1932

Abstract

Sublithospheric diamonds and the inclusions they may carry crystallize in the asthenosphere, transition zone, or uppermost lower mantle (from 300 to ∼800 km), and are the deepest minerals so far recognized to form by plate tectonics. These diamonds are distinctive in their deformation features, low nitrogen content, and inclusions of these major mantle minerals: majoritic garnet, clinopyroxene, ringwoodite, CaSi perovskite, ferropericlase, and bridgmanite or their retrograde equivalents. The stable isotopic compositions of elements within these diamonds (δ11B, δ13C, δ15N) and their inclusions (δ18O, δ56Fe) are typically well outside normal mantle ranges, showing that these elements were either organic (C) or modified by seawater alteration (B, O, Fe) at relatively low temperatures. Metamorphic minerals in cold slabs are effective hosts that transport C as CO and H as HO, OH, or CH below the island arc and mantle wedge. Warming of the slab generates carbonatitic melts, supercritical aqueous fluids, or metallic liquids, forming three types of sublithospheric diamonds. Diamond crystallization occurs by movement and reduction of mobile fluids as they pass through host mantle via fractures—a process that creates chemical heterogeneity and may promote deep focus earthquakes. Geobarometry of majoritic garnet inclusions and diamond ages suggest upward transport, perhaps to the base of mantle lithosphere. From there, diamonds are carried to Earth's surface by eruptions of kimberlite magma. Mineral assemblages in sublithospheric diamonds directly trace Earth's deep volatile cycle, demonstrating how the hydrosphere of a rocky planet can connect to its solid interior.

  • ▪  Sublithospheric diamonds from the deep upper mantle, transition zone, and lower mantle host Earth's deepest obtainable mineral samples.
  • ▪  Low-temperature seawater alteration of the ocean floor captures organic and inorganic carbon at the surface eventually to become some of the most precious gem diamonds.
  • ▪  Subduction transports fluids in metamorphic minerals to great depth. Fluids released by slab heating migrate, react with host mantle to induce diamond crystallization, and may trigger earthquakes.
  • ▪  Sublithospheric diamonds are powerful tracers of subduction—a plate tectonic process that deeply recycles part of Earth's planetary volatile budget.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-105438
2024-07-23
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-032320-105438.html?itemId=/content/journals/10.1146/annurev-earth-032320-105438&mimeType=html&fmt=ahah

Literature Cited

  1. Akaogi M, Akimoto S. 1977.. Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. . Phys. Earth Planet. Inter. 15::90106
    [Crossref] [Google Scholar]
  2. Angel RJ, Alvaro M, Nestola F. 2018.. 40 years of mineral elasticity: a critical review and a new parameterisation of equations of state for mantle olivines and diamond inclusions. . Phys. Chem. Miner. 45::95113
    [Crossref] [Google Scholar]
  3. Angel RJ, Alvaro M, Nestola F. 2022.. Crystallographic methods for non-destructive characterization of mineral inclusions in diamonds. . Rev. Mineral. Geochem. 88::257305
    [Crossref] [Google Scholar]
  4. Angel RJ, Mazzucchelli ML, Alvaro M, Nestola F. 2017.. EosFit-Pinc: a simple GUI for host-inclusion elastic thermobarometry. . Am. Mineral. 102::195760
    [Crossref] [Google Scholar]
  5. Angel RJ, Mazzucchelli ML, Alvaro M, Nimis P, Nestola F. 2014.. Geobarometry from host-inclusion systems: the role of elastic relaxation. . Am. Mineral. 99::214649
    [Crossref] [Google Scholar]
  6. Anzolini C, Nestola F, Mazzucchelli ML, Alvaro M, Nimis P, et al. 2019.. Depth of diamond formation obtained from single periclase inclusions. . Geology 47::21922
    [Crossref] [Google Scholar]
  7. Anzolini C, Prencipe M, Alvaro M, Romano C, Vona A, et al. 2018.. Depth of formation of super-deep diamonds: Raman barometry of CaSiO3-walstromite inclusions. . Am. Mineral. 103::6974
    [Crossref] [Google Scholar]
  8. Armstrong LS, Walter MJ. 2012.. Tetragonal almandine pyrope phase (TAPP): retrograde Mg-perovskite from subducted oceanic crust?. Eur. J. Mineral. 24::58797
    [Crossref] [Google Scholar]
  9. Armstrong LS, Walter MJ, Tuff JR, Lord OT, Lennie AR, et al. 2012.. Perovskite phase relations in the system CaO-MgO-TiO2-SiO2 and implications for deep mantle lithologies. . J. Petrol. 53::61135
    [Crossref] [Google Scholar]
  10. Barcheck CG, Wiens DA, van Keken PE, Hacker BR. 2012.. The relationship of intermediate and deep-focus seismicity to the hydration and dehydration of subducting slabs. . Earth Planet. Sci. Lett. 349–350::15360
    [Crossref] [Google Scholar]
  11. Billen MI. 2020.. Deep slab seismicity limited by rate of deformation in the transition zone. . Sci. Adv. 6::eaaz7692
    [Crossref] [Google Scholar]
