1932

Abstract

An oxygen-rich atmosphere is essential for complex animals. The early Earth had an anoxic atmosphere, and understanding the rise and maintenance of high O levels is critical for investigating what drove our own evolution and for assessing the likely habitability of exoplanets. A growing number of techniques aim to reproduce changes in O levels over the Phanerozoic Eon (the past 539 million years). We assess these methods and attempt to draw the reliable techniques together to form a consensus Phanerozoic O curve. We conclude that O probably made up around 5–10% of the atmosphere during the Cambrian and rose in pulses to ∼15–20% in the Devonian, reaching a further peak of greater than 25% in the Permo-Carboniferous before declining toward the present day. Evolutionary radiations in the Cambrian and Ordovician appear consistent with an oxygen driver, and the Devonian “Age of the Fishes” coincides with oxygen rising above 15% atm.

  • ▪  An oxygen-rich atmosphere is essential for complex animals such as humans.
  • ▪  We review the methods for reconstructing past variation in oxygen levels over the past 539 million years (the Phanerozoic Eon).
  • ▪  We produce a consensus plot of the most likely evolution of atmospheric oxygen levels.
  • ▪  Evolutionary radiations in the Cambrian, Ordovician, and Devonian periods may be linked to rises in oxygen concentration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-095425
2023-05-31
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-032320-095425.html?itemId=/content/journals/10.1146/annurev-earth-032320-095425&mimeType=html&fmt=ahah

Literature Cited

  1. Ahm A-SC, Bjerrum CJ, Hammarlund EU. 2017. Disentangling the record of diagenesis, local redox conditions, and global seawater chemistry during the latest Ordovician glaciation. Earth Planet. Sci. Lett. 459:145–56
    [Google Scholar]
  2. Algeo TJ, Berner RA, Maynard JB, Scheckler SE. 1995. Late Devonian Oceanic Anoxic Events and biotic crises: “rooted” in the evolution of vascular land plants?. GSA Today 5:45–66
    [Google Scholar]
  3. Algeo TJ, Ingall E. 2007. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr. Palaeoclim. Palaeoecol. 256:130–55
    [Google Scholar]
  4. Arvidson RS, Mackenzie FT, Guidry MW. 2013. Geologic history of seawater: a MAGic approach to carbon chemistry and ocean ventilation. Chem. Geol. 362:287–304
    [Google Scholar]
  5. Bambach RK. 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34:127–55
    [Google Scholar]
  6. Beerling DJ, Lake JA, Berner RA, Hickey LJ, Taylor DW, Royer DL. 2002. Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere. Geochim. Cosmochim. Acta 66:3757–67
    [Google Scholar]
  7. Belcher CM, Collinson ME, Scott AC 2013. A 450-million-year history of fire. Fire Phenomena and the Earth System CM Belcher 229–49. Chichester, UK: Wiley-Blackwell
    [Google Scholar]
  8. Belcher CM, McElwain JC. 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321:1197–200
    [Google Scholar]
  9. Benton MJ, Twitchett RJ. 2003. How to kill (almost) all life: the end-Permian extinction event. Trends Ecol. Evol. 18:358–65
    [Google Scholar]
  10. Bergman NM, Lenton TM, Watson AJ. 2004. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304:397–437
    [Google Scholar]
  11. Berner EK, Berner RA. 1987. The Global Water Cycle: Geochemistry and Environment Englewood Cliffs, NJ: Prentice-Hall
  12. Berner RA. 1987. Models for carbon and sulfur cycles and atmospheric oxygen: application to Paleozoic geologic history. Am. J. Sci. 287:177–96
    [Google Scholar]
  13. Berner RA. 1991. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291:339–76
    [Google Scholar]
  14. Berner RA. 2001. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta 65:685–94
    [Google Scholar]
  15. Berner RA. 2004. The Phanerozoic Carbon Cycle: CO2 and O2 Oxford, UK: Oxford Univ. Press
  16. Berner RA. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70:5653–64
    [Google Scholar]
  17. Berner RA. 2009. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309:603–6
    [Google Scholar]
