1932

Abstract

This review examines the current understanding of the global coastal ocean carbon cycle and provides a new quantitative synthesis of air-sea CO exchange. This reanalysis yields an estimate for the globally integrated coastal ocean CO flux of −0.25 ± 0.05 Pg C year−1, with polar and subpolar regions accounting for most of the CO removal (>90%). A framework that classifies river-dominated ocean margin (RiOMar) and ocean-dominated margin (OceMar) systems is used to conceptualizecoastal carbon cycle processes. The carbon dynamics in three contrasting case study regions, the Baltic Sea, the Mid-Atlantic Bight, and the South China Sea, are compared in terms of the spatio-temporal variability of surface CO. Ocean carbon models that range from box models to three-dimensional coupled circulation-biogeochemical models are reviewed in terms of the ability to simulate key processes and project future changes in different continental shelf regions. Common unresolved challenges remain for implementation of these models across RiOMar and OceMar systems. The long-term trends in coastal ocean carbon fluxes for different coastal systems under anthropogenic stress that are emerging in observations and numerical simulations are highlighted. Knowledge gaps in projecting future perturbations associated with before and after net-zero CO emissions in the context of concurrent changes in the land-ocean-atmosphere coupled system pose a key challenge.

  • ▪  A new synthesis yields an estimate for a globally integrated coastal ocean carbon sink of −0.25 Pg C year−1, with greater than 90% of atmospheric CO removal occurring in polar and subpolar regions.
  • ▪  The sustained coastal and open ocean carbon sink is vital in mitigating climate change and meeting the target set by the Paris Agreement.
  • ▪  Uncertainties in the future coastal ocean carbon cycle are associated with concurrent trends and changes in the land-ocean-atmosphere coupled system.
  • ▪  The major gaps and challenges identified for current coastal ocean carbon research have important implications for climate and sustainability policies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-090746
2022-05-31
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-090746.html?itemId=/content/journals/10.1146/annurev-earth-032320-090746&mimeType=html&fmt=ahah

Literature Cited

  1. Abrahamsen EP, Meredith MP, Falkner KK, Torres-Valdes S, Leng MJ et al. 2009. Tracer-derived freshwater composition of the Siberian continental shelf and slope following the extreme Arctic summer of 2007. Geophys. Res. Lett. 36:L07602
    [Google Scholar]
  2. Aiello IW, Ravelo AC. 2012. Evolution of marine sedimentation in the Bering Sea since the Pliocene. Geosphere 8:1231–53
    [Google Scholar]
  3. Aricò S, Arrieta JM, Bakker DCE, Boyd PW, Cotrim da Cunha L et al. 2021. Integrated Ocean Carbon Research: A Summary of Ocean Carbon Research, and Vision of Coordinated Ocean Carbon Research and Observations for the Next Decade Paris: UNESCO-IOC
  4. Aumont O, van Hulten M, Roy-Barman M, Dutay JC, Éthé C, Gehlen M. 2017. Variable reactivity of particulate organic matter in a global ocean biogeochemical model. Biogeosciences 14:2321–41
    [Google Scholar]
  5. Bakker DCE, Pfeil B, Landa CS, Metzl N, O'Brien KM et al. 2016. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8:383–413
    [Google Scholar]
  6. Bates NR, Mathis JT, Jeffries MA. 2011. Air-sea CO2 fluxes on the Bering Sea shelf. Biogeosciences 8:1237–53
    [Google Scholar]
  7. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nat. Geosci. 2:598–600
    [Google Scholar]
  8. Bauer JE, Cai WJ, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PAG. 2013. The changing carbon cycle of the coastal ocean. Nature 504:61–70
    [Google Scholar]
  9. Beszczynska-Möller A, Fahrbach E, Schauer U, Hansen E. 2012. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69:852–63
    [Google Scholar]
