1932

Abstract

Dynamo magnetic fields are primarily generated by thermochemical convection of electrically conductive liquid metal within planetary cores. Convection can be sustained by secular cooling and may be bolstered by compositional buoyancy associated with core solidification. Additionally, mechanical stirring of core fluids and external perturbations by large impact events, tidal effects, and orbital precession can also contribute to sustaining dynamo fields. Convective dynamos cease when the core-mantle heat flux becomes subadiabatic or if specific crystallization regimes inhibit core fluid flows. Therefore, exploring the histories of magnetic fields across the Solar System provides a window into the thermal and chemical evolution of planetary interiors. Here we review how recent spacecraft-based studies of remanent crustal magnetism, paleomagnetic studies of rock samples, and planetary interior models have revealed the magnetic and evolutionary histories of Mercury, Earth, Mars, the Moon, and several planetesimals, as well as discuss avenues for future exploration and discovery.

  • ▪  Paleomagnetism and remanent crustal magnetism studies elucidate the magnetic histories of rocky planetary bodies.
  • ▪  Records of ancient dynamo fields have been obtained from 3 out of 4 terrestrial planets, the Moon, and several planetesimals.
  • ▪  The geometries, intensities, and longevities of dynamo fields can provide information on core processes and planetary thermal evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-102418
2022-05-31
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-102418.html?itemId=/content/journals/10.1146/annurev-earth-032320-102418&mimeType=html&fmt=ahah

Literature Cited

  1. Acuña MH, Connerney JEP, Ness NF, Lin RP, Mitchell D et al. 1999. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284:790–93
    [Google Scholar]
  2. Anderson BJ, Johnson CL, Korth H, Purucker ME, Winslow RM et al. 2011. The global magnetic field of Mercury from MESSENGER orbital observations. Science 333:1859–62
    [Google Scholar]
  3. Arkani-Hamed J, Ghods A. 2011. Could giant impacts cripple core dynamos of small terrestrial planets?. Icarus 212:920–34
    [Google Scholar]
  4. Atri D, Hariharan B, Grießmeier J-M. 2013. Galactic cosmic ray–induced radiation dose on terrestrial exoplanets. Astrobiology 13:910–19
    [Google Scholar]
  5. Badro J, Côté A, Brodholt JP 2014. A seismologically consistent compositional model of Earth's core. PNAS 111:7542–45
    [Google Scholar]
  6. Baek S-M, Kim K-H, Garrick-Bethell I, Jin H, Lee H-J, Lee J-K 2017. Detailed study of the Mare Crisium northern magnetic anomaly. J. Geophys. Res. Planets 122:411–30
    [Google Scholar]
  7. Biggin AJ, Bono R, Meduri DG, Sprain CJ, Davies CJ et al. 2020. Quantitative estimates of average geomagnetic axial dipole dominance in deep geological time. Nat. Commun. 11:6100
    [Google Scholar]
  8. Biggin AJ, Paterson GA. 2014. A new set of qualitative reliability criteria to aid inferences on palaeomagnetic dipole moment variations through geological time. Front. Earth Sci. 2:24
    [Google Scholar]
  9. Biggin AJ, Piispa EJ, Pesonen LJ, Holme R, Paterson GA et al. 2015. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature 526:245–48
    [Google Scholar]
  10. Blakely RJ. 1995. Potential Theory in Gravity and Magnetic Applications Cambridge, UK: Cambridge Univ. Press
  11. Bono R, Tarduno JA, Nimmo F, Cottrell RD. 2019. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nat. Geosci. 12:143–47