  18. Berner RA, Canfield DE. 1989. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289:333–61
    [Google Scholar]
  19. Berner RA, Kothavala Z. 2001. Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301:182–204
    [Google Scholar]
  20. Berner RA, Petsch ST, Lake JA, Beerling DJ, Popp BN et al. 2000. Isotope fractionation and atmospheric oxygen: implications for Phanerozoic O2 evolution. Science 287:1630–33
    [Google Scholar]
  21. Blamey NJF, Brand U. 2019. Atmospheric gas in modern and ancient halite fluid inclusions: a screening protocol. Gondwana Res. 69:163–76
    [Google Scholar]
  22. Blamey NJF, Brand U, Parnell J, Spear N, Lécuyer C et al. 2016. Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology 44:651–54
    [Google Scholar]
  23. Brand U, Davis AM, Shaver KK, Blamey NJF, Heizler M, Lécuyer C. 2021. Atmospheric oxygen of the Paleozoic. Earth-Sci. Rev. 216:103560
    [Google Scholar]
  24. Brune S, Williams SE, Müller RD. 2017. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 10:941–46
    [Google Scholar]
  25. Budyko MI, Ronov AB, Yanshin AL. 1987. History of Earth's Atmosphere Berlin: Springer-Verlag
  26. Buick R. 2008. When did oxygenic photosynthesis evolve?. Philos. Trans. R. Soc. B 363:2731–43
    [Google Scholar]
  27. Canfield DE. 1998. A new model for Proterozoic ocean chemistry. Nature 396:450–53
    [Google Scholar]
  28. Canfield DE. 2014. Proterozoic atmospheric oxygen. Treatise Geochem. 6:197–216
    [Google Scholar]
  29. Canfield DE, Teske A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–32
    [Google Scholar]
  30. Cannell A, Blamey N, Brand U, Escapa I, Large R. 2022. A revised sedimentary pyrite proxy for atmospheric oxygen in the Paleozoic: evaluation for the Silurian-Devonian-Carboniferous period and the relationship of the results to the observed biosphere record. Earth-Sci. Rev. 231:104062
    [Google Scholar]
  31. Catling DC, Zahnle KJ. 2020. The Archean atmosphere. Sci. Adv. 6:eaax1420
    [Google Scholar]
  32. Chaboureau AC, Sepulchre P, Donnadieu Y, Franc A. 2014. Tectonic-driven climate change and the diversification of angiosperms. PNAS 111:14066–70
    [Google Scholar]
  33. Chu D, Grasby SE, Song H, Dal Corso J, Wang Y et al. 2020. Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology 48:288–92
    [Google Scholar]
  34. Cope MJ, Chaloner WG. 1980. Fossil charcoal as evidence of past atmospheric composition. Nature 283:647–49
    [Google Scholar]
  35. Cramer BD, Jarvis I 2020. Carbon isotope stratigraphy. Geologic Time Scale 2020 FM Gradstein, JG Ogg, M Schmitz, G Ogg 309–43. Amsterdam: Elsevier
    [Google Scholar]
  36. Crockford PW, Kunzmann M, Bekker A, Hayles J, Bao H et al. 2019. Claypool continued: extending the isotopic record of sedimentary sulfate. Chem. Geol. 513:200–25
    [Google Scholar]
  37. Dahl TW, Hammarlund EU. 2011. Do large predatory fish track ocean oxygenation?. Commun. Integr. Biol. 4:92–94
    [Google Scholar]
  38. Dahl TW, Hammarlund EU, Anbar AD, Bond DPG, Gill BC et al. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. PNAS 107:17911–15
    [Google Scholar]
  39. Daines SJ, Mills BJ, Lenton TM. 2017. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8:14379
    [Google Scholar]
  40. Dal Corso J, Mills BJW, Chu D, Newton RJ, Mather TA et al. 2020. Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nat. Commun. 11:2962
    [Google Scholar]
  41. Diefendorf AF, Freeman KH, Wing SL. 2012. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance. Geochim. Cosmochim. Acta 85:342–56
    [Google Scholar]
  42. Diessel CF. 2010. The stratigraphic distribution of inertinite. Int. J. Coal Geol. 81:251–68
    [Google Scholar]
  43. Domeier M, Torsvik TH. 2017. Full-plate modelling in pre-Jurassic time. Geol. Mag. 156:261–80
    [Google Scholar]
  44. Edwards CT. 2019. Links between early Paleozoic oxygenation and the Great Ordovician Biodiversification Event (GOBE): a review. Palaeoworld 28:37–50
    [Google Scholar]
  45. Edwards CT, Saltzman MR, Royer DL, Fike DA. 2017. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nat. Geosci. 10:925–29
    [Google Scholar]