  10. Beusen AHW, Bouwman AF, Durr HH, Dekkers ALM, Hartmann J. 2009. Global patterns of dissolved silica export to the coastal zone: results from a spatially explicit global model. Glob. Biogeochem. Cycles 23:GB0A02
    [Google Scholar]
  11. Beusen AHW, Bouwman AF, Van Beek LPH, Mogollon JM, Middelburg JJ. 2016. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13:2441–51
    [Google Scholar]
  12. Bianchi TS, Aller RC, Atwood TB, Brown CJ, Buatois LA et al. 2021. What global biogeochemical consequences will marine animal–sediment interactions have during climate change?. Elem. Sci. Anthropocene 9:00180
    [Google Scholar]
  13. Borges AV. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?. Estuaries 28:3–27
    [Google Scholar]
  14. Borges AV, Delille B, Frankignoulle M. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys. Res. Lett. 32:L14601
    [Google Scholar]
  15. Bourgeois T, Orr JC, Resplandy L, Terhaar J, Ethé C et al. 2016. Coastal-ocean uptake of anthropogenic carbon. Biogeosciences 13:4167–85
    [Google Scholar]
  16. Brand TD, Griffiths C. 2009. Seasonality in the hydrography and biogeochemistry across the Pakistan margin of the NE Arabian Sea. Deep-Sea Res. II 56:283–95
    [Google Scholar]
  17. Cai W-J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?. Annu. Rev. Mar. Sci. 3:123–45
    [Google Scholar]
  18. Cai W-J, Chen CTA, Borges A 2014. Carbon dioxide dynamics and fluxes in coastal waters influenced by river plumes. Biogeochemical Dynamics at Major River-Coastal Interfaces: Linkages with Global Change TS Bianchi, MA Allison, W-J Cai 155–73 New York: Cambridge Univ. Press
    [Google Scholar]
  19. Cai W-J, Dai M, Wang Y. 2006. Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys. Res. Lett. 33:L12603
    [Google Scholar]
  20. Cai W-J, Dai MH. 2004. Comment on “Enhanced open ocean storage of CO2 from shelf sea pumping. .” Science 306:1477
    [Google Scholar]
  21. Cai W-J, Xu YY, Feely RA, Wanninkhof R, Jonsson B et al. 2020. Controls on surface water carbonate chemistry along North American ocean margins. Nat. Commun. 11:2691
    [Google Scholar]
  22. Cao ZM, Dai MH, Evans W, Gan JP, Feely R. 2014. Diagnosing CO2 fluxes in the upwelling system off the Oregon–California coast. Biogeosciences 11:6341–54
    [Google Scholar]
  23. Cao ZM, Yang W, Zhao YY, Guo XH, Yin ZQ et al. 2020. Diagnosis of CO2 dynamics and fluxes in global coastal oceans. Natl. Sci. Rev. 7:786–97
    [Google Scholar]
  24. Chen C-TA. 1985. Preliminary observations of oxygen and carbon dioxide of the wintertime Bering Sea marginal ice zone. Cont. Shelf Res. 4:465–83
    [Google Scholar]
  25. Chen C-TA, Andreev A, Kim K-R, Yamamoto M. 2004. Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean. J. Oceanogr. 60:17–44
    [Google Scholar]
  26. Chen C-TA, Borges AV. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res. II 56:578–90
    [Google Scholar]
  27. Chen C-TA, Huang TH, Chen YC, Bai Y, He X, Kang Y. 2013. Air–sea exchanges of CO2 in the world's coastal seas. Biogeosciences 10:6509–44
    [Google Scholar]
  28. Chen C-TA, Wang S-L. 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J. Geophys. Res. 104:C920675–86
    [Google Scholar]
  29. Chou WC, Tishchenko PY, Chuang KY, Gong GC, Shkirnikova EM, Tishchenko PP. 2017. The contrasting behaviors of CO2 systems in river-dominated and ocean-dominated continental shelves: a case study in the East China Sea and the Peter the Great Bay of the Japan/East Sea in summer 2014. Mar. Chem. 195:50–60
    [Google Scholar]
  30. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.465–570 New York: Cambridge Univ. Press
    [Google Scholar]
  31. Cooley SR, Kite-Powell HL, Doney SC 2009. Ocean acidification's potential to alter global marine ecosystem services. Oceanography 22:172–81
    [Google Scholar]
  32. Cross JN, Mathis JT, Frey KE, Cosca CE, Danielson SL et al. 2014. Annual sea-air CO2 fluxes in the Bering Sea: insights from new autumn and winter observations of a seasonally ice-covered continental shelf. J. Geophys. Res. Oceans 119:6693–708
    [Google Scholar]
