1932

Abstract

Simulating the warmth and equability of past hothouse climates has been a challenge since the inception of paleoclimate modeling. The newest generation of Earth system models (ESMs) has shown substantial improvements in the ability to simulate the early Eocene global mean surface temperature (GMST) and equator-to-pole gradient. Results using the Community Earth System Model suggest that parameterizations of atmospheric radiation, convection, and clouds largely determine the Eocene GMST and are responsible for improvements in the new ESMs, but they have less direct influence on the equator-to-pole temperature gradient. ESMs still have difficulty simulating some regional and seasonal temperatures, although improved data reconstructions of chronology, spatial coverage, and seasonal resolution are needed for more robust model assessment. Looking forward, key processes including radiation and clouds need to be benchmarked and improved using more accurate models of limited domain/physics. Earth system processes need to be better explored, leveraging the increasing ESM resolution and complexity.

  • ▪  Earth system models (ESMs) are now able to simulate the large-scale features of the early Eocene.
  • ▪  Remaining model-data discrepancies exist at regional and seasonal scales and require improvements in both proxy data and ESMs.
  • ▪  A hierarchical modeling approach is needed to ensure relevant physical processes are parameterized reasonably well in ESMs.
  • ▪  Future work is needed to leverage the continuously increasing resolution and complexity of ESMs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-100333
2024-07-23
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-032320-100333.html?itemId=/content/journals/10.1146/annurev-earth-032320-100333&mimeType=html&fmt=ahah

Literature Cited

  1. Abbot DS, Tziperman E. 2008.. Sea ice, high-latitude convection, and equable climates. . Geophys. Res. Lett. 35::L03702
    [Crossref] [Google Scholar]
  2. Anagnostou E, John EH, Babila TL, Sexton PF, Ridgwell A, et al. 2020.. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. . Nat. Commun. 11::4436
    [Crossref] [Google Scholar]
  3. Armour KC, Siler N, Donohoe A, Roe GH. 2019.. Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. . J. Clim. 32:(12):365580
    [Crossref] [Google Scholar]
  4. Arnold NP, Branson M, Burt MA, Abbot DS, Kuang Z, et al. 2014.. Effects of explicit atmospheric convection at high CO2. . PNAS 111::1094348
    [Crossref] [Google Scholar]
  5. Barron EJ. 1983.. A warm, equable Cretaceous: the nature of the problem. . Earth-Sci. Rev. 19::30538
    [Crossref] [Google Scholar]
  6. Barron EJ. 1987.. Eocene equator-to-pole surface ocean temperatures: a significant climate problem?. Paleoceanography 2::72939
    [Crossref] [Google Scholar]
  7. Barron EJ, Washington WM. 1984.. The role of geographic variables in explaining paleoclimates: results from Cretaceous climate model sensitivity studies. . J. Geophys. Res. 89:(D1):126779
    [Crossref] [Google Scholar]
  8. Barron EJ, Washington WM. 1985.. Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. . In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, ed. ET Sundquist, WS Broecker , pp. 54653. Washington, DC:: Am. Geophys. Union
    [Google Scholar]
  9. Beerling DJ, Fox A, Stevenson DS, Valdes PJ. 2011.. Enhanced chemistry-climate feedbacks in past greenhouse worlds. . PNAS 108::977075
    [Crossref] [Google Scholar]
  10. Bernard S, Daval D, Ackerer P, Pont S, Meibom A. 2017.. Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes. . Nat. Commun. 8::1134
    [Crossref] [Google Scholar]
  11. Bice KL, Birgel D, Meyers PA, Dahl KA, Hinrichs KU, Norris RD. 2006.. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. . Paleoceanography 21::PA2002
    [Crossref] [Google Scholar]
