1932

Abstract

The timing of ice ages over the past ∼2,600 thousand years (kyr) follows pacing by cyclical changes in three aspects of Earth's orbit that influence the solar energy received as a function of latitude and season. Explaining the large magnitude of the climate changes is challenging, particularly so across the period of time from ∼1,250 to 750 ka—the Mid-Pleistocene Transition or MPT. The average repeat time of ice age cycles changed from an earlier 41-kyr rhythm to longer and more intense glaciations at a spacing of about 100 kyr. Explaining this change is very difficult because there was no corresponding change in the orbital pacing that would trigger a change in timing. While the first generation of hypotheses looked largely to changes in the behavior of Northern Hemisphere ice sheets, more recent work integrates ice behavior with new data capturing the evolution of other important aspects of past climate. A full explanation is still lacking, but attention increasingly focuses on the ocean carbon cycle and atmospheric CO levels as the crucial agents involved in the MPT.

  • ▪  The pattern of climate changes connected to the ice ages of the past few million years changed radically between about 1,250 and 750 thousand years ago, a time known as the Mid-Pleistocene Transition or MPT.
  • ▪  While the glacial cycles were ultimately triggered by cyclical changes in Earth's orbit, the changes across the MPT came from changes in the Earth system itself, most likely in the form of a change in the carbon cycle.
  • ▪  The dramatic change in many essential aspects of climate—ice volume, temperature, rainfall on land, and many others—in the absence of an external change suggests how important feedbacks are to the climate system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-104209
2023-05-31
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-032320-104209.html?itemId=/content/journals/10.1146/annurev-earth-032320-104209&mimeType=html&fmt=ahah

Literature Cited

  1. Abell JT, Winckler G, Anderson RF, Herbert TD. 2021. Poleward and weakened westerlies during Pliocene warmth. Nature 589:70–75
    [Google Scholar]
  2. Abe-Ouchi A, Saito F, Kawamura K, Raymo ME, Okuno Ji et al. 2013. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500:190–93
    [Google Scholar]
  3. Ai XE, Studer AS, Sigman DM, Martínez-García A, Fripiat F et al. 2020. Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric CO2 change. Science 370:1348–52
    [Google Scholar]
  4. Anderson RF, Ali S, Bradtmiller LI, Nielsen SHH, Fleisher MQ et al. 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323:1443–48
    [Google Scholar]
  5. Archer D, Winguth A, Lea D, Mahowald N. 2000. What caused the glacial/interglacial atmospheric pCO2 cycles?. Rev. Geophys. 38:159–89
    [Google Scholar]
  6. Badger MP. 2021. Alkenone isotopes show evidence of active carbon concentrating mechanisms in coccolithophores as aqueous carbon dioxide concentrations fall below 7 μmol L−1. Biogeosciences 18:1149–60
    [Google Scholar]
  7. Bajo P, Drysdale RN, Woodhead JD, Hellstrom JC, Hodell D et al. 2020. Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science 367:1235–39
    [Google Scholar]
  8. Balco G, Rovey CW. 2010. Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geology 38:795–98
    [Google Scholar]
  9. Barker S, Starr A, van der Lubbe J, Doughty A, Knorr G et al. 2022. Persistent influence of precession on northern ice sheet variability since the early Pleistocene. Science 376:961–67
    [Google Scholar]
  10. Barker S, Zhang X, Jonkers L, Lordsmith S, Conn S, Knorr G. 2021. Strengthening Atlantic inflow across the Mid-Pleistocene Transition. Paleoceanogr. Paleoclimatol. 36:4e2020PA004200
    [Google Scholar]
  11. Barth AM, Clark PU, Bill NS, He F, Pisias NG. 2018. Climate evolution across the Mid-Brunhes Transition. Clim. Past 14:2071–87
    [Google Scholar]
  12. Bartoli G, Hönisch B, Zeebe RE. 2011. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography 26:PA4213
    [Google Scholar]
  13. Bates SL, Siddall M, Waelbroeck C. 2014. Hydrographic variations in deep ocean temperature over the mid-Pleistocene transition. Quat. Sci. Rev. 88:147–58