  46. Engebretson DC, Kelley KP, Cashman HJ, Richards MA. 1992. 180 Million years of subduction. GSA Today 2:93–100
    [Google Scholar]
  47. Erwin DH. 1993. The Great Paleozoic Crisis. Life and Death in the Permian New York: Columbia Univ. Press
  48. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–97
    [Google Scholar]
  49. Extier T, Landais A, Bréant C, Prié F, Bazin L et al. 2018. On the use of δ18Oatm for ice core dating. Quat. Sci. Rev. 185:244–57
    [Google Scholar]
  50. Falkowski PG, Katz ME, Milligan AJ, Fennel K, Cramer BS et al. 2005. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309:2202–4
    [Google Scholar]
  51. Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulphur cycle. Science 289:756–58
    [Google Scholar]
  52. Fielding CR, Frank TD, McLoughlin S, Vajda V, Mays C et al. 2019. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat Commun. 10:385
    [Google Scholar]
  53. Franz HB, Trainer MG, Malespin CA, Mahaffy PR, Atreya SK et al. 2017. Initial SAM calibration gas experiments on Mars: quadrupole mass spectrometer results and implications. Planet. Space Sci. 138:44–54
    [Google Scholar]
  54. Gaffin S. 1987. Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change. Am. J. Sci. 287:596–611
    [Google Scholar]
  55. Garrels RM, Lerman A. 1984. Coupling the sedimentary sulfur and carbon cycles—an improved model. Am. J. Sci. 284:989–1007
    [Google Scholar]
  56. Garrels RM, Perry EA. 1974. Cycling of C, S and O through geologic time. In The Sea ED Goldberg 303–36. New York: Wiley-Interscience
    [Google Scholar]
  57. Glasspool IJ, Gastaldo RA. 2022. Silurian wildfire proxies and atmospheric oxygen. Geology 50:91048–52
    [Google Scholar]
  58. Glasspool IJ, Scott AC. 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3:627–30
    [Google Scholar]
  59. Glasspool IJ, Scott AC, Waltham D, Pronina N, Shao L. 2015. The impact of fire on the Late Paleozoic Earth system. Front. Plant Sci. 6:756
    [Google Scholar]
  60. Gregory BS, Claire MW, Rugheimer S. 2021. Photochemical modelling of atmospheric oxygen levels confirms two stable states. Earth Planet. Sci. Lett. 561:116818
    [Google Scholar]
  61. Gurung K, Field KJ, Batterman SA, Godderis Y, Donnadieu Y et al. 2022. Climate windows of opportunity for plant expansion during the Phanerozoic. Nat. Commun. 13:4530
    [Google Scholar]
  62. Hay WW, Migdisov A, Balukhovsky AN, Wold CN, Flögel S, Söding E. 2006. Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation and life. Palaeogeogr. Palaeoclim. Palaeoecol. 240:3–46
    [Google Scholar]
  63. Hayes JM, Strauss H, Kaufman AJ. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161:103–25
    [Google Scholar]
  64. He T, Corso JD, Newton RJ, Wignall PB, Mills BJW et al. 2020. An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction. Sci. Adv. 6:eabb6704
    [Google Scholar]
  65. He T, Zhu M, Mills BJW, Wynn PM, Zhuravlev AY et al. 2019. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nat. Geosci. 12:468–74
    [Google Scholar]
  66. Hedges JI, Keil RG. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49:81–115
    [Google Scholar]
  67. Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B 361:903–15
    [Google Scholar]
  68. Horscroft JA, Kotwica AO, Laner V, West JA, Hennis PJ et al. 2017. Metabolic basis to Sherpa altitude adaptation. PNAS 114:6382–87
    [Google Scholar]
  69. Jørgensen BB, Nelson DC. 2004. Sulfide oxidation in marine sediments: geochemistry meets microbiology. Geol. Soc. Am. Spec. Pap. 379:63–81
    [Google Scholar]
  70. Kanzaki Y, Kump LR. 2017. Biotic effects on oxygen consumption during weathering: implications for the second rise of oxygen. Geology 45:611–14
    [Google Scholar]
  71. Krause AJ, Mills BJW, Zhang S, Planavsky NJ, Lenton TM, Poulton SW. 2018. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9:4081
    [Google Scholar]
  72. Kump LR, Fallick AE, Melezhik VA, Strauss H, Lepland A 2013. The Great Oxidation Event. Reading the Archive of Earth's Oxygenation VA Melezhik, AR Prave, EJ Hanski, AE Fallick, A Lepland et al.1517–33. Berlin: Springer
    [Google Scholar]
