossref] [Google Scholar]
  68. Lelieveld J, Gromov S, Pozzer A, Taraborrelli D. 2016.. Global tropospheric hydroxyl distribution, budget and reactivity. . Atmos. Chem. Phys. 16::1247793. https://doi.org/10.5194/acp-16-12477-2016
    [Crossref] [Google Scholar]
  69. Levy H. 1971.. Normal atmosphere: large radical and formaldehyde concentrations predicted. . Science 173::14143. https://doi.org/10.1126/science.173.3992.141
    [Crossref] [Google Scholar]
  70. Liang Q, Chipperfield MP, Fleming EL, Abraham NL, Braesicke P, et al. 2017.. Deriving global OH abundance and atmospheric lifetimes for long-lived gases: a search for CH3CCl3 alternatives. . J. Geophys. Res. Atmos. 122::1191433. https://doi.org/10.1002/2017JD026926
    [Google Scholar]
  71. Lovelock JE. 1977.. Methyl chloroform in the troposphere as an indicator of OH radical abundance. . Nature 267::32. https://doi.org/10.1038/267032a0
    [Crossref] [Google Scholar]
  72. MacMartin DG, Ricke KL, Keith DW. 2018.. Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target. . Philos. Trans. R. Soc. A 376::20160454. https://doi.org/10.1098/rsta.2016.0454
    [Crossref] [Google Scholar]
  73. MacMartin DG, Wang W, Kravitz B, Tilmes S, Richter JH, Mills MJ. 2019.. Timescale for detecting the climate response to stratospheric aerosol geoengineering. . J. Geophys. Res. Atmos. 124::123347. https://doi.org/10.1029/2018JD028906
    [Crossref] [Google Scholar]
  74. Mao J, Fan S, Jacob DJ, Travis KR. 2013a.. Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols. . Atmos. Chem. Phys. 13::50919. https://doi.org/10.5194/acp-13-509-2013
    [Crossref] [Google Scholar]
  75. Mao J, Horowitz LW, Naik V, Fan S, Liu J, Fiore AM. 2013b.. Sensitivity of tropospheric oxidants to biomass burning emissions: implications for radiative forcing. . Geophys. Res. Lett. 40::124146. https://doi.org/10.1002/grl.50210
    [Crossref] [Google Scholar]
  76. Mao J, Zhao T, Keller CA, Wang X, McFarland PJ, et al. 2021.. Global impact of lightning-produced oxidants. . Geophys. Res. Lett. 48::e2021GL095740. https://doi.org/10.1029/2021GL095740
    [Crossref] [Google Scholar]
  77. Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, et al. 2013.. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). . Biogeosciences 10::75388. https://doi.org/10.5194/bg-10-753-2013
    [Crossref] [Google Scholar]
  78. Mickley LJ, Jacob DJ, Rind D. 2001.. Uncertainty in preindustrial abundance of tropospheric ozone: implications for radiative forcing calculations. . J. Geophys. Res. 106:(D4):338999. https://doi.org/10.1029/2000jd900594
    [Crossref] [Google Scholar]
  79. Miller DO, Brune WH. 2022.. Investigating the understanding of oxidation chemistry using 20 years of airborne OH and HO2 observations. . J. Geophys. Res. Atmos. 127::e2021JD035368. https://doi.org/10.1029/2021JD035368
    [Crossref] [Google Scholar]
  80. Moch JM, Mickley LJ, Eastham SD, Lundgren EW, Shah V, et al. 2023.. Overlooked long-term atmospheric chemical feedbacks alter the impact of solar geoengineering: implications for tropospheric oxidative capacity. . AGU Adv. 4::e2023AV000911. https://doi.org/10.1029/2023AV000911
    [Crossref] [Google Scholar]
  81. Montzka SA, Krol M, Dlugokencky E, Hall B, Jøckel P, Lelieveld J. 2011.. Small interannual variability of global atmospheric hydroxyl. . Science 331::6769. https://doi.org/10.1126/science.1197640