  12. Brady E, Stevenson S, Bailey D, Liu Z, Noone D, et al. 2019.. The connected isotopic water cycle in the Community Earth System Model version 1. . J. Adv. Model. Earth Syst. 11::254766
    [Crossref] [Google Scholar]
  13. Bush ABG, Philander SGH. 1997.. The late Cretaceous: simulation with a coupled atmosphere-ocean general circulation model. . Paleoceanography 12::495516
    [Crossref] [Google Scholar]
  14. Caballero R, Huber M. 2013.. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. . PNAS 110::1416267
    [Crossref] [Google Scholar]
  15. Chang P, Zhang S, Danabasoglu G, Yeager SG, Fu H, et al. 2020.. An unprecedented set of high-resolution earth system simulations for understanding multiscale interactions in climate variability and change. . J. Adv. Model. Earth Syst. 12::e2020MS002298
    [Crossref] [Google Scholar]
  16. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, et al. 2006.. The Community Climate System Model version 3 (CCSM3). . J. Clim. 19::212243
    [Crossref] [Google Scholar]
  17. Covey C, Barron E. 1988.. The role of ocean heat transport in climatic change. . Sci. Rev. 24::42945
    [Google Scholar]
  18. Cramer BS, Miller KG, Barrett PJ, Wright JD. 2011.. Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. . J. Geophys. Res. 116:(C12):C12023
    [Crossref] [Google Scholar]
  19. Cramwinckel MJ, Burls NJ, Fahad AA, Knapp S, West CK, et al. 2023.. Global and zonal-mean hydrological response to Early Eocene warmth. . Paleoceanogr. Paleoclimatol. 38::e2022PA004542
    [Crossref] [Google Scholar]
  20. Cronin TW, Tziperman E. 2015.. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming. . PNAS 112::1149095
    [Crossref] [Google Scholar]
  21. Danabasoglu G, Lamarque J-F, Bacmeister J, Bailey DA, DuVivier AK, et al. 2020.. The Community Earth System Model version 2 (CESM2). . J. Adv. Model. Earth Syst. 12::e2019MS001916
    [Crossref] [Google Scholar]
  22. Dutta D, Jucker M, Sherwood SC, Meissner KJ, Sen Gupta A, Zhu J. 2023.. Early Eocene low orography and high methane enhance Arctic warming via polar stratospheric clouds. . Nat. Geosci. 16:(11):102732
    [Crossref] [Google Scholar]
  23. Emanuel K. 2002.. A simple model of multiple climate regimes. . J. Geophys. Res. 107:(D9):ACL 41ACL 4-10
    [Crossref] [Google Scholar]
  24. Evans D, Sagoo N, Renema W, Cotton LJ, Müller W, Todd JA. 2018.. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. . PNAS 115::117479
    [Crossref] [Google Scholar]
  25. Farrell BF. 1990.. Equable climate dynamics. . J. Atmos. Sci. 47::298695
    [Crossref] [Google Scholar]
  26. Foster GL, Royer DL, Lunt DJ. 2017.. Future climate forcing potentially without precedent in the last 420 million years. . Nat. Commun. 8::14845
    [Crossref] [Google Scholar]
  27. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, et al. 2011.. The Community Climate System Model version 4. . J. Clim. 24::497391
    [Crossref] [Google Scholar]
  28. Gettelman A, Hannay C, Bacmeister JT, Neale RB, Pendergrass AG, et al. 2019.. High climate sensitivity in the Community Earth System Model version 2 (CESM2). . Geophys. Res. Lett. 46::832937
    [Crossref] [Google Scholar]
  29. Gettelman A, Kay JE, Shell KM. 2012.. The evolution of climate sensitivity and climate feedbacks in the community atmosphere model. . J. Clim. 25::145369
    [Crossref] [Google Scholar]
  30. Green JAM, Huber M. 2013.. Tidal dissipation in the early Eocene and implications for ocean mixing. . Geophys. Res. Lett. 40::270713
    [Crossref] [Google Scholar]
  31. Greenwood DR, Wing SL. 1995.. Eocene continental climates and latitudinal temperature gradients. . Geology 23::104448
    [Crossref] [Google Scholar]
  32. Gu S, Liu Z, Jahn A, Rempfer J, Zhang J, Joos F. 2019.. Modeling neodymium isotopes in the ocean component of the Community Earth System Model (CESM1). . J. Adv. Model. Earth Syst. 11::62440