  12. Black ME. 2022.. Fleischer's Glossary of Mineral Species 2022. Québec, Can.:: Mineral. Assoc. Can.
    [Google Scholar]
  13. Bodinier JL, Godard M. 2014.. Orogenic, ophiolitic, and abyssal peridotites. . In Treatise on Geochemistry, Vol. 2, ed. RW Carlson , pp. 10367. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  14. Boyd SR, Mattey DP, Pillinger CT, Milledge HJ, Mendelssohn M, Seal M. 1987.. Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. . Earth Planet. Sci. Lett. 86::34153
    [Crossref] [Google Scholar]
  15. Breeding CM, Shigley JE. 2009.. The “type” classification system of diamonds and its importance in gemology. . Gems Gemol. 45::96111
    [Crossref] [Google Scholar]
  16. Brenker FE, Kaminsky F, Joswig W, Parsons I. 2002.. Polytypes of CaSiO3-walstromite in diamonds from Juína: an indicator of retrograde reaction from CaSiO3-perovskite?. Abstr. Gen. Meet. Int. Mineral. Assoc. 18::78
    [Google Scholar]
  17. Brenker FE, Vincze L, Vekemans B, Nasdala L, Stachel T, et al. 2005.. Detection of a Ca-rich lithology in the Earth's deep (>300 km) convecting mantle. . Earth Planet. Sci. Lett. 236::57987
    [Crossref] [Google Scholar]
  18. Brey GP, Bulatov V, Girnis A, Harris JW, Stachel T. 2004.. Ferropericlase—a lower mantle phase in the upper mantle. . Lithos 77::65563
    [Crossref] [Google Scholar]
  19. Bulanova GP, Walter MJ, Smith CB, Kohn SC, Armstrong LS, et al. 2010.. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juína, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. . Contrib. Mineral. Petrol. 160::489510
    [Crossref] [Google Scholar]
  20. Burnham AD, Thomson AR, Bulanova GP, Kohn SC, Smith CB, Walter MJ. 2015.. Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. . Earth Planet. Sci. Lett. 432::37480
    [Crossref] [Google Scholar]
  21. Cannaò E, Milani S, Merlini M, Tiepolo M, Fumagalli P. 2023.. Phase-A as boron carrier in the Earth's interior. . Lithos 452::107211
    [Crossref] [Google Scholar]
  22. Cartigny P. 2005.. Stable isotopes and the origin of diamond. . Elements 1::7984
    [Crossref] [Google Scholar]
  23. Cartigny P, Harris JW, Phillips D, Girard M, Javoy M. 1998.. Subduction-related diamonds? The evidence for a mantle-derived origin from δ13C–δ15N determinations. . In The Degassing of the Earth, ed. MR Carroll, SC Kohn, BJ Wood , pp. 14759. Amsterdam:: Elsevier
    [Google Scholar]
  24. Cartigny P, Marty B. 2013.. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection. . Elements 9::35966
    [Crossref] [Google Scholar]
  25. Cartigny P, Palot M, Thomassot E, Harris JW. 2014.. Diamond formation: a stable isotope perspective. . Annu. Rev. Earth Planet. Sci. 42::699732
    [Crossref] [Google Scholar]
  26. Collerson KD, Williams Q, Kamber BS, Omori S, Arai H, Ohtani E. 2010.. Majoritic garnet: a new approach to pressure estimation of shock events in meteorites and the encapsulation of sub-lithospheric inclusions in diamond. . Geochim. Cosmochim. Acta 74::593957
    [Crossref] [Google Scholar]
  27. Craig H. 1953.. The geochemistry of the stable carbon isotopes. . Geochim. Cosmochim. Acta 3::5392
    [Crossref] [Google Scholar]
  28. Dauphas N, John SG, Rouxel O. 2017.. Iron isotope systematics. . Rev. Mineral. Geochem. 82::415510
    [Crossref] [Google Scholar]
  29. Davies RM, Griffin WL, Pearson NJ, Andrew AS, Doyle BJ, O'Reilly SY. 1999.. Diamonds from the deep: pipe DO-27, Slave Craton, Canada. . Int. Kimberl. Conf. Ext. Abstr. 7::17072