    [Crossref] [Google Scholar]
  82. Murray LT. 2016.. Lightning NOx and impacts on air quality. . Curr. Pollut. Rep. 2::11533. https://doi.org/10.1007/s40726-016-0031-7
    [Crossref] [Google Scholar]
  83. Murray LT, Fiore AM, Shindell DT, Naik V, Horowitz LW. 2021.. Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon. . PNAS 118::e2115204118. https://doi.org/10.1073/pnas.2115204118
    [Crossref] [Google Scholar]
  84. Murray LT, Logan JA, Jacob DJ. 2013.. Interannual variability in tropical tropospheric ozone and OH: the role of lightning. . J. Geophys. Res. Atmos. 118::1146880. https://doi.org/10.1002/jgrd.50857
    [Crossref] [Google Scholar]
  85. Murray LT, Mickley LJ, Kaplan JO, Sofen ED, Pfeiffer M, Alexander B. 2014.. Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum. . Atmos. Chem. Phys. 14::3589622. https://doi.org/10.5194/Acp-14-3589-2014
    [Crossref] [Google Scholar]
  86. Naik V, Voulgarakis A, Fiore AM, Horowitz LW, Lamarque JF, et al. 2013.. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). . Atmos. Chem. Phys. 13::527798. https://doi.org/10.5194/acp-13-5277-2013
    [Crossref] [Google Scholar]
  87. Naus S, Montzka SA, Pandey S, Basu S, Dlugokencky EJ, Krol M. 2019.. Constraints and biases in a tropospheric two-box model of OH. . Atmos. Chem. Phys. 19::40724. https://doi.org/10.5194/acp-19-407-2019
    [Crossref] [Google Scholar]
  88. Navarro-González R, Villagrán-Muniz M, Sobral H, Molina LT, Molina MJ. 2001.. The physical mechanism of nitric oxide formation in simulated lightning. . Geophys. Res. Lett. 28::386770. https://doi.org/10.1029/2001GL013170
    [Crossref] [Google Scholar]
  89. Neu JL, Flury T, Manney GL, Santee ML, Livesey NJ, Worden J. 2014.. Tropospheric ozone variations governed by changes in stratospheric circulation. . Nat. Geosci. 7::34044. https://doi.org/10.1038/ngeo2138
    [Crossref] [Google Scholar]
  90. Newsome B, Evans M. 2017.. Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing. . Atmos. Chem. Phys. 17:(23):1433352. https://doi.org/10.5194/acp-17-14333-2017
    [Crossref] [Google Scholar]
  91. Nicely JM, Anderson DC, Canty TP, Salawitch RJ, Wolfe GM, et al. 2016.. An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. . J. Geophys. Res. Atmos. 121::746188. https://doi.org/10.1002/2016JD025067
    [Crossref] [Google Scholar]
  92. Nicely JM, Canty TP, Manyin M, Oman LD, Salawitch RJ, et al. 2018.. Changes in global tropospheric OH expected as a result of climate change over the last several decades. . J. Geophys. Res. Atmos. 123::1077495. https://doi.org/10.1029/2018JD028388
    [Crossref] [Google Scholar]
  93. Nicely JM, Duncan BN, Hanisco TF, Wolfe GM, Salawitch RJ, et al. 2020.. A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. . Atmos. Chem. Phys. 20::134161. https://doi.org/10.5194/acp-20-1341-2020
    [Crossref] [Google Scholar]
  94. Ocko IB, Hamburg SP. 2022.. Climate consequences of hydrogen emissions. . Atmos. Chem. Phys. 22::934968. https://doi.org/10.5194/acp-22-9349-2022
    [Crossref] [Google Scholar]
  95. Patra PK, Krol MC, Montzka SA, Arnold T, Atlas EL, et al. 2014.. Observational evidence for interhemispheric hydroxyl-radical parity. . Nature 513::21923. https://doi.org/10.1038/nature13721