  33. Dai MH. 2021. What are the exchanges of carbon between the land-ocean-ice continuum?. Integrated Ocean Carbon Research: A Summary of Ocean Carbon Research, and Vision of Coordinated Ocean Carbon Research and Observations for the Next Decade S Aricò, JM Arrieta, DCE Bakker, PW Boyd, L Cotrim da Cunha, et al., 14 Paris: UNESCO-IOC
    [Google Scholar]
  34. Dai MH, Cao ZM, Guo XH, Zhai WD, Liu ZY et al. 2013. Why are some marginal seas sources of atmospheric CO2?. Geophys. Res. Lett. 40:2154–58
    [Google Scholar]
  35. DeGrandpre MD, Olbu GJ, Beatty CM, Hammar TR. 2002. Air–sea CO2 fluxes on the US Middle Atlantic Bight. Deep-Sea Res. II 49:4355–67
    [Google Scholar]
  36. Druon JN, Mannino A, Signorini S, McClain C, Friedrichs M et al. 2010. Modeling the dynamics and export of dissolved organic matter in the Northeastern US continental shelf. Estuar. Coast. Shelf Sci. 88:488–507
    [Google Scholar]
  37. Dunne JP, Winton M, Bacmeister J, Danabasoglu G, Gettelman A et al. 2020. Comparison of equilibrium climate sensitivity estimates from slab ocean, 150-year, and longer simulations. Geophys. Res. Lett. 47:e2020GL088852
    [Google Scholar]
  38. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–92
    [Google Scholar]
  39. Fennel K, Testa JM. 2019. Biogeochemical controls on coastal hypoxia. Annu. Rev. Mar. Sci. 11:105–30
    [Google Scholar]
  40. Fennel K, Wilkin J. 2009. Quantifying biological carbon export for the northwest North Atlantic continental shelves. Geophys. Res. Lett. 36:L18605
    [Google Scholar]
  41. Fennel K, Wilkin J, Levin J, Moisan J, O'Reilly J, Haidvogel D 2006. Nitrogen cycling in the Middle Atlantic Bight: results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Glob. Biogeochem. Cycles 20:GB3007
    [Google Scholar]
  42. Fennel K, Wilkin J, Previdi M, Najjar R. 2008. Denitrification effects on air-sea CO2 flux in the coastal ocean: simulations for the northwest North Atlantic. Geophys. Res. Lett. 35:L24608
    [Google Scholar]
  43. Fransner F, Gustafsson E, Tedesco L, Vichi M, Hordoir R et al. 2018. Non-Redfieldian dynamics explain seasonal pCO2 drawdown in the Gulf of Bothnia. J. Geophys. Res. Oceans 123:166–88
    [Google Scholar]
  44. Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J et al. 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12:3269–340
    [Google Scholar]
  45. Frings PJ, Clymans W, Fontorbe G, De La Rocha CL, Conley DJ. 2016. The continental Si cycle and its impact on the ocean Si isotope budget. Chem. Geol. 425:12–36
    [Google Scholar]
  46. Frischknecht M, Munnich M, Gruber N. 2018. Origin, transformation, and fate: the three-dimensional biological pump in the California Current System. J. Geophys. Res. Oceans 123:7939–62
    [Google Scholar]
  47. Gallegos A. 1996. Descriptive physical oceanography of the Caribbean Sea. Small Islands: Marine Science and Sustainable Development GA Maul 36–55 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  48. Gan J, Qu T. 2008. Coastal jet separation and associated flow variability in the southwest South China Sea. Deep-Sea Res. I 55:1–19
    [Google Scholar]
  49. Gan JP, Li L, Wang DX, Guo XG. 2009. Interaction of a river plume with coastal upwelling in the northeastern South China Sea. Cont. Shelf Res. 29:728–40
    [Google Scholar]
  50. Gan JP, Lu ZM, Dai MH, Cheung AYY, Liu HB, Harrison P. 2010. Biological response to intensified upwelling and to a river plume in the northeastern South China Sea: a modeling study. J. Geophys. Res. 115:C9C09001
    [Google Scholar]
  51. Gattuso JP, Frankignoulle M, Wollast R. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29:405–34
    [Google Scholar]
  52. Goll DS, Moosdorf N, Hartmann J, Brovkin V. 2014. Climate-driven changes in chemical weathering and associated phosphorus release since 1850: implications for the land carbon balance. Geophys. Res. Lett. 41:3553–58
    [Google Scholar]
  53. Gomez FA, Wanninkhof R, Barbero L, Lee SK, Hernandez FJ Jr. 2020. Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model. Biogeosciences 17:1685–700