    [Google Scholar]
  12. Borlina CS, Weiss BP, Lima EA, Tang F, Taylor RJM et al. 2020. Reevaluating the evidence for a Hadean-Eoarchean dynamo. Sci. Adv. 6:eaav9634
    [Google Scholar]
  13. Bott MHP, Smith RA. 1958. The estimation of the limiting depth of gravitating bodies. Geophys. Prospect. 6:1–10
    [Google Scholar]
  14. Bottke WF, Andrews-Hanna JC. 2017. A post-accretionary lull in large impacts on Mars. Nat. Geosci. 10:344–48
    [Google Scholar]
  15. Breuer D, Labrosse S, Spohn T 2010. Thermal evolution and magnetic field generation in terrestrial planets and satellites. Space Sci. Rev. 152:449–500
    [Google Scholar]
  16. Breuer D, Rueckriemen T, Spohn T 2015. Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons. Prog. Earth Planet. Sci. 2:39
    [Google Scholar]
  17. Bryson JFJ, Church NS, Kasama T, Harrison RJ. 2015a. Nanomagnetic intergrowths in Fe–Ni meteoritic metal: the potential for time-resolved records of planetesimal dynamo fields. Earth Planet. Sci. Lett. 388:237–48
    [Google Scholar]
  18. Bryson JFJ, Neufeld JA, Nimmo F. 2019a. Constraints on asteroid magnetic field evolution and the radii of meteorite parent bodies from thermal modeling. Earth Planet. Sci. Lett. 521:68–78
    [Google Scholar]
  19. Bryson JFJ, Nichols CIO, Herrero-Albillos J, Kronast F, Kasama T et al. 2015b. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature 517:472–75
    [Google Scholar]
  20. Bryson JFJ, Weiss BP, Getzin B, Abrahams JNH, Nimmo F, Scholl A. 2019b. Paleomagnetic evidence for a partially differentiated ordinary chondrite parent asteroid. J. Geophys. Res. Planets 124:1880–98
    [Google Scholar]
  21. Bryson JFJ, Weiss BP, Harrison RJ, Herrero-Albillos J, Kronast F. 2017. Paleomagnetic evidence for dynamo activity driven by inward crystallization of a metallic asteroid. Earth Planet. Sci. Lett. 472:152–63
    [Google Scholar]
  22. Cao H, Aurnou JM, Wicht J, Dietrich W, Soderlund KM, Russell CT 2014. A dynamo explanation for Mercury's anomalous magnetic field. Geophys. Res. Lett. 41:4127–34
    [Google Scholar]
  23. Carporzen L, Weiss BP, Elkins-Tanton LT, Shuster DL, Ebel DS, Gattacceca J. 2011. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. PNAS 108:6386–89
    [Google Scholar]
  24. Cébron D, Laguerre R, Noir J, Schaeffer N 2019. Precessing spherical shells: flows, dissipation, dynamo and the lunar core. Geophys. J. Int. 219:S34–57
    [Google Scholar]
  25. Chabot NL, Haack H. 2006. Meteorites and the Early Solar System II Tucson: Univ. Arizona Press
  26. Christensen UR 2010. Dynamo scaling laws and applications to the planets. Space Sci. Rev. 152:565–90
    [Google Scholar]
  27. Christensen UR, Aubert J 2006. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166:97–114
    [Google Scholar]
  28. Cockell C, Bush T, Bryce C, Direito S, Fox-Powell M et al. 2016. Habitability: a review. Astrobiology 16:89–117
    [Google Scholar]
  29. Connerney JEP, Acuna MH, Ness NF, Kletetschka G, Mitchell DL et al. 2005. Tectonic implications of Mars crustal magnetism. PNAS 102:14970–75
    [Google Scholar]
  30. Connerney JEP, Acuna MH, Wasilewski P, Ness NF, Reme H et al. 1999. Magnetic lineations in the ancient crust of Mars. Science 284:794–98
    [Google Scholar]
  31. Cournède C, Gattacceca J, Rochette P. 2012. Magnetic study of large Apollo samples: possible evidence for an ancient centered dipolar field on the Moon. Earth Planet. Sci. Lett.331–33231–42
    [Google Scholar]