    [Google Scholar]
  14. Bell DB, Jung SJA, Kroon D. 2015. The Plio-Pleistocene development of Atlantic deep-water circulation and its influence on climate trends. Quat. Sci. Rev. 123:265–82
    [Google Scholar]
  15. Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF et al. 2015. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42:2542–49
    [Google Scholar]
  16. Berends CJ, Köhler P, Lourens LJ, Van de Wal RSW. 2020. On the cause of the Mid-Pleistocene Transition. Rev. Geophys. 59:2e2020RG000727
    [Google Scholar]
  17. Berger W, Wefer G, Richter C. 1998. Color cycles in Quaternary sediments from the Congo Fan region (Site 1075): a statistical analysis. Proc. Ocean Drill. Program A 175:561–67
    [Google Scholar]
  18. Billups K, York K, Bradtmiller LI. 2018. Water column stratification in the Antarctic zone of the Southern Ocean during the mid-Pleistocene climate transition. Paleoceanogr. Paleoclimatol. 33:432–42
    [Google Scholar]
  19. Bintanja R, Van de Wal R. 2008. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454:869–72
    [Google Scholar]
  20. Bloemendal J, DeMenocal P. 1989. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements. Nature 342:897–99
    [Google Scholar]
  21. Buizert C, Adrian B, Ahn J, Albert M, Alley R et al. 2015. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520:661–64
    [Google Scholar]
  22. Buizert C, Sigl M, Severi M, Markle BR, Wettstein JJ et al. 2018. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563:681–85
    [Google Scholar]
  23. Chalk TB, Hain MP, Foster GL, Rohling EJ, Sexton PF et al. 2017. Causes of ice age intensification across the Mid-Pleistocene Transition. PNAS 114:13114–19
    [Google Scholar]
  24. Clark PU, Alley RB, Pollard D. 1999. Northern Hemisphere ice-sheet influences on global climate change. Science 286:1104–11
    [Google Scholar]
  25. Clark PU, Archer D, Pollard D, Blum JD, Rial JA et al. 2006. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25:3150–84
    [Google Scholar]
  26. Clark PU, Pollard D. 1998. Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13:1–9
    [Google Scholar]
  27. Crowley TJ. 1995. Ice Age terrestrial carbon changes revisited. Glob. Biogeochem. Cycles 9:377–89
    [Google Scholar]
  28. Curry WB, Oppo DW. 2005. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20:PA1017
    [Google Scholar]
  29. de Garidel-Thoron T, Rosenthal Y, Bassinot F, Beaufort L 2005. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433:294–98
    [Google Scholar]
  30. DeMenocal P. 2004. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220:3–24
    [Google Scholar]
  31. Detlef H, Belt S, Sosdian S, Smik L, Lear C et al. 2018. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea. Nat. Commun. 9:941
    [Google Scholar]
  32. Dyez KA, Hönisch B, Schmidt GA. 2018. Early Pleistocene obliquity-scale pCO2 variability at ∼1.5 million years ago. Paleoceanogr. Paleoclimatol. 33:1270–91
    [Google Scholar]
  33. Dyez KA, Ravelo AC. 2013. Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing. Geology 41:23–26
    [Google Scholar]
  34. Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave IN et al. 2012. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337:704–9
    [Google Scholar]
  35. Etourneau J, Martinez P, Blanz T, Schneider R. 2009. Pliocene–Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology 37:871–74
    [Google Scholar]
  36. Etourneau J, Schneider R, Blanz T, Martinez P. 2010. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene–Pleistocene climate transition. Earth Planet. Sci. Lett. 297:103–10
    [Google Scholar]
  37. Farmer JR. 2022. Deepening the Late Quaternary's deep ocean carbon mysteries. Geophys. Res. Lett. 49:13e2022GL099161
    [Google Scholar]
  38. Farmer JR, Hönisch B, Haynes LL, Kroon D, Jung S et al. 2019. Deep Atlantic Ocean carbon storage and the rise of 100,000-year glacial cycles. Nat. Geosci. 12:355–60
    [Google Scholar]
  39. Ferrari R, Jansen MF, Adkins JF, Burke A, Stewart AL, Thompson AF. 2014. Antarctic sea ice control on ocean circulation in present and glacial climates. PNAS 111:8753–58
    [Google Scholar]