    [Google Scholar]
  54. Grosse J, Bombar D, Doan HN, Nguyen LN, Voss M. 2010. The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low and high discharge season. Limnol. Oceanogr. 55:1668–80
    [Google Scholar]
  55. Gruber N, Clement D, Carter BR, Feely RA, van Heuven S et al. 2019. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363:1193–99
    [Google Scholar]
  56. Guo XH, Zhai WD, Dai MH, Zhang C, Bai Y et al. 2015. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations. Biogeosciences 12:5495–514
    [Google Scholar]
  57. Gustafsson E, Omstedt A, Gustafsson BG. 2015. The air-water CO2 exchange of a coastal sea—a sensitivity study on factors that influence the absorption and outgassing of CO2 in the Baltic Sea. J. Geophys. Res. Oceans 120:5342–57
    [Google Scholar]
  58. Hansen B, Østerhus S, Turrell WR, Jónsson S, Valdimarsson H et al. 2008. The inflow of Atlantic water, heat, and salt to the Nordic Seas across the Greenland–Scotland Ridge. Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate RR Dickson, J Meincke, P Rhines 15–43 Dordrecht, Neth: Springer
    [Google Scholar]
  59. Hansen J, Sato M, Kharecha P, von Schuckmann K, Beerling DJ et al. 2017. Young people's burden: requirement of negative CO2 emissions. Earth Syst. Dyn. 8:577–616
    [Google Scholar]
  60. Herrmann M, Najjar RG, Kemp WM, Alexander RB, Boyer EW et al. 2015. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: a synthesis approach. Glob. Biogeochem. Cycles 29:96–111
    [Google Scholar]
  61. Hoegh-Guldberg O, Northrop E, Lubchenco J 2019. The ocean is key to achieving climate and societal goals. Science 365:1372–74
    [Google Scholar]
  62. Hofmann EE, Cahill B, Fennel K, Friedrichs MAM, Hyde K et al. 2011. Modeling the dynamics of continental shelf carbon. Annu. Rev. Mar. Sci. 3:93–122
    [Google Scholar]
  63. Holt J, Wakelin S, Huthnance J. 2009. Down-welling circulation of the northwest European Continental Shelf: a driving mechanism for the continental shelf carbon pump. Geophys. Res. Lett. 36:L14602
    [Google Scholar]
  64. Hu D, Wu L, Cai W, Gupta AS, Ganachaud A et al. 2015. Pacific western boundary currents and their roles in climate. Nature 522:299–308
    [Google Scholar]
  65. Hu X, Cai W-J. 2011. An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. Glob. Biogeochem. Cycles 25:GB3003
    [Google Scholar]
  66. Huang WJ, Cai WJ, Wang YC, Lohrenz SE, Murrell MC. 2015. The carbon dioxide system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO2 flux. J. Geophys. Res. Oceans 120:1429–45
    [Google Scholar]
  67. Hülse D, Arndt S, Daines S, Regnier P, Ridgwell A. 2018. OMEN-SED 1.0: a novel, numerically efficient organic matter sediment diagenesis module for coupling to Earth system models. Geosci. Model Dev. 11:2649–89
    [Google Scholar]
  68. Ibanhez JSP, Araujo M, Lefevre N. 2016. The overlooked tropical oceanic CO2 sink. Geophys. Res. Lett. 43:3804–12
    [Google Scholar]
  69. Ingvaldsen R, Loeng H, Asplin L. 2002. Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters. Cont. Shelf Res. 22:505–19
    [Google Scholar]
  70. Jacox MG, Alexander MA, Siedlecki S, Chen K, Kwon YO et al. 2020. Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments. Prog. Oceanogr. 183:102307
    [Google Scholar]
  71. Jones CD, Ciais P, Davis SJ, Friedlingstein P, Gasser T et al. 2016. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11:095012
    [Google Scholar]
  72. Kang Y, Pan D, Bai Y, He X, Chen X et al. 2013. Areas of the global major river plumes. Acta Oceanol. Sin. 32:79–88
    [Google Scholar]
  73. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP et al. 2005. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems JR Ehleringer, TE Cerling, MD Dearing 83–113 New York: Springer
    [Google Scholar]
  74. Keller DP, Lenton A, Littleton EW, Oschlies A, Scott V, Vaughan NE. 2018. The effects of carbon dioxide removal on the carbon cycle. Curr. Clim. Change Rep. 4:250–65