  32. Crawford DA. 2020. Simulations of magnetic fields produced by asteroid impact: possible implications for planetary paleomagnetism. Int. J. Impact Eng. 137:103464
    [Google Scholar]
  33. Driscoll PE. 2016. Simulating 2 Ga of geodynamo history. Geophys. Res. Lett. 43:5680–87
    [Google Scholar]
  34. Driscoll PE, Bercovici D. 2014. On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter. 236:36–51
    [Google Scholar]
  35. Dunlop DJ, Ozdemir O. 1997. Rock Magnetism: Fundamentals and Frontiers New York: Cambridge Univ. Press
  36. Dwyer CA, Stevenson DJ, Nimmo F. 2011. A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479:212–14
    [Google Scholar]
  37. Evans AJ, Tikoo SM, Andrews-Hanna JC. 2018. The case against an early lunar dynamo powered by core convection. Geophys. Res. Lett. 45:98–107
    [Google Scholar]
  38. Fegley B, Klingelhöfer G, Brackett RA, Izenberg N, Kremser DT, Lodders K. 1995. Basalt oxidation and the formation of hematite on the surface of Venus. Icarus 118:373–83
    [Google Scholar]
  39. Fu RR, Lima EA, Volk MWR, Trubko R. 2020. High-sensitivity moment magnetometery with the quantum diamond microscope. Geochem. Geophy. Geosyst. 21:e2020GC009147
    [Google Scholar]
  40. Fu RR, Weiss BP, Lima EA, Harrison RJ, Bai X-N et al. 2014. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science 346:1089–92
    [Google Scholar]
  41. Fu RR, Weiss BP, Shuster DL, Gattacceca J, Grove TL et al. 2012. An ancient core dynamo in asteroid Vesta. Science 338:238–41
    [Google Scholar]
  42. Fuller M, Cisowski SM. 1987. Lunar paleomagnetism. Geomagnetism 2:307–455
    [Google Scholar]
  43. Garrick-Bethell I, Poppe AR, Fatemi S. 2019. The lunar paleo-magnetosphere: implications for the accumulation of polar volatile deposits. Geophys. Res. Lett. 46:5778–87
    [Google Scholar]
  44. Garrick-Bethell I, Weiss BP, Shuster DL, Buz J. 2009. Early lunar magnetism. Science 323:356–59
    [Google Scholar]
  45. Garrick-Bethell I, Weiss BP, Shuster DL, Tikoo SM, Tremblay MM. 2017. Further evidence for early lunar magnetism from troctolite 76535. J. Geophys. Res. Planets 122:76–93
    [Google Scholar]
  46. Gattacceca J, Rochette P. 2004. Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth Planet. Sci. Lett. 227:377–93
    [Google Scholar]
  47. Gattacceca J, Weiss BP, Gounelle M. 2016. New constraints on the magnetic history of the CV parent body and the solar nebula from the Kaba meteorite. Earth Planet. Sci. Lett. 455:166–75
    [Google Scholar]
  48. Glatzmaier GA, Coe RS, Hongre L, Roberts PH 1999. The role of the Earth's mantle in controlling the frequency of geomagnetic reversals. Nature 401:885–90
    [Google Scholar]
  49. Glotch TD, Bandfield JL, Lucey PG, Hayne PO, Greenhagen BT et al. 2015. Formation of lunar swirls by magnetic field standoff of the solar wind. Nat. Commun. 6:6189
    [Google Scholar]
  50. Gómez-Pérez N, Solomon SC. 2010. Mercury's weak magnetic field: a result of magnetospheric feedback?. Geophys. Res. Lett. 37:L20204
    [Google Scholar]
  51. Green J, Draper D, Boardsen S, Dong C 2020. When the Moon had a magnetosphere. Sci. Adv. 6:eabc0865
    [Google Scholar]
  52. Hauck SA, Aurnou JM, Dombard AJ. 2006. Sulfur's impact on core evolution and magnetic field generation on Ganymede. J. Geophys. Res. 111:E9E09008
    [Google Scholar]
  53. Hauck SA, Margot J-L, Solomon SC, Phillips RJ, Johnson CL et al. 2013. The curious case of Mercury's internal structure. J. Geophys. Res. Planets 118:1204–20
    [Google Scholar]