  73. Large RR, Mukherjee I, Gregory D, Steadman J, Corkrey R, Danyushevsky LV. 2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Miner. Depos. 54:485–506
    [Google Scholar]
  74. Lenton TM, Daines SJ, Mills BJW. 2018. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci. Rev. 178:1–28
    [Google Scholar]
  75. Levin L. 2003. Oxygen minimum zone benthos: adaption and community response to hypoxia. Oceanogr. Mar. Biol. 41:1–45
    [Google Scholar]
  76. Li G, Elderfield H. 2013. Evolution of carbon cycle over the past 100 million years. Geochim. Cosmochim. Acta 103:11–25
    [Google Scholar]
  77. Liu XM, Kah LC, Knoll AH, Cui H, Wang C et al. 2021. A persistently low level of atmospheric oxygen in Earth's middle age. Nat. Commun. 12:351
    [Google Scholar]
  78. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15
    [Google Scholar]
  79. Maloof AC, Porter SM, Moore JL, Dudas FO, Bowring SA et al. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geol. Soc. Am. Bull. 122:1731–74
    [Google Scholar]
  80. Mills BJW, Donnadieu Y, Goddéris Y. 2021. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100:73–86
    [Google Scholar]
  81. Mills BJW, Krause AJ, Scotese CR, Hill DJ, Shields GA, Lenton TM. 2019. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67:172–86
    [Google Scholar]
  82. Mills BJW, Scotese CR, Walding NG, Shields GA, Lenton TM. 2017. Elevated CO2 degassing rates prevented the return of Snowball Earth during the Phanerozoic. Nat. Commun. 8:1110
    [Google Scholar]
  83. Mills DB, Ward LM, Jones C, Sweeten B, Forth M et al. 2014. Oxygen requirements of the earliest animals. PNAS 111:4168–72
    [Google Scholar]
  84. Otto-Bliesner BL. 1995. Continental drift, runoff and weathering feedbacks: implications from climate model experiments. J. Geophys. Res. 100:D611537–48
    [Google Scholar]
  85. Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M et al. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. PNAS 106:24–27
    [Google Scholar]
  86. Petit J-R, Raynaud D. 2020. Forty years of ice-core records of CO2. Nature 579:505–6
    [Google Scholar]
  87. Pohl A, Ridgwell A, Stockey RG, Thomazo C, Keane A et al. 2022. Continental configuration controls ocean oxygenation during the Phanerozoic. Nature 608:523–27
    [Google Scholar]
  88. Poulton SW, Bekker A, Cumming VM, Zerkle AL, Canfield DE, Johnston DT. 2021. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592:232–36
    [Google Scholar]
  89. Poulton SW, Canfield DE. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214:209–21
    [Google Scholar]
  90. Pyne SJ, Andrews PL, Laven RD. 1996. Introduction to Wildland Fire New York: Wiley. , 2nd ed..
  91. Rasmussen B, Buick R. 1999. Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27:115–18
    [Google Scholar]
  92. Redfield AC. 1958. The biological control of chemical factors in the environment. Am. Sci. 46:205–21
    [Google Scholar]
  93. Ronov AB. 1976. Global carbon geochemistry, volcanism, carbonate accumilation, and life. Geochem. Int. 13:172–95
    [Google Scholar]
  94. Ronov AB. 1993. Stratisfera—Ili Osadochnaya Obolochka Zemli (Kolichestvennoe Issledovanie) Moscow: Nauka (In Russian)
  95. Royer DL. 2016. Climate sensitivity in the geologic past. Annu. Rev. Earth Planet. Sci. 44:277–93
    [Google Scholar]
  96. Royer DL, Donnadieu Y, Park J, Kowalczyk J, Godderis Y. 2014. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314:1259–83
    [Google Scholar]
  97. Saltzman MR, Thomas E 2012. Carbon isotope stratigraphy. The Geologic Time Scale 2012 F Gradstein, J Ogg, M Schmitz, G Ogg 207–32 Amsterdam: Elsevier
    [Google Scholar]
  98. Schachat SR, Labandeira CC, Saltzman MR, Cramer BD, Payne JL, Boyce CK. 2018. Phanerozoic pO2 and the early evolution of terrestrial animals. Proc. R. Soc. B 285:20172631
    [Google Scholar]
  99. Scott AC. 1989. Observations on the nature and origin of fusain. Int. J. Coal Geol. 12:443–75
    [Google Scholar]
  100. Scott AC, Glasspool IJ. 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PNAS 103:10861–65
    [Google Scholar]
  101. Scott AC, Glasspool IJ. 2007. Observations and experiments on the origin and formation of inertinite group macerals. Int. J. Coal Geol. 70:53–66