  40. Ford HL, Raymo ME. 2020. Regional and global signals in seawater δ18O records across the mid-Pleistocene transition. Geology 48:113–17
    [Google Scholar]
  41. Ford HL, Sosdian SM, Rosenthal Y, Raymo ME. 2016. Gradual and abrupt changes during the Mid-Pleistocene Transition. Quat. Sci. Rev. 148:222–33
    [Google Scholar]
  42. Gibbard PL, Head MJ, Walker MJ. 2010. Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. J. Quat. Sci. 25:96–102
    [Google Scholar]
  43. Gottschalk J, Skinner LC, Jaccard SL, Menviel L, Nehrbass-Ahles C, Waelbroeck C. 2020. Southern Ocean link between changes in atmospheric CO2 levels and northern-hemisphere climate anomalies during the last two glacial periods. Quat. Sci. Rev. 230:106067
    [Google Scholar]
  44. Grant K, Rohling E, Ramsey CB, Cheng H, Edwards R et al. 2014. Sea-level variability over five glacial cycles. Nat. Commun. 5:5076
    [Google Scholar]
  45. Hain MP, Sigman DM, Haug GH. 2010. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model. Glob. Biogeochem. Cycles 24:GB4023
    [Google Scholar]
  46. Hasenfratz AP, Jaccard SL, Martínez-García A, Sigman DM, Hodell DA et al. 2019. The residence time of Southern Ocean surface waters and the 100,000-year ice age cycle. Science 363:1080–84
    [Google Scholar]
  47. Haug GH, Sigman DM, Tiedemann R, Pedersen TF, Sarnthein M. 1999. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401:779–82
    [Google Scholar]
  48. Hays JD, Imbrie J, Shackleton NJ. 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194:1121–32
    [Google Scholar]
  49. He F, Shakun JD, Clark PU, Carlson AE, Liu Z et al. 2013. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature 494:81–85
    [Google Scholar]
  50. Henehan MJ, Rae JW, Foster GL, Erez J, Prentice KC et al. 2013. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364:111–22
    [Google Scholar]
  51. Herbert T, de Boer P. 1994. Reading orbital signals distorted by sedimentation: models and examples. Orbital Forcing and Cyclic Sequences PL de Boer, DG Smith 483–507. Oxford, UK: Blackwell
    [Google Scholar]
  52. Herbert TD, Cleaveland Peterson L, Lawrence KT, Liu Z 2010. Tropical ocean temperature over the past 3.5 million years. Science 328:1530–34
    [Google Scholar]
  53. Higgins JA, Kurbatov AV, Spaulding NE, Brook E, Introne DS et al. 2015. Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. PNAS 112:6887–91
    [Google Scholar]
  54. Hilgen FJ. 1991. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary. Earth Planet. Sci. Lett. 107:349–68
    [Google Scholar]
  55. Hinnov LA, Hilgen FJ 2012. Cyclostratigraphy and astrochronology. The Geologic Time Scale FM Gradstein, JG Ogg, MD Schmitz, GM Ogg 63–83. Boston: Elsevier
    [Google Scholar]
  56. Hodell DA, Channell JET. 2016. Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate. Clim. Past 12:1805–28
    [Google Scholar]
  57. Hodell DA, Channell JET, Curtis JH, Romero OE, Röhl U. 2008. Ca/Sr and Si/Sr ratios of IODP Site 303-U1308 samples. PANGAEA https://doi.org/10.1594/PANGAEA.831737
    [Google Scholar]
  58. Hodell DA, Charles CD, Sierro FJ. 2001. Late Pleistocene evolution of the ocean's carbonate system. Earth Planet. Sci. Lett. 192:109–24
    [Google Scholar]
  59. Hodell DA, Venz-Curtis KA. 2006. Late Neogene history of deepwater ventilation in the Southern Ocean. Geochem. Geophys. Geosyst. 7:Q09001
    [Google Scholar]
  60. Hönisch B, Hemming NG, Archer D, Siddall M, McManus JF. 2009. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324:1551–54
    [Google Scholar]
  61. Hoogakker B, Rohling E, Palmer M, Tyrrell T, Rothwell R. 2006. Underlying causes for long-term global ocean δ13C fluctuations over the last 1.20 Myr. Earth Planet. Sci. Lett. 248:15–29
    [Google Scholar]
  62. Huybers P. 2011. Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature 480:229–32
    [Google Scholar]
  63. Huybers P, Aharonson O. 2010. Orbital tuning, eccentricity, and the frequency modulation of climatic precession. Paleoceanography 25:PA4228
    [Google Scholar]
  64. Huybers P, Denton G. 2008. Antarctic temperature at orbital timescales controlled by local summer duration. Nat. Geosci. 1:787–92
    [Google Scholar]