  54. Hemingway DJ, Driscoll PE. 2020. History and future of the Martian dynamo and implications of a hypothetical solid inner core. J. Geophys. Res. Planets 126:e2020JE006663
    [Google Scholar]
  55. Hood LL. 2011. Central magnetic anomalies of Nectarian-aged lunar impact basins: probable evidence for an early core dynamo. Icarus 211:1109–28
    [Google Scholar]
  56. Hood LL. 2015. Initial mapping of Mercury's crustal magnetic field: relationship to the Caloris impact basin. Geophys. Res. Lett. 42:10565–72
    [Google Scholar]
  57. Hood LL. 2016. Magnetic anomalies concentrated near and within Mercury's impact basins: early mapping and interpretation. J. Geophys. Res. Planets 121:1016–25
    [Google Scholar]
  58. Hood LL, Artemieva NA. 2008. Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193:485–502
    [Google Scholar]
  59. Hood LL, Oliveira JS, Galluzzi V, Rothery DA. 2018. Investigating sources of Mercury's crustal magnetic field: further mapping of MESSENGER magnetometer data. J. Geophys. Res. Planets 123:2647–66
    [Google Scholar]
  60. Hood LL, Spudis PD. 2016. Magnetic anomalies in the Imbrium and Schrödiner impact basins: orbital evidence for persistence of the lunar core dynamo in the Imbrian epoch. J. Geophys. Res. Planets 121:2268–81
    [Google Scholar]
  61. Hood LL, Torres CB, Oliveira JS, Wieczorek MA, Stewart ST. 2021. A new large-scale map of the lunar crustal magnetic field and its interpretation. J. Geophys. Res. Planets 126:e2020JE006667
    [Google Scholar]
  62. Johnson CL, Mittelholz A, Langlais B, Russell CT, Ansan V et al. 2020. Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nat. Geosci. 13:199–204
    [Google Scholar]
  63. Johnson CL, Phillips RJ, Purucker ME, Anderson BJ, Byrne JP et al. 2015. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field. Science 348:892–95
    [Google Scholar]
  64. Karimi S, Dombard AJ, Buczkowski DL, Robbins SJ, Williams RM. 2016. Using the viscoelastic relaxation of large impact craters to study the thermal history of Mars. Icarus 272:102–13
    [Google Scholar]
  65. Kelley KA, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science 325:605–7
    [Google Scholar]
  66. Laneuville M, Wieczorek MA, Breuer D, Aubert J, Morard G, Rückriemen T 2014. A long-lived lunar dynamo powered by core crystallization. Earth Planet. Sci. Lett. 401:251–60
    [Google Scholar]
  67. Langlais B, Lesur V, Purucker ME, Connerney JEP, Mandea M. 2010. Crustal magnetic fields of terrestrial planets. Space Sci. Rev. 152:223–49
    [Google Scholar]
  68. Langlais B, Thebault E, Houliez A, Purucker ME, Lillis RJ 2019. A new model of the crustal magnetic field of Mars using MGS and MAVEN. J. Geophys. Res. Planets 124:1542–69
    [Google Scholar]
  69. Lapôtre MGA, O'Rourke JG, Schaefer LK, Siebach KL, Spalding C et al. 2020. Probing space to understand Earth. Nat. Rev. Earth Environ. 1:170–81
    [Google Scholar]
  70. Lawrence K, Johnson C, Tauxe L, Gee JS 2008. Lunar paleointensity measurements: implications for lunar magnetic evolution. Phys. Earth Planet. Inter. 168:71–87
    [Google Scholar]
  71. Le Bars M, Wieczorek MA, Karatekin O, Cebron D, Laneuville M 2011. An impact-driven dynamo for the early Moon. Nature 479:215–18
    [Google Scholar]
  72. Lesur V, Hamoudi M, Choi Y, Dyment J, Thebault E 2016. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM). Earth Planets Space 68:27
    [Google Scholar]
  73. Lillis RJ, Frey HV, Manga M. 2008. Rapid decrease in Martian crustal magnetizations in the Noachian era: implications for early Mars. Geophys. Res. Lett. 35:L14203
    [Google Scholar]