    [Crossref] [Google Scholar]
  33. Held IM. 2005.. The gap between simulation and understanding in climate modeling. . Bull. Am. Meteorol. Soc. 86::160914
    [Crossref] [Google Scholar]
  34. Hewitt H, Fox-Kemper B, Pearson B, Roberts M, Klocke D. 2022.. The small scales of the ocean may hold the key to surprises. . Nat. Clim. Change 12::49699
    [Crossref] [Google Scholar]
  35. Ho SL, Laepple T. 2016.. Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean. . Nat. Geosci. 9::60610
    [Crossref] [Google Scholar]
  36. Hollis CJ, Dunkley Jones T, Anagnostou E, Bijl PK, Cramwinckel MJ, et al. 2019.. The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. . Geosci. Model Dev. 12::3149206
    [Crossref] [Google Scholar]
  37. Hollis CJ, Taylor KWR, Handley L, Pancost RD, Huber M, et al. 2012.. Early Paleogene temperature history of the Southwest Pacific Ocean: reconciling proxies and models. . Earth Planet. Sci. Lett. 349–350::5366
    [Crossref] [Google Scholar]
  38. Huber BT, MacLeod KG, Watkins DK, Coffin MF. 2018.. The rise and fall of the Cretaceous Hot Greenhouse climate. . Global Planet. Change 167::123
    [Crossref] [Google Scholar]
  39. Huber M. 2008.. A hotter greenhouse?. Science 321::35354
    [Crossref] [Google Scholar]
  40. Huber M, Caballero R. 2011.. The early Eocene equable climate problem revisited. . Clim. Past 7::60333
    [Crossref] [Google Scholar]
  41. Huber M, Sloan LC. 2001.. Heat transport, deep waters, and thermal gradients: coupled simulation of an Eocene greenhouse climate. . Geophys. Res. Lett. 28::348184
    [Crossref] [Google Scholar]
  42. Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, et al. 2013.. The Community Earth System Model: a framework for collaborative research. . Bull. Am. Meteorol. Soc. 94::133960
    [Crossref] [Google Scholar]
  43. Ingersoll AP. 1969.. The runaway greenhouse: a history of water on Venus. . J. Atmos. Sci. 26::119198
    [Crossref] [Google Scholar]
  44. Inglis GN, Bragg F, Burls NJ, Cramwinckel MJ, Evans D, et al. 2020.. Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. . Clim. Past 16::195368
    [Crossref] [Google Scholar]
  45. Inglis GN, Farnsworth A, Lunt D, Foster GL, Hollis CJ, et al. 2015.. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. . Paleoceanography 30::100020
    [Crossref] [Google Scholar]
  46. IPCC (Intergov. Panel Clim. Change). 2021.. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan , et al. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  47. Kay JE, Hillman BR, Klein SA, Zhang Y, Medeiros B, et al. 2012.. Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. . J. Clim. 25::5190207
    [Crossref] [Google Scholar]
  48. Kiehl JT, Shields CA. 2013.. Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties. . Philos. Trans. R. Soc. A 371::20130093
    [Crossref] [Google Scholar]
  49. Kirk-Davidoff DB, Schrag DP, Anderson JG. 2002.. On the feedback of stratospheric clouds on polar climate. . Geophys. Res. Lett. 29::51-151-4
    [Crossref] [Google Scholar]
  50. Kluft L, Dacie S, Brath M, Buehler SA, Stevens B. 2021.. Temperature-dependence of the clear-sky feedback in radiative-convective equilibrium. . Geophys. Res. Lett. 48::e2021GL094649
    [Crossref] [Google Scholar]
  51. Koll DDB, Cronin TW. 2018.. Earth's outgoing longwave radiation linear due to H2O greenhouse effect. . PNAS 115::1029398
    [Crossref] [Google Scholar]
  52. Korasidis VA, Wing SL, Shields CA, Kiehl JT. 2022.. Global changes in terrestrial vegetation and continental climate during the Paleocene-Eocene Thermal Maximum. . Paleoceanogr. Paleoclimatol. 37:(4):e2021PA004325
    [Crossref] [Google Scholar]
  53. Korty RL, Emanuel KA, Scott JR. 2008.. Tropical cyclone–induced upper-ocean mixing and climate: application to equable climates. . J. Clim. 21::63854
    [Crossref] [Google Scholar]