    [Google Scholar]
  75. Kelley JJ, Hood DW. 1971. Carbon dioxide in the surface water of the ice-covered Bering Sea. Nature 229:37–39
    [Google Scholar]
  76. Koch A, Brierley C, Lewis SL. 2021. Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences 18:2627–47
    [Google Scholar]
  77. Krumins V, Gehlen M, Arndt S, Van Cappellen P, Regnier P. 2013. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences 10:371–98
    [Google Scholar]
  78. Lacroix F, Ilyina T, Hartmann J. 2020. Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach. Biogeosciences 17:55–88
    [Google Scholar]
  79. Lacroix F, Ilyina T, Laruelle GG, Regnier P 2021a. Reconstructing the preindustrial coastal carbon cycle through a global ocean circulation model: Was the global continental shelf already both autotrophic and a CO2 sink?. Glob. Biogeochem. Cycles 35:e2020GB006603
    [Google Scholar]
  80. Lacroix F, Ilyina T, Mathis M, Laruelle GG, Regnier P 2021b. Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle. Glob. Change Biol. 27:5491–513
    [Google Scholar]
  81. LaRowe DE, Arndt S, Bradley JA, Burwicz E, Dale AW, Amend JP. 2020. Organic carbon and microbial activity in marine sediments on a global scale throughout the Quaternary. Geochim. Cosmochim. Acta 286:227–47
    [Google Scholar]
  82. Laruelle GG, Cai W-J, Hu X, Gruber N, Mackenzie FT, Regnier P. 2018. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat. Commun. 9:454
    [Google Scholar]
  83. Laruelle GG, Dürr HH, Lauerwald R, Hartmann J, Slomp CP et al. 2013. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17:2029–51
    [Google Scholar]
  84. Laruelle GG, Dürr HH, Slomp CP, Borges AV. 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys. Res. Lett. 37:L15607
    [Google Scholar]
  85. Laruelle GG, Goossens N, Arndt S, Cai WJ, Regnier P. 2017. Air–water CO2 evasion from US East Coast estuaries. Biogeosciences 14:2441–68
    [Google Scholar]
  86. Laruelle GG, Lauerwald R, Pfeil B, Regnier P. 2014. Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas. Glob. Biogeochem. Cycles 28:1199–214
    [Google Scholar]
  87. Legge O, Johnson M, Hicks N, Jickells T, Diesing M et al. 2020. Carbon on the northwest European shelf: contemporary budget and future influences. Front. Mar. Sci. 7:143
    [Google Scholar]
  88. Lehrter JC, Ko DS, Murrell MC, Hagy JD, Schaeffer BA et al. 2013. Nutrient distributions, transports, and budgets on the inner margin of a river-dominated continental shelf. J. Geophys. Res. Oceans 118:4822–38
    [Google Scholar]
  89. Li D, Gan J, Hui R, Liu Z, Yu L et al. 2020a. Vortex and biogeochemical dynamics for the hypoxia formation within the coastal transition zone off the Pearl River Estuary. J. Geophys. Res. Oceans 125:e2020JC016178
    [Google Scholar]
  90. Li Q, Guo X, Zhai W, Xu Y, Dai M 2020b. Partial pressure of CO2 and air-sea CO2 fluxes in the South China Sea: synthesis of an 18-year dataset. Prog. Oceanogr. 182:102272
    [Google Scholar]
  91. Liu KK, Atkinson L, Quiñones RA, Talaue-McManus L 2010. Biogeochemistry of continental margins in a global context. Carbon and Nutrient Fluxes in Continental Margins KK Liu, L Atkinson, R Quiñones, L Talaue-McManus 3–24 Berlin: Springer
    [Google Scholar]
  92. Liu Z, Gan J. 2012. Variability of the Kuroshio in the East China Sea derived from satellite altimetry data. Deep-Sea Res. I 59:25–36
    [Google Scholar]
  93. Liu Z, Gan J. 2016. Open boundary conditions for tidally and subtidally forced circulation in a limited-area coastal model using the Regional Ocean Modeling System (ROMS). J. Geophys. Res. Oceans 121:6184–203
    [Google Scholar]
  94. Liu Z, Gan J. 2017. Three-dimensional pathways of water masses in the South China Sea: a modeling study. J. Geophys. Res. Oceans 122:6039–54
    [Google Scholar]