  74. Lillis RJ, Manga M, Mitchell DL, Lin RP, Acuna MH 2006. Unusual magnetic signature of the Hadriaca Patera volcano: implications for early Mars. Geophys. Res. Lett. 33:L03202
    [Google Scholar]
  75. Lillis RJ, Robbins S, Manga M, Halekas JS, Frey HV. 2013. Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. Planets 118:1488–511
    [Google Scholar]
  76. Malavergne V, Toplis MJ, Berthet S, Jones J 2010. Highly reducing conditions during core formation on Mercury: implications for internal structure and the origin of a magnetic field. Icarus 206:199–209
    [Google Scholar]
  77. Maurel C, Bryson JFJ, Lyons RJ, Ball MR, Chopdekar RV et al. 2020. Meteorite evidence for partial differentiation and protracted accretion of planetesimals. Sci. Adv. 6:eaba1303
    [Google Scholar]
  78. Mighani S, Wang H, Shuster DL, Borlina CS, Nichols CIO, Weiss BP. 2020. The end of the lunar dynamo. Sci. Adv. 6:eaax0883
    [Google Scholar]
  79. Milbury C, Schubert G, Raymond CA, Smrekar SE, Langlais B. 2012. The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. J. Geophys. Res. 117:E10E10007
    [Google Scholar]
  80. Mitchell DL, Halekas JS, Lin RP, Frey S, Hood LL et al. 2008. Global mapping of lunar crustal magnetic fields by Lunar Prospector. Icarus 194:401–9
    [Google Scholar]
  81. Mittelholz A, Johnson CL, Feinberg JM, Langlais B, Phillips RJ. 2020. Timing of the martian dynamo: new constraints for a core field 4.5 and 3.7 Ga ago. Sci. Adv. 6:eaba0513
    [Google Scholar]
  82. Moore KM, Bloxham J. 2017. The construction of sparse models of Mars's crustal magnetic field. J. Geophys. Res. Planets 122:1443–57
    [Google Scholar]
  83. Morschhauser A, Vervelidou F, Thomas P, Grott M, Lesur V, Gilder SA 2018. Mars’ crustal magnetic field. Magnetic Fields in the Solar System H Lühr, J Wicht, S Gilder, M Holschneider 331–56 Cham, Switz: Springer
    [Google Scholar]
  84. Ness NF, Behannon KW, Lepping RP, Whang YC. 1975. Magnetic field of Mercury confirmed. Nature 255:204–5
    [Google Scholar]
  85. Nichols CIO, Bryson JFJ, Cottrell RD, Fu RR, Harrison RJ et al. 2021. A time-resolved paleomagnetic record of Main Group pallasites: evidence for a large-cored thin-mantled parent body. J. Geophys. Res. Planets 126:e2021JE006900
    [Google Scholar]
  86. Nichols CIO, Weiss B, Getzin B, Schmitt H, Beguin A et al. 2021. The paleoinclination of the ancient lunar magnetic field from an Apollo 17 basalt. Nat. Astron. https://doi.org/10.1038/s41550-021-01469-y
    [Crossref] [Google Scholar]
  87. Nimmo F. 2002. Why does Venus lack a magnetic field?. Geology 30:987–90
    [Google Scholar]
  88. O'Rourke JG, Buz J, Fu RR, Lillis RJ. 2019. Detectability of remanent magnetism in the crust of Venus. Geophys. Res. Lett. 46:5768–77
    [Google Scholar]
  89. O'Rourke JG, Gillmann C, Tackley P 2018. Prospects for an ancient dynamo and modern crustal remanent magnetism on Venus. Earth Planet. Sci. Lett. 502:46–56
    [Google Scholar]
  90. O'Rourke JG, Stevenson DJ. 2016. Powering Earth's dynamo with magnesium precipitation from the core. Nature 529:387–89
    [Google Scholar]
  91. Ojha L, Karunatillake S, Karimi S, Buffo J 2021. Amagmatic hydrothermal systems on Mars from radiogenic heat. Nat. Commun. 12:1754
    [Google Scholar]
  92. Oliveira JS, Hood LL, Langlais B. 2019. Constraining the early history of Mercury and its core dynamo by studying the crustal magnetic field. J. Geophys. Res. Planets 124:2382–96
    [Google Scholar]