  65. Huybers P, Tziperman E. 2008. Integrated summer insolation forcing and 40,000-year glacial cycles: the perspective from an ice-sheet/energy-balance model. Paleoceanography 23:PA1208
    [Google Scholar]
  66. Huybers P, Wunsch C. 2005. Obliquity pacing of the late Pleistocene glacial terminations. Nature 434:491–94
    [Google Scholar]
  67. Imbrie J, Berger A, Boyle E, Clemens S, Duffy A et al. 1993. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography 8:699–735
    [Google Scholar]
  68. Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC et al. 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Milankovitch and Climate, Vol. 1 AL Berger 269–305. Norwell, MA: D. Reidel
    [Google Scholar]
  69. Imbrie J, Imbrie JZ. 1980. Modeling the climatic response to orbital variations. Science 207:943–53
    [Google Scholar]
  70. Jaccard SL, Hayes CT, Martínez-Garcia A, Hodell DA, Anderson RF et al. 2013. Two modes of change in Southern Ocean productivity over the past million years. Science 339:1419–23
    [Google Scholar]
  71. Jacobel AW, Anderson RF, Jaccard SL, McManus JF, Pavia FJ, Winckler G. 2020. Deep Pacific storage of respired carbon during the last ice age: perspectives from bottom water oxygen reconstructions. Quat. Sci. Rev. 230:106065
    [Google Scholar]
  72. Jin F-F, Neelin JD, Ghil M 1994. El Nino on the devil's staircase: annual subharmonic steps to chaos. Science 264:70–72
    [Google Scholar]
  73. Kawamura K, Parrenin F, Lisiecki L, Uemura R, Vimeux F et al. 2007. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448:912–16
    [Google Scholar]
  74. Keeling RF, Stephens BB. 2001. Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography 16:112–31
    [Google Scholar]
  75. Köhler P, Van de Wal RSW. 2020. Interglacials of the Quaternary defined by northern hemispheric land ice distribution outside of Greenland. Nat. Commun. 11:5124
    [Google Scholar]
  76. Laepple T, Werner M, Lohmann G. 2011. Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales. Nature 471:91–94
    [Google Scholar]
  77. Lambert F, Delmonte B, Petit JR, Bigler M, Kaufmann PR et al. 2008. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:616–19
    [Google Scholar]
  78. Lambert F, Kug JS, Park RJ, Mahowald N, Winckler G et al. 2013. The role of mineral-dust aerosols in polar temperature amplification. Nat. Clim. Change 3:487–91
    [Google Scholar]
  79. Lamy F, Gersonde R, Winckler G, Esper O, Jaeschke A et al. 2014. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 343:403–7
    [Google Scholar]
  80. Lang N, Wolff EW. 2011. Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Clim. Past 7:361–80
    [Google Scholar]
  81. Lawrence KT, Liu Z, Herbert TD. 2006. Evolution of the Eastern Tropical Pacific through Plio-Pleistocene glaciation. Science 312:79–83
    [Google Scholar]
  82. Lawrence KT, Sosdian S, White H, Rosenthal Y. 2010. North Atlantic climate evolution through the Plio-Pleistocene climate transitions. Earth Planet. Sci. Lett. 300:329–42
    [Google Scholar]
  83. Li XC, Holland DM, Gerber EP, Yoo C. 2014. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505:538–42
    [Google Scholar]
  84. Liautaud P, Huybers P. 2021. Increased sea level sensitivity to CO2 forcing across the middle Pleistocene transition from ice-albedo and ice-volume nonlinearities. J. Clim. 34:9693–709
    [Google Scholar]
  85. Liautaud PR, Hodell DA, Huybers PJ. 2020. Detection of significant climatic precession variability in early Pleistocene glacial cycles. Earth Planet. Sci. Lett. 536:116137
    [Google Scholar]
  86. Lisiecki L. 2014. Atlantic overturning responses to obliquity and precession over the last 3 Myr. Paleoceanography 29:71–86
    [Google Scholar]
  87. Lisiecki LE. 2010. Links between eccentricity forcing and the 100,000-year glacial cycle. Nat. Geosci. 3:349–52
    [Google Scholar]
  88. Lisiecki LE, Raymo M. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003
    [Google Scholar]
  89. Lisiecki LE, Raymo ME. 2007. Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 26:56–69
    [Google Scholar]
  90. Liu Z, Herbert TD. 2004. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427:720–23
    [Google Scholar]