    [Google Scholar]
  30. Deines P. 1980.. The carbon isotopic composition of diamonds; relationship to diamond shape, color, occurrence and vapor composition. . Geochim. Cosmochim. Acta 44::94362
    [Crossref] [Google Scholar]
  31. Deschamps F, Godard M, Guillot S, Hattori K. 2013.. Geochemistry of subduction zone serpentinites: a review. . Lithos 178::96127
    [Crossref] [Google Scholar]
  32. Dixon JE, Bindeman IN, Kingsley RH, Simons KK, Roux PJL, et al. 2017.. Light stable isotopic compositions of enriched mantle sources: resolving the dehydration paradox. . Geochem. Geophys. Geosyst. 18::380139
    [Crossref] [Google Scholar]
  33. Eaton-Magana S, Ardon T, Smit KV, Breeding CM, Shigley JE. 2019.. Natural-color pink, purple, red, and brown diamonds: band of many colors. . Gems Gemol. 54::35277
    [Google Scholar]
  34. Faccenda M. 2014.. Water in the slab: a trilogy. . Tectonophysics 614::130
    [Crossref] [Google Scholar]
  35. Farquhar J, Wing BA, McKeegan KD, Harris JW, Cartigny P, Thiemens MH. 2002.. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. . Science 298::236972
    [Crossref] [Google Scholar]
  36. Fei Y, Li J, Bertka CM, Prewitt CT. 2000.. Structure type and bulk modulus of Fe3S, a new iron-sulfur compound. . Am. Mineral. 85::183033
    [Crossref] [Google Scholar]
  37. Fei Y, Wang Y, Finger LW. 1996.. Maximum solubility of FeO in (Mg, Fe)SiO3-perovskite as a function of temperature at 26 GPa: implication for FeO content in the lower mantle. . J. Geophys. Res. 101:(B5):1152530
    [Crossref] [Google Scholar]
  38. Finger LW, Conrad PG. 2000.. The crystal structure of “tetragonal almandine-pyrope phase” (TAPP): a reexamination. . Am. Mineral. 85::18047
    [Crossref] [Google Scholar]
  39. Frost DJ, McCammon CA. 2008.. The redox state of Earth's mantle. . Annu. Rev. Earth Planet. Sci. 36::389420
    [Crossref] [Google Scholar]
  40. Fumagalli P, Poli S. 2005.. Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. . J. Petrol. 46::55578
    [Crossref] [Google Scholar]
  41. Gaillou E, Post JE, Rost D, Butler JE. 2012.. Boron in natural type IIb blue diamonds: chemical and spectroscopic measurements. . Am. Mineral. 97::118
    [Crossref] [Google Scholar]
  42. Galimov EM. 1985.. The relation between formation conditions and variations in isotope composition of diamonds. . Geochem. Int. 22::11842
    [Google Scholar]
  43. Galimov EM, Kaminskiy FV, Ivanovskaya IN. 1978.. Carbon-isotope compositions of diamonds from the Urals, Timan, Sayan, the Ukraine, and elsewhere. . Geochem. Int. 15::1118
    [Google Scholar]
  44. Genzel PT, Pamato MG, Novella D, Santello L, Lorenzon S, et al. 2023.. Geobarometric evidence for a LM/TZ origin of CaSiO3 in a sublithospheric diamond. . Geochem. Perspect. Lett. 25::4145
    [Crossref] [Google Scholar]
  45. Gernon TM, Jones SM, Brune S, Hincks TK, Palmer MR, et al. 2023.. Rift-induced disruption of cratonic keels drives kimberlite volcanism. . Nature 620::34450
    [Crossref] [Google Scholar]
  46. Giuliani A, Pearson DG. 2019.. Kimberlites: from deep Earth to diamond mines. . Elements 15::37780
    [Crossref] [Google Scholar]
  47. Graham DW. 2002.. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. . Rev. Mineral. Geochem. 47::247317
    [Crossref] [Google Scholar]