  93. Oliveira JS, Wieczorek MA. 2017. Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization. J. Geophys. Res. Planets 122:383–99
    [Google Scholar]
  94. Oliveira JS, Wieczorek MA, Kletetschka G. 2017. Iron abundances in lunar impact basin melt sheets from orbital magnetic field data. J. Geophys. Res. Planets 122:2429–44
    [Google Scholar]
  95. Olson P. 2013. The new core paradox. Science 342:431–32
    [Google Scholar]
  96. Olson P, Christensen UR. 2006. Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett. 3:–4561–71
    [Google Scholar]
  97. Oran R, Weiss BP, Shprits Y, Miljković K, Tóth G 2020. Was the moon magnetized by impact plasmas?. Sci. Adv. 6:eabb1475
    [Google Scholar]
  98. Parker RL. 1991. A theory of ideal bodies for seamount magnetism. J. Geophys. Res. 96:B1016101–12
    [Google Scholar]
  99. Peale SJ, Margot J-L, Hauck SA, Solomon SC. 2016. Consequences of a solid inner core on Mercury's spin configuration. Icarus 264:443–55
    [Google Scholar]
  100. Peters LJ. 1949. The direct approach to magnetic interpretation and its practical application. Geophysics 14:290–320
    [Google Scholar]
  101. Phillips JL, Russell CT. 1987. Upper limit on the intrinsic magnetic field of Venus. J. Geophys. Res. 92:A32253–63
    [Google Scholar]
  102. Philpott LC, Johnson CL, Winslow RM, Anderson BJ, Korth H et al. 2014. Constraints on the secular variation of Mercury's magnetic field from the combined analysis of MESSENGER and Mariner 10 data. Geophys. Res. Lett. 41:6627–34
    [Google Scholar]
  103. Quesnel Y, Sotin C, Langlais B, Costin S, Mandea M et al. 2009. Serpentinization of the martian crust during Noachian. Earth Planet. Sci. Lett. 277:184–93
    [Google Scholar]
  104. Roberts JH, Lillis RJ, Manga M 2009. Giant impacts on early Mars and the cessation of the Martian dynamo. J. Geophys. Res. 114:E4E04009
    [Google Scholar]
  105. Rückriemen T, Breuer D, Spohn T. 2015. The Fe snow regime in Ganymede's core: a deep-seated dynamo below a stable snow zone. J. Geophys. Res. Planets 120:1095–118
    [Google Scholar]
  106. Saltus RW, Blakely RJ. 2011. Unique geologic insights from “non-unique” gravity and magnetic interpretation. GSA Today 21:4–10
    [Google Scholar]
  107. Scheinberg A, Fu RR, Elkins-Tanton LT, Weiss BP 2015a. Asteroid differentiation: melting and large-scale structure. Asteroids IV P Michel, F DeMeo, WF Bottke 533–52 Tucson: Univ. Arizona Press
    [Google Scholar]
  108. Scheinberg A, Soderlund KM, Schubert G. 2015b. Magnetic field generation in the lunar core: the role of inner core growth. Icarus 254:62–71
    [Google Scholar]
  109. Scheinberg AL, Soderlund KM, Elkins-Tanton LT. 2018. A basal magma ocean dynamo to explain the early lunar magnetic field. Earth Planet. Sci. Lett. 452:144–51
    [Google Scholar]
  110. Shah J, Bates HC, Muxworthy AR, Hezel DC, Russell SS, Genge MJ 2017. Long-lived magnetism on chondrite parent bodies. Earth Planet. Sci. Lett. 475:106–18
    [Google Scholar]
  111. Shea EK, Weiss BP, Cassata WS, Shuster DL, Tikoo SM et al. 2012. A long-lived lunar core dynamo. Science 335:453–56
    [Google Scholar]
  112. Smirnov AV, Tarduno JA, Kulakov EV, McEnroe SA, Bono RK. 2016. Palaeointensity, core thermal conductivity and the unknown age of the inner core. Geophys. J. Int. 205:1190–95
    [Google Scholar]
  113. Smith RA. 1959. Some depth formulae for local magnetic and gravity anomalies. Geophys. Prospect. 7:55–63
    [Google Scholar]
  114. Stähler SC, Khan A, Banerdt WB, Lognonné P, Giardini D et al. 2021. Seismic detection of the martian core. Science 373:443–48