  91. Maasch K. 1988. Statistical detection of the mid-Pleistocene transition. Clim. Dyn. 2:133–43
    [Google Scholar]
  92. Maasch KA, Saltzman B. 1990. A low-order dynamical model of global climatic variability over the full Pleistocene. J. Geophys. Res. 95:D21955–63
    [Google Scholar]
  93. Marinov I, Gnanadesikan A, Sarmiento JL, Toggweiler JR, Follows M, Mignone BK. 2008. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Glob. Biogeochem. Cycles 22:GB3007
    [Google Scholar]
  94. Martin JH. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13
    [Google Scholar]
  95. Martínez-Boti MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF et al. 2015. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518:49–54
    [Google Scholar]
  96. Martínez-Garcia A, Rosell-Mele A, Geibert W, Gersonde R, Masque P et al. 2009. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24:PA1207
    [Google Scholar]
  97. Martínez-Garcia A, Rosell-Melé A, Jaccard SL, Geibert W, Sigman DM, Haug GH. 2011. Southern Ocean dust–climate coupling over the past four million years. Nature 476:312–15
    [Google Scholar]
  98. Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC Jr., Shackleton NJ. 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 27:1–29
    [Google Scholar]
  99. Masson-Delmotte V, Stenni B, Pol K, Braconnot P, Cattani O et al. 2010. EPICA Dome C record of glacial and interglacial intensities. Quat. Sci. Rev. 29:113–28
    [Google Scholar]
  100. McClymont EL, Sosdian SM, Rosell-Melé A, Rosenthal Y. 2013. Pleistocene sea-surface temperature evolution: early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition. Earth-Sci. Rev. 123:173–93
    [Google Scholar]
  101. Medina-Elizalde M, Lea DW. 2005. The mid-Pleistocene transition in the tropical Pacific. Science 310:1009–12
    [Google Scholar]
  102. Mudelsee M, Raymo ME. 2005. Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography 20:PA4022
    [Google Scholar]
  103. Mudelsee M, Schulz M. 1997. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth Planet. Sci. Lett. 151:117–23
    [Google Scholar]
  104. Mudelsee M, Stattegger K. 1997. Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis. Geol. Rundsch. 86:499–511
    [Google Scholar]
  105. Naafs BDA, Hefter J, Acton G, Haug GH, Martínez-Garcia A et al. 2012. Strengthening of North American dust sources during the late Pliocene (2.7Ma). Earth Planet. Sci. Lett.317–318:8–19
    [Google Scholar]
  106. Naafs BDA, Voelker AHL, Karas C, Andersen N, Sierro FJ. 2020. Geochemical data from 3 different marine sediment cores of ODP, DSDP and IODP. PANGAEA https://doi.org/10.1594/PANGAEA.913056
    [Google Scholar]
  107. Paillard D. 1998. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature 391:378–81
    [Google Scholar]
  108. Paillard D. 2001. Glacial cycles: toward a new paradigm. Rev. Geophys. 39:325–46
    [Google Scholar]
  109. Park J, Maasch KA. 1993. Plio–Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records. J. Geophys. Res. 98:B1447–61
    [Google Scholar]
  110. Peterson L, Lawrence K, Herbert T, Caballero-Gill R, Wilson J et al. 2020. Plio-Pleistocene hemispheric (a)symmetries in the Northern and Southern Hemisphere midlatitudes. Paleoceanogr. Paleoclimatol. 35:e2019PA003720
    [Google Scholar]
  111. Pisias NG, Moore TC. 1981. The evolution of Pleistocene climate: a time-series approach. Earth Planet. Sci. Lett. 52:450–58
    [Google Scholar]
  112. Pöppelmeier F, Gutjahr M, Blaser P, Schulz H, Süfke F, Lippold J. 2021. Stable Atlantic deep water mass sourcing on glacial-interglacial timescales. Geophys. Res. Lett. 48:15e2021GL092722
    [Google Scholar]
  113. Portier AM, Thierens M, Martin EE, Hemming SR, Gombiner JH, Raymo ME. 2021. Late Pleistocene emergence of crystalline Canadian shield sources in sediments of the Northern Gulf of Mexico. Paleoceanogr. Paleoclimatol. 36:4e2020PA004082
    [Google Scholar]
  114. Prell WL. 1982. Oxygen and carbon isotope stratigraphy for the Quaternary of Hole 502b: evidence for two modes of isotopic variability. Initial Reports of the Deep Sea Drilling Project, Vol. 68 R Amidei, M Lee 455–64. Washington, DC: US Gov. Print. Off.