    [Google Scholar]
  102. Scott AC, Jones TP. 1991. Microscopical observations of recent and fossil charcoal. Microsc. Anal. 25:13–15
    [Google Scholar]
  103. Servais T, Harper DAT. 2018. The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration. Lethaia 51:151–64
    [Google Scholar]
  104. Sim MS, Bosak T, Ono S. 2011. Large sulfur isotope fractionation does not require disproportionation. Science 333:74–77
    [Google Scholar]
  105. Sønderholm F, Bjerrum CJ. 2021. Minimum levels of atmospheric oxygen from fossil tree roots imply new plant–oxygen feedback. Geobiology 19:250–60
    [Google Scholar]
  106. Sperling EA, Frieder CA, Raman AV, Girguis PR, Levin LA, Knoll AH. 2013. Oxygen, ecology, and the Cambrian radiation of animals. PNAS 110:13446–51
    [Google Scholar]
  107. Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M et al. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523:451–54
    [Google Scholar]
  108. Steadman JA, Large RR, Blamey NJ, Mukherjee I, Corkrey R et al. 2020. Evidence for elevated and variable atmospheric oxygen in the Precambrian. Precambrian Res. 343:105722
    [Google Scholar]
  109. Stolper DA, Bender ML, Dreyfus GB, Yan Y, Higgins JA 2016. A Pleistocene ice core record of atmospheric O2 concentrations. Science 353:1427–30
    [Google Scholar]
  110. Sulej T, Krzesinski G, Talanda M, Wolniewicz AS, Blazejowski B et al. 2020. The earliest-known mammaliaform fossil from Greenland sheds light on origin of mammals. PNAS 117:26861–67
    [Google Scholar]
  111. Tappert R, McKellar RC, Wolfe AP, Tappert MC, Ortega-Blanco J, Muehlenbachs K. 2013. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochim. Cosmochim. Acta 121:240–62
    [Google Scholar]
  112. Van Cappellen P, Ingall ED. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia—a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9:677–92
    [Google Scholar]
  113. Wallace MW, Hood Av, Shuster A, Greig A, Planavsky NJ, Reed CP. 2017. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet. Sci. Lett. 466:12–19
    [Google Scholar]
  114. Watson AJ, Lenton TM, Mills BJW. 2017. Ocean deoxygenation, the global phosphorus cycle and the possibility of human-caused large-scale ocean anoxia. Philos. Trans. R. Soc. A 375:20160318
    [Google Scholar]
  115. Wignall PB, Twitchett RJ. 1996. Oceanic anoxia and the end Permian mass extinction. Science 272:1155–58
    [Google Scholar]
  116. Wildman RA, Hickey LJ, Dickinson MB, Berner RA, Robinson JM et al. 2004. Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology 32:457–60
    [Google Scholar]
  117. Wold CN, Hay WW. 1990. Estimating ancient sediment fluxes. Am. J. Sci. 290:1069–89
    [Google Scholar]
  118. Wood R, Liu AG, Bowyer F, Wilby PR, Dunn FS et al. 2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nat. Ecol. Evol. 3:528–38
    [Google Scholar]
  119. Wu N, Farquhar J, Strauss H, Kim S-T, Canfield DE. 2010. Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial. Geochim. Cosmochim. Acta 74:2053–71
    [Google Scholar]
  120. Xu Z, Hilton J, Yu J, Wignall PB, Yin H et al. 2022. End Permian to Middle Triassic plant species richness and abundance patterns in South China: coevolution of plants and the environment through the Permian–Triassic transition. Earth-Sci. Rev. 232:104136
    [Google Scholar]
  121. Yan Y, Brook EJ, Kurbatov AV, Severinghaus JP, Higgins JA. 2019. Ice core evidence for atmospheric oxygen decline since the Mid-Pleistocene transition. Sci. Adv. 7:eabj9341
    [Google Scholar]
  122. Zhang S, Planavsky NJ, Krause AJ, Bolton EW, Mills BJW. 2018. Model based Paleozoic atmospheric oxygen estimates: a recent visit to GEOCARBSULF. Am. J. Sci. 318:557–89
    [Google Scholar]
  123. Zhao W, Zhang X, Jia G, Shen Y, Zhu M. 2021. The Silurian-Devonian boundary in East Yunnan (South China) and the minimum constraint for the lungfish-tetrapod split. Sci. China Earth Sci. 64:1784–97
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-095425
Loading
/content/journals/10.1146/annurev-earth-032320-095425
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error