  54. Kump LR, Pollard D. 2008.. Amplification of Cretaceous warmth by biological cloud feedbacks. . Science 320::195
    [Crossref] [Google Scholar]
  55. Lunt DJ, Bragg F, Chan WL, Hutchinson DK, Ladant JB, et al. 2020.. DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. . Clim. Past Discuss. 2020::127
    [Google Scholar]
  56. Lunt DJ, Dunkley Jones T, Heinemann M, Huber M, LeGrande AN, et al. 2012.. A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP. . Clim. Past 8::171736
    [Crossref] [Google Scholar]
  57. Lunt DJ, Huber M, Anagnostou E, Baatsen MLJ, Caballero R, et al. 2017.. The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). . Geosci. Model Dev. 10::889901
    [Crossref] [Google Scholar]
  58. Meckler AN, Sexton PF, Piasecki AM, Leutert TJ, Marquardt J, et al. 2022.. Cenozoic evolution of deep ocean temperature from clumped isotope thermometry. . Science 377::8690
    [Crossref] [Google Scholar]
  59. Meraner K, Mauritsen T, Voigt A. 2013.. Robust increase in equilibrium climate sensitivity under global warming. . Geophys. Res. Lett. 40::594448
    [Crossref] [Google Scholar]
  60. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA. 1997.. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. . J. Geophys. Res. 102:(D14):1666382
    [Crossref] [Google Scholar]
  61. Morrison H, van Lier-Walqui M, Fridlind AM, Grabowski WW, Harrington JY, et al. 2020.. Confronting the challenge of modeling cloud and precipitation microphysics. . J. Adv. Model. Earth Syst. 12::e2019MS001689
    [Crossref] [Google Scholar]
  62. Nooteboom PD, Baatsen M, Bijl PK, Kliphuis MA, van Sebille E, et al. 2022.. Improved model-data agreement with strongly eddying ocean simulations in the middle-late Eocene. . Paleoceanogr. Paleoclimatol. 37::e2021PA004405
    [Crossref] [Google Scholar]
  63. Norris R, Corfield R, Hayes-Baker K, Huber B, MacLeod K, Wing S. 1999.. Mountains and Eocene climate. . In Warm Climates in Earth History, ed. B Huber, K MacLeod, S Wing , pp. 16196. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  64. O'Brien CL, Robinson SA, Pancost RD, Sinninghe Damsté JS, Schouten S, et al. 2017.. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. . Sci. Rev. 172::22447
    [Google Scholar]
  65. O'Connor LK, Robinson SA, Naafs BDA, Jenkyns HC, Henson S, et al. 2019.. Late Cretaceous temperature evolution of the southern high latitudes: a TEX86 perspective. . Paleoceanogr. Paleoclimatol. 34::43654
    [Crossref] [Google Scholar]
  66. Otto-Bliesner BL, Brady EC, Shields C. 2002.. Late Cretaceous ocean: coupled simulations with the National Center for Atmospheric Research climate system model. . J. Geophys. Res. 107:(D2):ACL 111ACL 11-4
    [Crossref] [Google Scholar]
  67. Otto-Bliesner BL, Upchurch GR. 1997.. Vegetation-induced warming of high-latitude regions during the Late Cretaceous period. . Nature 385::8047
    [Crossref] [Google Scholar]
  68. Pearson PN, Ditchfield PW, Singano J, Harcourt-Brown KG, Nicholas CJ, et al. 2001.. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. . Nature 413::48187
    [Crossref] [Google Scholar]
  69. Penn JL, Deutsch C, Payne JL, Sperling EA. 2018.. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. . Science 362::eaat1327
    [Crossref] [Google Scholar]
  70. Pincus R, Mlawer EJ, Delamere JS. 2019.. Balancing accuracy, efficiency, and flexibility in radiation calculations for dynamical models. . J. Adv. Model. Earth Syst. 11::307489
    [Crossref] [Google Scholar]
  71. Poulsen CJ, Barron EJ, Peterson WH, Wilson PA. 1999.. A reinterpretation of Mid-Cretaceous shallow marine temperatures through model-data comparison. . Paleoceanography 14::67997
    [Crossref] [Google Scholar]
  72. Poulsen CJ, Gendaszek AS, Jacob RL. 2003.. Did the rifting of the Atlantic Ocean cause the Cretaceous thermal maximum?. Geology 31::11518