  95. Lohrenz SE, Cai WJ, Chakraborty S, Gundersen K, Murrell MC 2013. Nutrient and carbon dynamics in a large river-dominated coastal ecosystem: the Mississippi-Atchafalaya River system. Biogeochemical Dynamics at Major River-Coastal Interfaces: Linkages with Global Change MA Allison, TS Bianchi, W-J Cai 448–72 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  96. MacCready P, Johns WE, Rooth CG, Fratantoni DM, Watlington RA. 1999. Overflow into the deep Caribbean: effects of plume variability. J. Geophys. Res. 104:C1125913–35
    [Google Scholar]
  97. Mackenzie FT, Andersson AJ, Lerman A, Ver LM 2005. Boundary exchanges in the global coastal margin: implications for the organic and inorganic carbon cycles. The Sea: The Global Coastal Ocean: Multiscale Interdisciplinary Processes AR Robinson, KH Brink 193–225 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  98. Mackenzie FT, Lerman A. 2006. Brief overview of carbon on Earth. Carbon in the GeobiosphereEarth's Outer Shell1–22 Dordrecht, Neth: Springer
    [Google Scholar]
  99. Mackenzie FT, Lerman A, Andersson AJ. 2004. Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1:11–32
    [Google Scholar]
  100. Mackenzie FT, Lerman A, Ver LMB. 1998. Role of the continental margin in the global carbon balance during the past three centuries. Geology 26:423–26
    [Google Scholar]
  101. Mackenzie FT, Ver LM, Lerman A. 2000. Coastal-zone biogeochemical dynamics under global warming. Int. Geol. Rev. 42:193–206
    [Google Scholar]
  102. Mackenzie FT, Ver LM, Lerman A. 2002. Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem. Geol. 190:13–32
    [Google Scholar]
  103. Martínez ML, Intralawan A, Vázquez G, Pérez-Maqueo O, Sutton P, Landgrave R 2007. The coasts of our world: ecological, economic and social importance. Ecol. Econ. 63:254–72
    [Google Scholar]
  104. Mathis JT, Osborne E, Starkweather S 2017. Collecting environmental intelligence in the new Arctic. . In Arctic Report Card 2017 J Richter-Menge, JE Overland, JT Mathis, E Osborne 85–91 Washington, DC: NOAA
    [Google Scholar]
  105. Mathis M, Elizalde A, Mikolajewicz U. 2019. The future regime of Atlantic nutrient supply to the Northwest European Shelf. J. Mar. Syst. 189:98–115
    [Google Scholar]
  106. Mayer B, Rixen T, Pohlmann T. 2018. The spatial and temporal variability of air-sea CO2 fluxes and the effect of net coral reef calcification in the Indonesian Seas: a numerical sensitivity study. Front. Mar. Sci. 5:116
    [Google Scholar]
  107. Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AHW et al. 2010. Global Nutrient Export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Model. Softw. 25:837–53
    [Google Scholar]
  108. Meier HEM, Edman M, Eilola K, Placke M, Neumann T et al. 2019. Assessment of uncertainties in scenario simulations of biogeochemical cycles in the Baltic Sea. Front. Mar. Sci. 6:46
    [Google Scholar]
  109. Meier HEM, Edman MK, Eilola KJ, Placke M, Neumann T et al. 2018. Assessment of eutrophication abatement scenarios for the Baltic Sea by multi-model ensemble simulations. Front. Mar. Sci. 5:440
    [Google Scholar]
  110. Miura T, Suga T, Hanawa K. 2002. Winter mixed layer and formation of dichothermal water in the Bering Sea. J. Oceanogr. 58:6815–23
    [Google Scholar]
  111. Mizobata K, Saitoh SI, Shiomoto A, Miyamura T, Shiga N et al. 2002. Bering Sea cyclonic and anticyclonic eddies observed during summer 2000 and 2001. Prog. Oceanogr. 55:65–75
    [Google Scholar]
  112. Müller JD, Schneider B, Rehder G. 2016. Long-term alkalinity trends in the Baltic Sea and their implications for CO2-induced acidification. Limnol. Oceanogr. 61:1984–2002
    [Google Scholar]
  113. O'Mara NA, Dunne JP. 2019. Hot spots of carbon and alkalinity cycling in the coastal oceans. Sci. Rep. 9:4434
    [Google Scholar]
  114. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS ONE 7:e43542
    [Google Scholar]
  115. Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M et al., eds. 2019. The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Geneva: IPCC
  116. Previdi M, Fennel K, Wilkin J, Haidvogel D. 2009. Interannual variability in atmospheric CO2 uptake on the northeast U.S. continental shelf. J. Geophys. Res. 114:G4G04003