    [Crossref] [Google Scholar]
  96. Patra PK, Krol MC, Prinn RG, Takigawa M, Mühle J, et al. 2021.. Methyl chloroform continues to constrain the hydroxyl (OH) variability in the troposphere. . J. Geophys. Res. Atmos. 126::e2020JD033862. https://doi.org/10.1029/2020JD033862
    [Crossref] [Google Scholar]
  97. Paulot F, Paynter D, Naik V, Malyshev S, Menzel R, Horowitz LW. 2021.. Global modeling of hydrogen using GFDL-AM4.1: sensitivity of soil removal and radiative forcing. . Int. J. Hydrog. Energy 46::1344660. https://doi.org/10.1016/j.ijhydene.2021.01.088
    [Crossref] [Google Scholar]
  98. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, et al. 1999.. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. . Nature 399::42936. https://doi.org/10.1038/20859
    [Crossref] [Google Scholar]
  99. Petrenko VV, Smith AM, Crosier EM, Kazemi R, Place P, et al. 2021.. An improved method for atmospheric 14CO measurements. . Atmos. Meas. Tech. 14::205563. https://doi.org/10.5194/amt-14-2055-2021
    [Crossref] [Google Scholar]
  100. Pfannerstill EY, Reijrink NG, Edtbauer A, Ringsdorf A, Zannoni N, et al. 2021.. Total OH reactivity over the Amazon rainforest: variability with temperature, wind, rain, altitude, time of day, season, and an overall budget closure. . Atmos. Chem. Phys. 21::623156. https://doi.org/10.5194/acp-21-6231-2021
    [Crossref] [Google Scholar]
  101. Pickering KE, Thompson AM, Dickerson RR, Luke WT, McNamara DP, et al. 1990.. Model calculations of tropospheric ozone production potential following observed convective events. . J. Geophys. Res. 95:(D9):1404962. https://doi.org/10.1029/JD095iD09p14049
    [Crossref] [Google Scholar]
  102. Pimlott MA, Pope RJ, Kerridge BJ, Latter BG, Knappett DS, et al. 2022.. Investigating the global OH radical distribution using steady-state approximations and satellite data. . Atmos. Chem. Phys. 22::1046788. https://doi.org/10.5194/acp-22-10467-2022
    [Crossref] [Google Scholar]
  103. Pitari G, Aquila V, Kravitz B, Robock A, Watanabe S, et al. 2014.. Stratospheric ozone response to sulfate geoengineering: results from the Geoengineering Model Intercomparison Project (GeoMIP). . J. Geophys. Res. Atmos. 119::262953. https://doi.org/10.1002/2013JD020566
    [Crossref] [Google Scholar]
  104. Prather MJ. 1996.. Time scales in atmospheric chemistry: theory, GWPs for CH4 and CO, and runaway growth. . Geophys. Res. Lett. 23::2597600. https://doi.org/10.1029/96GL02371
    [Crossref] [Google Scholar]
  105. Prather MJ, Flynn CM, Zhu X, Steenrod SD, Strode SA, et al. 2018.. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition. . Atmos. Meas. Tech. 11::265368. https://doi.org/10.5194/amt-11-2653-2018
    [Crossref] [Google Scholar]
  106. Prather MJ, Holmes CD. 2017.. Overexplaining or underexplaining methane's role in climate change. . PNAS 114::532426. https://doi.org/10.1073/pnas.1704884114
    [Crossref] [Google Scholar]
  107. Prather MJ, Zhu X, Flynn CM, Strode SA, Rodriguez JM, et al. 2017.. Global atmospheric chemistry—which air matters. . Atmos. Chem. Phys. 17::9081102. https://doi.org/10.5194/acp-17-9081-2017
    [Crossref] [Google Scholar]
  108. Price C. 2009.. Thunderstorms, lightning and climate change. . In Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research, ed. HD Betz, U Schumann, P Laroche , pp. 52135. Dordrecht, Neth.:: Springer. https://doi.org/10.1007/978-1-4020-9079-0_24