    [Crossref] [Google Scholar]
  73. Poulsen CJ, Tabor C, White JD. 2015.. Long-term climate forcing by atmospheric oxygen concentrations. . Science 348::123841
    [Crossref] [Google Scholar]
  74. Poulsen CJ, Zhou J. 2013.. Sensitivity of Arctic climate variability to mean state: insights from the Cretaceous. . J. Clim. 26::700322
    [Crossref] [Google Scholar]
  75. Previdi M, Smith KL, Polvani LM. 2021.. Arctic amplification of climate change: a review of underlying mechanisms. . Environ. Res. Lett. 16::093003
    [Crossref] [Google Scholar]
  76. Rae JWB, Zhang YG, Liu X, Foster GL, Stoll HM, Whiteford RDM. 2021.. Atmospheric CO2 over the past 66 million years from marine archives. . Annu. Rev. Earth Planet. Sci. 49::60941
    [Crossref] [Google Scholar]
  77. Reichgelt T, Greenwood DR, Steinig S, Conran JG, Hutchinson DK, et al. 2022.. Plant proxy evidence for high rainfall and productivity in the Eocene of Australia. . Paleoceanogr. Paleoclimatol. 37::e2022PA004418
    [Crossref] [Google Scholar]
  78. Renoult M, Sagoo N, Zhu J, Mauritsen T. 2023.. Causes of the weak emergent constraint on climate sensitivity at the Last Glacial Maximum. . Clim. Past 19::32356
    [Crossref] [Google Scholar]
  79. Rohde RA, Hausfather Z. 2020.. The Berkeley Earth land/ocean temperature record. . Earth Syst. Sci. Data 12::346979
    [Crossref] [Google Scholar]
  80. Russotto RD, Biasutti M. 2020.. Polar amplification as an inherent response of a circulating atmosphere: results from the TRACMIP aquaplanets. . Geophys. Res. Lett. 47::e2019GL086771
    [Crossref] [Google Scholar]
  81. Sagoo N, Valdes P, Flecker R, Gregoire LJ. 2013.. The Early Eocene equable climate problem: Can perturbations of climate model parameters identify possible solutions?. Philos. Trans. R. Soc. A 371::20130123
    [Crossref] [Google Scholar]
  82. Schneider T, Kaul CM, Pressel KG. 2019.. Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. . Nat. Geosci. 12::16367
    [Crossref] [Google Scholar]
  83. Schneider T, Teixeira J, Bretherton CS, Brient F, Pressel KG, et al. 2017.. Climate goals and computing the future of clouds. . Nat. Clim. Change 7::35
    [Crossref] [Google Scholar]
  84. Schrag DP. 1999.. Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures. . Chem. Geol. 161::21524
    [Crossref] [Google Scholar]
  85. Seeley JT, Jeevanjee N. 2021.. H2O windows and CO2 radiator fins: a clear-sky explanation for the peak in equilibrium climate sensitivity. . Geophys. Res. Lett. 48::e2020GL089609
    [Crossref] [Google Scholar]
  86. Seeley JT, Wordsworth RD. 2021.. Episodic deluges in simulated hothouse climates. . Nature 599::7479
    [Crossref] [Google Scholar]
  87. Shackleton N, Boersma A. 1981.. The climate of the Eocene ocean. . J. Geol. Soc. 138::15357
    [Crossref] [Google Scholar]
  88. Shellito CJ, Lamarque JF, Sloan Lisa C. 2009.. Early Eocene Arctic climate sensitivity to pCO2 and basin geography. . Geophys. Res. Lett. 36::L09707
    [Crossref] [Google Scholar]
  89. Sherwood SC, Webb MJ, Annan JD, Armour KC, Forster PM, et al. 2020.. An assessment of Earth's climate sensitivity using multiple lines of evidence. . Rev. Geophys. 58::e2019RG000678
    [Crossref] [Google Scholar]
  90. Sloan LC, Pollard D. 1998.. Polar stratospheric clouds: a high latitude warming mechanism in an ancient greenhouse world. . Geophys. Res. Lett. 25::351720
    [Crossref] [Google Scholar]
  91. Sriver RL, Huber M. 2007.. Observational evidence for an ocean heat pump induced by tropical cyclones. . Nature 447::57780
    [Crossref] [Google Scholar]
  92. Suan G, Popescu S-M, Suc J-P, Schnyder J, Fauquette S, et al. 2017.. Subtropical climate conditions and mangrove growth in Arctic Siberia during the early Eocene. . Geology 45::53942
    [Crossref] [Google Scholar]