    [Google Scholar]
  117. Regnier P, Arndt S, Goossens N, Volta C, Laruelle GG et al. 2013a. Modelling estuarine biogeochemical dynamics: from the local to the global scale. Aquat. Geochem. 19:591–626
    [Google Scholar]
  118. Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N et al. 2013b. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6:597–607
    [Google Scholar]
  119. Ribbat B, Roether W, Münnich KO. 1976. Turnover of Eastern Caribbean deep water from 14C measurements. Earth Planet. Sci. Lett. 32:331–41
    [Google Scholar]
  120. Roeske T, Bauch D, Loeff MRVD, Rabe B. 2012. Utility of dissolved barium in distinguishing North American from Eurasian runoff in the Arctic Ocean. Mar. Chem. 132–133:1–14
    [Google Scholar]
  121. Roobaert A, Laruelle GG, Landschützer P, Gruber N, Chou L, Regnier P. 2019. The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Glob. Biogeochem. Cycles 33:1693–714
    [Google Scholar]
  122. Sarmiento JL, Gruber N. 2002. Sinks for anthropogenic carbon. Phys. Today 55:30–36
    [Google Scholar]
  123. Schauer U, Fahrbach E, Osterhus S, Rohardt G. 2004. Arctic warming through the Fram Strait: oceanic heat transport from 3 years of measurements. J. Geophys. Res. 109:C6C06026
    [Google Scholar]
  124. Schiller RV, Kourafalou VH. 2014. Loop current impact on the transport of Mississippi River waters. J. Coast. Res. 30:1287–306
    [Google Scholar]
  125. Schneider B, Gustafsson E, Sadkowiak B. 2014. Control of the mid-summer net community production and nitrogen fixation in the central Baltic Sea: an approach based on pCO2 measurements on a cargo ship. J. Mar. Syst. 136:1–9
    [Google Scholar]
  126. Schneider B, Müller JD. 2018. Biogeochemical Transformations in the Baltic Sea—Observations Through Carbon Dioxide Glasses Cham, Switz: Springer
  127. Sheu DD, Chou WC, Wei CL, Hou WP, Wong G, Hsu CW. 2010. Influence of El Niño on the sea-to-air CO2 flux at the SEATS time-series site, northern South China Sea. J. Geophys. Res. 115:C10C10021
    [Google Scholar]
  128. Siedlecki SA, Pilcher D, Howard EM, Deutsch C, MacCready P et al. 2021. Coastal processes modify projections of some climate-driven stressors in the California Current System. Biogeosciences 18:2871–90
    [Google Scholar]
  129. Signorini SR, Mannino A, Najjar RG Jr., Friedrichs MAM, Cai W-J et al. 2013. Surface ocean pCO2 seasonality and sea-air CO2 flux estimates for the North American east coast. J. Geophys. Res. Oceans 118:5439–60
    [Google Scholar]
  130. Smith SV, Hollibaugh JT. 1993. Coastal metabolism and the oceanic organic-carbon balance. Rev. Geophys. 31:75–89
    [Google Scholar]
  131. Smith SV, Mackenzie FT. 2016. The role of CaCO3 reactions in the contemporary oceanic CO2 cycle. Aquat. Geochem. 22:153–75
    [Google Scholar]
  132. St-Laurent P, Friedrichs MAM, Najjar RG, Shadwick EH, Tian H, Yao Y. 2020. Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay. Biogeosciences 17:3779–96
    [Google Scholar]
  133. Sun H, Gao Z, Qi D, Chen B, Chen L, Cai W-J. 2020. Surface seawater partial pressure of CO2 variability and air-sea CO2 fluxes in the Bering Sea in July 2010. Cont. Shelf Res. 193:104031
    [Google Scholar]
  134. Sydeman WJ, Garcia-Reyes M, Schoeman DS, Rykaczewski RR, Thompson SA et al. 2014. Climate change and wind intensification in coastal upwelling ecosystems. Science 345:77–80
    [Google Scholar]
  135. Takeshita Y, Frieder CA, Martz TR, Ballard JR, Feely RA et al. 2015. Including high-frequency variability in coastal ocean acidification projections. Biogeosciences 12:5853–70
    [Google Scholar]
  136. Terhaar J, Lauerwald R, Regnier P, Gruber N, Bopp L. 2021. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12:169
    [Google Scholar]
  137. Thomas H, Bozec Y, Elkalay K, de Baar HJW. 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science 304:1005–8
    [Google Scholar]
  138. Tjiputra JF, Schwinger J, Bentsen M, Moree AL, Gao S et al. 2020. Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2). Geosci. Model Dev. 13:2393–431