    [Google Scholar]
  109. Prinn R, Cunnold D, Simmonds P, Alyea F, Boldi R, et al. 1992.. Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990. . J. Geophys. Res. 97:(D2):244561. https://doi.org/10.1029/91JD02755
    [Crossref] [Google Scholar]
  110. Rhodes RH, Brook EJ, McConnell JR, Blunier T, Sime LC, et al. 2017.. Atmospheric methane variability: centennial-scale signals in the Last Glacial Period. . Global Biogeochem. Cycles 31::57590. https://doi.org/10.1002/2016GB005570
    [Crossref] [Google Scholar]
  111. Rohrer F, Berresheim H. 2006.. Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. . Nature 442::18487. https://doi.org/10.1038/nature04924
    [Crossref] [Google Scholar]
  112. Romps DM. 2019.. Evaluating the future of lightning in cloud-resolving models. . Geophys. Res. Lett. 46::1486371. https://doi.org/10.1029/2019GL085748
    [Crossref] [Google Scholar]
  113. Shah V, Jacob DJ, Dang R, Lamsal LN, Strode SA, et al. 2023.. Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements. . Atmos. Chem. Phys. 23::122757. https://doi.org/10.5194/acp-23-1227-2023
    [Crossref] [Google Scholar]
  114. Sharkey TD, Monson RK. 2014.. The future of isoprene emission from leaves, canopies and landscapes. . Plant Cell Environ. 37::172740. https://doi.org/10.1111/pce.12289
    [Crossref] [Google Scholar]
  115. Silvern RF, Jacob DJ, Travis KR, Sherwen T, Evans MJ, et al. 2018.. Observed NO/NO2 ratios in the upper troposphere imply errors in NO-NO2-O3 cycling kinetics or an unaccounted NOx reservoir. . Geophys. Res. Lett. 45::446674. https://doi.org/10.1029/2018GL077728
    [Crossref] [Google Scholar]
  116. Sofen ED, Alexander B, Kunasek SA. 2011.. The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core Δ17O(SO42−). . Atmos. Chem. Phys. 11::356578. https://doi.org/10.5194/acp-11-3565-2011
    [Crossref] [Google Scholar]
  117. Spivakovsky CM, Logan JA, Montzka SA, Balkanski YJ, Foreman-Fowler M, et al. 2000.. Three-dimensional climatological distribution of tropospheric OH: update and evaluation. . J. Geophys. Res. 105:(D7):893180. https://doi.org/10.1029/1999JD901006
    [Crossref] [Google Scholar]
  118. Staniaszek Z, Griffiths PT, Folberth GA, O'Connor FM, Abraham NL, Archibald AT. 2022.. The role of future anthropogenic methane emissions in air quality and climate. . npj Clim. Atmos. Sci. 5:: 21:. https://doi.org/10.1038/s41612-022-00247-5
    [Google Scholar]
  119. Stevenson DS, Zhao A, Naik V, O'Connor FM, Tilmes S, et al. 2020.. Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. . Atmos. Chem. Phys. 20::1290520. https://doi.org/10.5194/acp-20-12905-2020
    [Crossref] [Google Scholar]
  120. Stone D, Sherwen T, Evans MJ, Vaughan S, Ingham T, et al. 2018.. Impacts of bromine and iodine chemistry on tropospheric OH and HO2: comparing observations with box and global model perspectives. . Atmos. Chem. Phys. 18::354161. https://doi.org/10.5194/acp-18-3541-2018
    [Crossref] [Google Scholar]
  121. Stone D, Whalley LK, Heard DE. 2012.. Tropospheric OH and HO2 radicals: field measurements and model comparisons. . Chem. Soc. Rev. 41::6348404. https://doi.org/10.1039/C2CS35140D
    [Crossref] [Google Scholar]