  93. Tabor CR, Poulsen CJ, Lunt DJ, Rosenbloom NA, Otto-Bliesner BL, et al. 2016.. The cause of Late Cretaceous cooling: a multimodel-proxy comparison. . Geology 44::96366
    [Crossref] [Google Scholar]
  94. Thomas DJ, Korty R, Huber M, Schubert JA, Haines B. 2014.. Nd isotopic structure of the Pacific Ocean 70–30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world. . Paleoceanography 29::45469
    [Crossref] [Google Scholar]
  95. Tierney JE, Poulsen CJ, Montañez IP, Bhattacharya T, Feng R, et al. 2020.. Past climates inform our future. . Science 370::eaay3701
    [Crossref] [Google Scholar]
  96. Tierney JE, Zhu J, Li M, Ridgwell A, Hakim GJ, et al. 2022.. Spatial patterns of climate change across the Paleocene–Eocene Thermal Maximum. . PNAS 119::e2205326119
    [Crossref] [Google Scholar]
  97. Tripati AK, Delaney ML, Zachos JC, Anderson LD, Kelly DC, Elderfield H. 2003.. Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera. . Paleoceanography 18::1101
    [Crossref] [Google Scholar]
  98. Vallis GK. 2000.. Large-scale circulation and production of stratification: effects of wind, geometry, and diffusion. . J. Phys. Oceanogr. 30::93354
    [Crossref] [Google Scholar]
  99. van Dijk J, Fernandez A, Bernasconi SM, Caves Rugenstein JK, Passey SR, White T. 2020.. Spatial pattern of super-greenhouse warmth controlled by elevated specific humidity. . Nat. Geosci. 13::73944
    [Crossref] [Google Scholar]
  100. West CK, Greenwood DR, Reichgelt T, Lowe AJ, Vachon JM, Basinger JF. 2020.. Paleobotanical proxies for early Eocene climates and ecosystems in northern North America from middle to high latitudes. . Clim. Past 16:(4):1387410
    [Crossref] [Google Scholar]
  101. Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, et al. 2020.. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. . Science 369::138387
    [Crossref] [Google Scholar]
  102. Wilson PA, Norris RD, Cooper MJ. 2002.. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. . Geology 30::60710
    [Crossref] [Google Scholar]
  103. Zachos JC, Stott LD, Lohmann KC. 1994.. Evolution of Early Cenozoic marine temperatures. . Paleoceanography 9::35387
    [Crossref] [Google Scholar]
  104. Zhang Y, de Boer AM, Lunt DJ, Hutchinson DK, Ross P, et al. 2022.. Early Eocene ocean meridional overturning circulation: the roles of atmospheric forcing and strait geometry. . Paleoceanogr. Paleoclimatol. 37::e2021PA004329
    [Crossref] [Google Scholar]
  105. Zhu J, Otto-Bliesner BL, Brady EC, Gettelman A, Bacmeister JT, et al. 2022.. LGM paleoclimate constraints inform cloud parameterizations and equilibrium climate sensitivity in CESM2. . J. Adv. Model. Earth Syst. 14::e2021MS002776
    [Crossref] [Google Scholar]
  106. Zhu J, Otto-Bliesner BL, Brady EC, Poulsen CJ, Tierney JE, et al. 2021.. Assessment of equilibrium climate sensitivity of the Community Earth System Model Version 2 through simulation of the Last Glacial Maximum. . Geophys. Res. Lett. 48::e2020GL091220
    [Crossref] [Google Scholar]
  107. Zhu J, Poulsen CJ. 2020.. On the increase of climate sensitivity and cloud feedback with warming in the community atmosphere models. . Geophys. Res. Lett. 47::e2020GL089143
    [Crossref] [Google Scholar]
  108. Zhu J, Poulsen CJ, Otto-Bliesner BL. 2020a.. High climate sensitivity in CMIP6 model not supported by paleoclimate. . Nat. Clim. Change 10::37879
    [Crossref] [Google Scholar]
  109. Zhu J, Poulsen CJ, Otto-Bliesner BL, Liu Z, Brady EC, Noone DC. 2020b.. Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction. . Earth Planet. Sci. Lett. 537::116164
    [Crossref] [Google Scholar]
  110. Zhu J, Poulsen CJ, Tierney JE. 2019.. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. . Sci. Adv. 5::eaax1874
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-100333
Loading
/content/journals/10.1146/annurev-earth-032320-100333
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error