    [Google Scholar]
  115. Qin B, Jia Q, Xiong Z, Li T, Algeo TJ, Dang H. 2022. Sustained deep Pacific carbon storage after the Mid-Pleistocene Transition linked to enhanced Southern Ocean stratification. Geophys. Res. Lett. 49:e2021GL097121
    [Google Scholar]
  116. Ravelo A, Billups K, Dekens P, Herbert T, Lawrence K 2007. Onto the ice ages: proxy evidence for the onset of Northern Hemisphere glaciation. Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies M Williams, AM Haywood, FJ Gregory, DN Schmidt 563–73. London: Geol. Soc. Lond.
    [Google Scholar]
  117. Raymo M, Lisiecki L, Nisancioglu KH. 2006. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313:492–95
    [Google Scholar]
  118. Raymo ME. 1997. The timing of major climate terminations. Paleoceanography 12:577–85
    [Google Scholar]
  119. Raymo ME, Ganley K, Carter S, Oppo DW, McManus J. 1998. Millennial-scale climate instability during the early Pleistocene epoch. Nature 392:699–702
    [Google Scholar]
  120. Raymo ME, Nisancioglu KH. 2003. The 41 kyr world: Milankovitch's other unsolved mystery. Paleoceanography 18:1011
    [Google Scholar]
  121. Raymo ME, Oppo DW, Curry W. 1997. The Mid-Pleistocene climate transition: a deep sea carbon isotopic perspective. Paleoceanography 12:546–59
    [Google Scholar]
  122. Rodrigues T, Alonso-García M, Hodell DA, Rufino M, Naughton F et al. 2017. A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: a perspective from the Iberian Margin. Quat. Sci. Rev. 172:118–30
    [Google Scholar]
  123. Rodríguez-Sanz L, Graham Mortyn P, Martínez-Garcia A, Rosell-Melé A, Hall IR 2012. Glacial Southern Ocean freshening at the onset of the Middle Pleistocene Climate Transition. Earth Planet. Sci. Lett. 345–348:194–202
    [Google Scholar]
  124. Rohling EJ, Hibbert FD, Williams FH, Grant KM, Marino G et al. 2017. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176:1–28
    [Google Scholar]
  125. Ruddiman WF. 2003. Orbital insolation, ice volume, and greenhouse gases. Quat. Sci. Rev. 22:1597–629
    [Google Scholar]
  126. Ruddiman WF, Raymo M, McIntyre A. 1986. Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth Planet. Sci. Lett. 80:117–29
    [Google Scholar]
  127. Ruddiman WF, Raymo ME, Martinson DG, Clement BM, Backman J. 1989. Pleistocene evolution: northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4:353–412
    [Google Scholar]
  128. Ruggieri E, Herbert T, Lawrence KT, Lawrence CE. 2009. Change point method for detecting regime shifts in paleoclimatic time series: application to δ18O time series of the Plio-Pleistocene. Paleoceanography 24:PA1204
    [Google Scholar]
  129. Russon T, Elliot M, Sadekov A, Cabioch G, Corrège T, De Deckker P. 2011. The mid-Pleistocene transition in the subtropical southwest Pacific. Paleoceanography 26:PA1211
    [Google Scholar]
  130. Seki O, Foster GL, Schmidt DN, Mackensen A, Kawamura K, Pancost RD. 2010. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292:201–11
    [Google Scholar]
  131. Sexton PF, Barker S. 2012. Onset of ‘Pacific-style’ deep-sea sedimentary carbonate cycles at the mid-Pleistocene transition. Earth Planet. Sci. Lett. 321:81–94
    [Google Scholar]
  132. Shackleton N. 1977. Carbon 13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. The Fate of Fossil Fuel in the Oceans NR Andersen, A Malahoff 401–27. New York: Plenum
    [Google Scholar]
  133. Shackleton N, Berger A, Peltier W. 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edinb. Earth Sci. 81:251–61
    [Google Scholar]
  134. Shackleton NJ. 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289:1897–902
    [Google Scholar]
  135. Shackleton NJ, Backman J, Zimmerman H, Kent DV, Hall M et al. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620–23
    [Google Scholar]
  136. Shackleton NJ, Opdyke ND. 1973. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat. Res. 3:39–55