    [Google Scholar]
  115. Stanley S, Elkins-Tanton LT, Zuber MT, Parmentier EM 2008. Mars’ paleomagnetic field as the result of a single-hemisphere dynamo. Science 321:1822–25
    [Google Scholar]
  116. Steinbrügge G, Padovan S, Hussmann H, Steinke T, Stark A, Oberst J. 2018. Viscoelastic tides of Mercury and the determination of its inner core size. J. Geophys. Res. Planets 123:2760–72
    [Google Scholar]
  117. Stephenson A, Collinson DW. 1974. Lunar magnetic field paleointensities determined by an anhysteretic remanent magnetization method. Earth Planet. Sci. Lett. 23:220–28
    [Google Scholar]
  118. Stevenson DJ. 2003. Planetary magnetic fields. Earth Planet. Sci. Lett. 208:1–11
    [Google Scholar]
  119. Stewart AJ, Schmidt MW, van Westrenen W, Liebske C. 2007. Mars: a new core-crystallization regime. Science 316:1323–25
    [Google Scholar]
  120. Stixrude L, Scipioni R, Desjarlais MP. 2020. A silicate dynamo in the early Earth. Nat. Commun. 11:935
    [Google Scholar]
  121. Stöffler D, Ryder G, Ivanov BA, Artemieva NA, Cintala MJ, Grieve RAF. 2006. Cratering history and lunar chronology. Rev. Mineral. Geochem. 60:519–96
    [Google Scholar]
  122. Strauss BE, Feinberg JM, Johnson CL. 2016. Magnetic mineralogy of the Mercurian lithosphere. J. Geophys. Res. Planets 121:2225–38
    [Google Scholar]
  123. Strauss BE, Tikoo SM, Gross J, Setera J, Turrin B. 2021. Constraining the decline of the lunar dynamo field at ≈3.1 Ga through paleomagnetic analyses of Apollo 12 mare basalts. J. Geophys. Res. Planets 126:e2020JE006715
    [Google Scholar]
  124. Stys C, Dumberry M. 2020. A past lunar dynamo thermally driven by the precession of its inner core. J. Geophys. Res. Planets 125:e2020JE006396
    [Google Scholar]
  125. Suavet C, Weiss BP, Cassata WS, Shuster DL, Gattacceca J et al. 2013. Persistence and origin of the lunar core dynamo. PNAS 110:8453–58
    [Google Scholar]
  126. Suavet C, Weiss BP, Grove TL. 2014. Controlled-atmosphere thermal demagnetization and paleointensity analyses of extraterrestrial rocks. Geochem. Geophys. Geosyst. 15:2733–43
    [Google Scholar]
  127. Tarduno JA, Cottrell RD, Davis WJ, Nimmo F, Bono R. 2015. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349:521–24
    [Google Scholar]
  128. Tarduno JA, Cottrell RD, Lawrence K, Bono RK, Huang W et al. 2021. Absence of a long-lived lunar paleomagnetosphere. Sci. Adv. 7:eabi7647
    [Google Scholar]
  129. Tarduno JA, Cottrell RD, Nimmo F, Hopkins J, Voronov J et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science 338:939–42
    [Google Scholar]
  130. Tarduno JA, Cottrell RD, Watkeys MK, Hofmann A, Doubrovine PV et al. 2010. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327:1238–40
    [Google Scholar]
  131. Thellier E, Thellier O. 1959. Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys. 15:285–376
    [Google Scholar]
  132. Thomas P, Grott M, Morschhauser A, Vervelidou F. 2018. Paleopole reconstruction of Martian magnetic field anomalies. J. Geophys. Res. Planets 123:1140–55
    [Google Scholar]
  133. Tian Z, Zuber MT, Stanley S. 2015. Magnetic field modeling for Mercury using dynamo models with stable layer and laterally variable heat flux. Icarus 260:263–68
    [Google Scholar]
  134. Tikoo SM, Weiss BP, Cassata W, Shuster DL, Gattacceca J et al. 2014. Decline of the lunar core dynamo. Earth Planet. Sci. Lett. 404:89–97
    [Google Scholar]
  135. Tikoo SM, Weiss BP, Shuster DL, Suavet C, Wang H, Grove TL 2017. A two-billion-year history for the lunar dynamo. Sci. Adv. 3:e1700207