    [Google Scholar]
  139. Tsunogai S, Watanabe S, Sato T. 1999. Is there a “continental shelf pump” for the absorption of atmospheric CO2?. Tellus B Chem. Phys. Meteorol. 51:701–12
    [Google Scholar]
  140. Turi G, Lachkar Z, Gruber N. 2014. Spatiotemporal variability and drivers of pCO2 and air–sea CO2 fluxes in the California Current System: an eddy-resolving modeling study. Biogeosciences 11:671–90
    [Google Scholar]
  141. Valsala V, Murtugudde R. 2015. Mesoscale and intraseasonal air–sea CO2 exchanges in the western Arabian Sea during boreal summer. Deep-Sea Res. I 103:101–13
    [Google Scholar]
  142. Wang GZ, Shen SSP, Chen Y, Bai Y, Qin H et al. 2021. Feasibility of reconstructing the summer basin-scale sea surface partial pressure of carbon dioxide from sparse in situ observations over the South China Sea. Earth Syst. Sci. Data 13:1403–17
    [Google Scholar]
  143. Wanninkhof R. 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12:351–62
    [Google Scholar]
  144. Wanninkhof R, Park GH, Takahashi T, Sweeney C, Feely R et al. 2013. Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10:1983–2000
    [Google Scholar]
  145. Ward BA, Friedrichs MAM, Anderson TR, Oschlies A. 2010. Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models. J. Mar. Syst. 81:34–43
    [Google Scholar]
  146. Wollast R. 1991. The coastal organic carbon cycle; fluxes, sources, and sinks. Ocean Margin Process. Glob. Change 1991:365–81
    [Google Scholar]
  147. Wollast R 1993. Interactions of carbon and nitrogen cycles in the coastal zone. Interactions of C, N, P and S Biogeochemical Cycles and Global Change R Wollast, FT Mackenzie, L Chou 195–210 Berlin: Springer
    [Google Scholar]
  148. Wu CR 2013. Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific. Prog. Oceanogr. 110:49–58
    [Google Scholar]
  149. Xiao Y, Friedrichs MAM. 2014. Using biogeochemical data assimilation to assess the relative skill of multiple ecosystem models in the Mid-Atlantic Bight: effects of increasing the complexity of the planktonic food web. Biogeosciences 11:3015–30
    [Google Scholar]
  150. Xiu P, Chai F, Curchitser EN, Castruccio FS. 2018. Future changes in coastal upwelling ecosystems with global warming: the case of the California Current System. Sci. Rep. 8:2866
    [Google Scholar]
  151. Xu Y-Y, Cai W-J, Wanninkhof R, Salisbury J, Reimer J, Chen B 2020. Long-term changes of carbonate chemistry variables along the North American East Coast. J. Geophys. Res. Oceans 125:e2019JC015982
    [Google Scholar]
  152. Yang W, Guo X, Cao Z, Xu Y, Wang L et al. 2021. Seasonal dynamics of the carbonate system under complex circulation schemes on a large continental shelf: the northern South China Sea. Prog. Oceanogr. 197:102630
    [Google Scholar]
  153. Yu LQ, Gan JP, Dai MH, Hui CR, Lu ZM, Li D. 2021. Modeling the role of riverine organic matter in hypoxia formation within the coastal transition zone off the Pearl River Estuary. Limnol. Oceanogr. 66:452–68
    [Google Scholar]
  154. Yuan DL, Hao JJ, Li JL, He L. 2018. Cross-shelf carbon transport under different greenhouse gas emission scenarios in the East China Sea during winter. Sci. China Earth Sci. 61:659–67
    [Google Scholar]
  155. Zhang J, Guo X, Zhao L. 2019. Tracing external sources of nutrients in the East China Sea and evaluating their contributions to primary production. Prog. Oceanogr. 176:102122
    [Google Scholar]
  156. Zhang S, Rutgersson A, Philipson P, Wallin MB 2021. Remote sensing supported sea surface pCO2 estimation and variable analysis in the Baltic Sea. Remote Sens. 13:259
    [Google Scholar]
  157. Zhao H, Dai M, Gan J, Zhao X, Lu Z et al. 2021. River-dominated pCO2 dynamics in the northern South China Sea during summer: a modeling study. Prog. Oceanogr. 190:102457
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-090746
Loading
/content/journals/10.1146/annurev-earth-032320-090746
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error