  122. Szopa S, Naik V, Adhikary B, Artaxo P, Berntsen T, et al. 2021.. Short-lived climate forcers. . In Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al. , pp. 817922. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781009157896.008
    [Google Scholar]
  123. Terrenoire E, Hauglustaine DA, Cohen Y, Cozic A, Valorso R, et al. 2022.. Impact of present and future aircraft NOx and aerosol emissions on atmospheric composition and associated direct radiative forcing of climate. . Atmos. Chem. Phys. 22::119872023. https://doi.org/10.5194/acp-22-11987-2022
    [Crossref] [Google Scholar]
  124. Thames AB, Brune WH, Miller DO, Allen HM, Apel EC, et al. 2020.. Missing OH reactivity in the global marine boundary layer. . Atmos. Chem. Phys. 20::401329. https://doi.org/10.5194/acp-20-4013-2020
    [Crossref] [Google Scholar]
  125. Theys N, Volkamer R, Müller J-F, Zarzana KJ, Kille N, et al. 2020.. Global nitrous acid emissions and levels of regional oxidants enhanced by wildfires. . Nat. Geosci. 13::68186. https://doi.org/10.1038/s41561-020-0637-7
    [Crossref] [Google Scholar]
  126. Thompson AM. 1992.. The oxidizing capacity of the Earth's atmosphere: probable past and future changes. . Science 256::115765. https://doi.org/10.1126/science.256.5060.1157
    [Crossref] [Google Scholar]
  127. Thompson CR, Wofsy SC, Prather MJ, Newman PA, Hanisco TF, et al. 2022.. The NASA Atmospheric Tomography (ATom) mission: imaging the chemistry of the global atmosphere. . Bull. Am. Meteorol. Soc. 103::E76190. https://doi.org/10.1175/BAMS-D-20-0315.1
    [Crossref] [Google Scholar]
  128. Thornhill G, Collins W, Olivié D, Skeie RB, Archibald A, et al. 2021.. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. . Atmos. Chem. Phys. 21::110526. https://doi.org/10.5194/acp-21-1105-2021
    [Crossref] [Google Scholar]
  129. Travis KR, Heald CL, Allen HM, Apel EC, Arnold SR, et al. 2020.. Constraining remote oxidation capacity with ATom observations. . Atmos. Chem. Phys. 20::775381. https://doi.org/10.5194/acp-20-7753-2020
    [Crossref] [Google Scholar]
  130. Turner AJ, Frankenberg C, Kort EA. 2019.. Interpreting contemporary trends in atmospheric methane. . PNAS 116::280513. https://doi.org/10.1073/pnas.1814297116
    [Crossref] [Google Scholar]
  131. Turner AJ, Frankenberg C, Wennberg PO, Jacob DJ. 2017.. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. . PNAS 114::536772. https://doi.org/10.1073/pnas.1616020114
    [Crossref] [Google Scholar]
  132. Turner AJ, Fung I, Naik V, Horowitz LW, Cohen RC. 2018.. Modulation of hydroxyl variability by ENSO in the absence of external forcing. . PNAS 115::893136. https://doi.org/10.1073/pnas.1807532115
    [Crossref] [Google Scholar]
  133. Turner AJ, Jacob DJ, Benmergui J, Wofsy SC, Maasakkers JD, et al. 2016.. A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface observations. . Geophys. Res. Lett. 43::221824. https://doi.org/10.1002/2016GL067987
    [Crossref] [Google Scholar]
  134. Valdes PJ, Beerling DJ, Johnson CE. 2005.. The ice age methane budget. . Geophys. Res. Lett. 32::L02704. https://doi.org/10.1029/2004gl021004
    [Crossref] [Google Scholar]
  135. Voulgarakis A, Naik V, Lamarque JF, Shindell DT, Young PJ, et al. 2013.. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. . Atmos. Chem. Phys. 13::256387. https://doi.org/10.5194/acp-13-2563-2013