    [Google Scholar]
  136. Tsunakawa H, Takahashi F, Shimizu H, Shibuya H, Matsushima M. 2015. Surface vector mapping of magnetic anomalies over the Moon using Kaguya and Lunar Prospector observations. J. Geophys. Res. Planets 120:1160–85
    [Google Scholar]
  137. Vervelidou F, Lesur V, Morschhauser A, Grott M, Thomas P. 2017. On the accuracy of palaeopole estimations from magnetic field measurements. Geophys. J. Int. 211:1669–78
    [Google Scholar]
  138. Vilim R, Stanley S, Hauck SA 2010. Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field. J. Geophys. Res. 115:E11E11003
    [Google Scholar]
  139. Vine FJ 1987. Seafloor spreading. Structural Geology and Tectonics CK Seyfert Berlin: Springer
    [Google Scholar]
  140. Volk MWR, Fu RR, Mittelholz A, Day JMD 2021. Paleointensity and rock magnetism of martian nakhlite meteorite Miller Range 03346: evidence for intense small-scale crustal magnetization on Mars. J. Geophys. Res. Planets 126:e2021JE006856
    [Google Scholar]
  141. Voorhies CV. 1998. Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Field Greenbelt, MD: NASA
  142. Voorhies CV. 2008. Thickness of the magnetic crust of Mars. J. Geophys. Res. 113:E4E04004
    [Google Scholar]
  143. Voorhies CV, Sabaka TJ, Purucker ME. 2002. On magnetic spectra of Earth and Mars. J. Geophys. Res. 107:E6 https://doi.org/10.1029/2001JE001534
    [Crossref] [Google Scholar]
  144. Weber RC, Lin P, Garnero EJ, Williams Q, Lognonne P 2011. Seismic detection of the lunar core. Science 331:309–12
    [Google Scholar]
  145. Weiss BP, Bai X-N, Fu RR. 2021. History of the solar nebula from meteorite paleomagnetism. Sci. Adv. 7:eaba5967
    [Google Scholar]
  146. Weiss BP, Berdahl JS, Elkins-Tanton LT, Stanley S, Lima EA, Carporzen L 2008a. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science 322:713–16
    [Google Scholar]
  147. Weiss BP, Fong LE, Vali H, Lima EA, Baudenbacher FJ. 2008b. Paleointensity of the ancient Martian magnetic field. Geophys. Res. Lett. 35:L23207
    [Google Scholar]
  148. Weiss BP, Gattacceca J, Stanley S, Rochette P, Christensen UR 2010. Paleomagnetic records of meteorites and early planetesimal differentiation. Space Sci. Rev. 152:341–90
    [Google Scholar]
  149. Weiss BP, Tikoo SM. 2014. The lunar dynamo. Science 346:1246753
    [Google Scholar]
  150. Weiss BP, Vali H, Baudenbacher FJ, Kirschvink JL, Stewart ST, Shuster DL 2002. Records of an ancient Martian magnetic field in ALH84001. Earth Planet. Sci. Lett. 201:449–63
    [Google Scholar]
  151. Wicht J, Tilgner A. 2010. Theory and modeling of planetary dynamos. Space Sci. Rev. 152:501–42
    [Google Scholar]
  152. Wieczorek MA. 2018. Strength, depth, and geometry of magnetic sources in the crust of the Moon from localized power spectrum analysis. J. Geophys. Res. Planets 123:291–316
    [Google Scholar]
  153. Williams Q. 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: constraints on paradoxical cores. Earth Planet. Sci. Lett. 284:564–69
    [Google Scholar]
  154. Williams Q. 2018. The thermal conductivity of Earth's core: a key geophysical parameter's constraints and uncertainties. Annu. Rev. Earth Planet. Sci. 46:47–66
    [Google Scholar]
  155. Yu Y. 2010. Paleointensity determination using anhysteretic remanence and saturation isothermal remanence. Geochem. Geophys. Geosyt. 11:Q02Z12
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-102418
Loading
/content/journals/10.1146/annurev-earth-032320-102418
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error