    [Google Scholar]
  137. Shakun JD. 2017. Modest global-scale cooling despite extensive early Pleistocene ice sheets. Quat. Sci. Rev. 165:25–30
    [Google Scholar]
  138. Shakun JD, Clark PU, He F, Marcott SA, Mix AC et al. 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54
    [Google Scholar]
  139. Shakun JD, Raymo ME, Lea DW. 2016. An early Pleistocene Mg/Ca-δ18O record from the Gulf of Mexico: evaluating ice sheet size and pacing in the 41-kyr world. Paleoceanography 31:1011–27
    [Google Scholar]
  140. Shoenfelt EM, Winckler G, Lamy F, Anderson RF, Bostick BC. 2018. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. PNAS 115:11180–85
    [Google Scholar]
  141. Sigman DM, Hain MP, Haug GH. 2010. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466:47–55
    [Google Scholar]
  142. Skinner LC, Scrivner AE, Vance D, Barker S, Fallon S, Waelbroeck C 2013. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 41:667–70
    [Google Scholar]
  143. Sosdian S, Rosenthal Y. 2009. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325:306–10
    [Google Scholar]
  144. Sun Y, An Z 2005. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau. J. Geophys. Res. 110:D23D23101
    [Google Scholar]
  145. Tachikawa K, Rapuc W, Vidal L, Dubois-Dauphin Q, Westerhold T et al. 2021. Eastern Atlantic deep-water circulation and carbon storage inferred from neodymium and carbon isotopic compositions over the past 1.1 million years. Quat. Sci. Rev. 252:106752
    [Google Scholar]
  146. Toggweiler J, Russell JL, Carson S 2006. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21:PA2005
    [Google Scholar]
  147. Tziperman E, Gildor H. 2003. On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography 18:1001
    [Google Scholar]
  148. Venz KA, Hodell DA. 2002. New evidence for changes in Plio–Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090. Palaeogeogr. Palaeoclimatol. Palaeoecol. 182:197–220
    [Google Scholar]
  149. von der Heydt AS, Ashwin P, Camp CD, Crucifix M, Dijkstra HA et al. 2021. Quantification and interpretation of the climate variability record. Glob. Planet. Change 197:103399
    [Google Scholar]
  150. Willeit M, Ganopolski A, Calov R, Brovkin V. 2019. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 5:eaav7337
    [Google Scholar]
  151. Winckler G, Anderson RF, Fleisher MQ, McGee D, Mahowald N. 2008. Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320:93–96
    [Google Scholar]
  152. Winckler G, Anderson RF, Schlosser P. 2005. Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition. Paleoceanography 20:PA4025
    [Google Scholar]
  153. Woodard SC, Rosenthal Y, Miller KG, Wright JD, Chiu BK, Lawrence KT. 2014. Antarctic role in Northern Hemisphere glaciation. Science 346:847–51
    [Google Scholar]
  154. Worne S, Stroynowski Z, Kender S, Swann GE. 2021. Sea-ice response to climate change in the Bering Sea during the Mid-Pleistocene Transition. Quat. Sci. Rev. 259:106918
    [Google Scholar]
  155. Yan Y, Bender ML, Brook EJ, Clifford HM, Kemeny PC et al. 2019. Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature 574:663–66
    [Google Scholar]
  156. Yehudai M, Kim J, Pena LD, Jaume-Seguí M, Knudson KP et al. 2021. Evidence for a Northern Hemispheric trigger of the 100,000-y glacial cyclicity. PNAS 118:e2020260118
    [Google Scholar]
  157. Yu J, Broecker WS. 2010. Comment on “Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. .” Science 328:1480
    [Google Scholar]
  158. Yu J, Menviel L, Jin ZD, Anderson RF, Jian Z et al. 2020. Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion. Nat. Geosci. 13:628–33
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-104209
Loading
/content/journals/10.1146/annurev-earth-032320-104209
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error