    [Crossref] [Google Scholar]
  136. Wang M, Fu Q, Solomon S, Alexander B, White RH. 2022.. Stratosphere-troposphere exchanges of air mass and ozone concentration in the Last Glacial Maximum. . J. Geophys. Res. Atmos. 127::e2021JD036327. https://doi.org/10.1029/2021JD036327
    [Crossref] [Google Scholar]
  137. Wang X, Jacob DJ, Downs W, Zhai S, Zhu L, et al. 2021.. Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants. . Atmos. Chem. Phys. 21::1397396. https://doi.org/10.5194/acp-21-13973-2021
    [Crossref] [Google Scholar]
  138. Wang Y, Jacob DJ. 1998.. Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. . J. Geophys. Res. 103:(D23):3112335. https://doi.org/10.1029/1998JD100004
    [Crossref] [Google Scholar]
  139. Wells KC, Millet DB, Payne VH, Deventer MJ, Bates KH, et al. 2020.. Satellite isoprene retrievals constrain emissions and atmospheric oxidation. . Nature 585::22533. https://doi.org/10.1038/s41586-020-2664-3
    [Crossref] [Google Scholar]
  140. Wild O, Voulgarakis A, O'Connor F, Lamarque J-F, Ryan EM, Lee L. 2020.. Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH: exploring model diversity. . Atmos. Chem. Phys. 20::404758. https://doi.org/10.5194/acp-20-4047-2020
    [Crossref] [Google Scholar]
  141. Wolfe GM, Nicely JM, St. Clair JM, Hanisco TF, Liao J, et al. 2019.. Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. . PNAS 116::1117180. https://doi.org/10.1073/pnas.1821661116
    [Crossref] [Google Scholar]
  142. Yeung LY, Murray Lee T, Martinerie P, Witrant E, et al. 2019.. Isotopic constraint on the twentieth-century increase in tropospheric ozone. . Nature 570::22427. https://doi.org/10.1038/s41586-019-1277-1
    [Crossref] [Google Scholar]
  143. Yeung LY, Young ED, Schauble EA. 2012.. Measurements of 18O18O and 17O18O in the atmosphere and the role of isotope-exchange reactions. . J. Geophys. Res. 117:(D18):D18306. https://doi.org/10.1029/2012JD017992
    [Crossref] [Google Scholar]
  144. Zhang Y, Jacob DJ, Maasakkers JD, Sulprizio MP, Sheng J-X, et al. 2018.. Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane. . Atmos. Chem. Phys. 18::1595973. https://doi.org/10.5194/acp-18-15959-2018
    [Crossref] [Google Scholar]
  145. Zhao Y, Saunois M, Bousquet P, Lin X, Berchet A, et al. 2019.. Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period. . Atmos. Chem. Phys. 19::1370123. https://doi.org/10.5194/acp-19-13701-2019
    [Crossref] [Google Scholar]
  146. Zhao Y, Saunois M, Bousquet P, Lin X, Berchet A, et al. 2020.. On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. . Atmos. Chem. Phys. 20::13011-22. https://doi.org/10.5194/acp-20-13011-2020
    [Crossref] [Google Scholar]
  147. Zhu Q, Laughner JL, Cohen RC. 2022.. Estimate of OH trends over one decade in North American cities. . PNAS 119::e2117399119. https://doi.org/10.1073/pnas.2117399119
    [Crossref] [Google Scholar]
  148. Ziemke JR, Chandra S, Oman LD, Bhartia PK. 2010.. A new ENSO index derived from satellite measurements of column ozone. . Atmos. Chem. Phys. 10::371121. https://doi.org/10.5194/acp-10-3711-2010
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-090307
Loading
/content/journals/10.1146/annurev-earth-032320-090307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error