  48. Green BL, Collins AT, Breeding CM. 2022.. Diamond spectroscopy, defect centers, color, and treatments. . Rev. Mineral. Geochem. 88::63788
    [Crossref] [Google Scholar]
  49. Green HW, Chen W-P, Brudzinski MR. 2010.. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. . Nature 467::82831
    [Crossref] [Google Scholar]
  50. Gurney JJ, Helmstaedt H, Richardson SH, Shirey SB. 2010.. Diamonds through time. . Econ. Geol. 105::689712
    [Crossref] [Google Scholar]
  51. Haggerty SE, Sautter V. 1990.. Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. . Science 248::99396
    [Crossref] [Google Scholar]
  52. Hanley PL, Kiflawi I, Lang AR. 1977.. On topographically identifiable sources of cathodoluminescence in natural diamonds. . Philos. Trans. R. Soc. A 284::32968
    [Google Scholar]
  53. Harris J, Hutchison MT, Hursthouse M, Light M, Harte B. 1997.. A new tetragonal silicate mineral occurring as inclusions in lower-mantle diamonds. . Nature 387::48688
    [Crossref] [Google Scholar]
  54. Harris JW. 1992.. Diamond geology. . In The Properties of Natural and Synthetic Diamond, ed. JE Field , pp. 34593. London:: Academic
    [Google Scholar]
  55. Harris JW, Smit KV, Fedortchouk Y, Moore M. 2022.. Morphology of monocrystalline diamond and its inclusions. . Rev. Mineral. Geochem. 88::11966
    [Crossref] [Google Scholar]
  56. Harte B. 2010.. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. . Mineral. Mag. 74::189215
    [Crossref] [Google Scholar]
  57. Harte B, Harris JW. 1994.. Lower mantle mineral associations preserved in diamonds. . Mineral. Mag. 58A::38485
    [Crossref] [Google Scholar]
  58. Harte B, Harris JW, Hutchison MT, Watt GR, Wilding MC. 1999.. Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. . In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, ed. Y Fei, M Bertka Constance, O Mysen Bjorn , pp. 12553. Houston, TX:: Geochem. Soc.
    [Google Scholar]
  59. Harte B, Hudson NFC. 2013.. Mineral associations in diamonds from the lowermost upper mantle and uppermost lower mantle. . In Proceedings of 10th International Kimberlite Conference, Vol. 1, ed. DG Pearson, HS Grütter, JW Harris, BA Kjarsgaard, H O'Brien , et al., pp. 23553. New Delhi:: Springer
    [Google Scholar]
  60. Harte B, Hutchison MT, Harris JW. 1994.. Trace element characteristics of the lower mantle: an ion probe study of inclusions in diamonds from Sao Luiz, Brazil. . Mineral. Mag. 58A::38687
    [Crossref] [Google Scholar]
  61. Harte B, Richardson SH. 2012.. Mineral inclusions in diamonds track the evolution of a Mesozoic subducted slab beneath West Gondwanaland. . Gondwana Res. 21::23645
    [Crossref] [Google Scholar]
  62. Hayes GP, Moore GL, Portner DE, Hearne M, Flamme H, et al. 2018.. Slab2, a comprehensive subduction zone geometry model. . Science 362::5861
    [Crossref] [Google Scholar]
  63. Hayman PC, Kopylova MG, Kaminsky FV. 2005.. Lower mantle diamonds from Rio Soriso (Juína area, Mato Grosso, Brazil). . Contrib. Mineral. Petrol. 149::43045
    [Crossref] [Google Scholar]
  64. Hazen RM, Jones AP, Baross JA, eds. 2013.. Carbon in Earth. Rev. Mineral. Geochem. Ser. 75. Chantilly, VA:: Mineral. Soc. Am.
    [Google Scholar]
  65. Hofmann AW. 2014.. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. . In Treatise on Geochemistry, Vol. 2, ed. RW Carlson , pp. 61102. Amsterdam:: Elsevier
    [Google Scholar]
  66. Howell D, Stachel T, Stern RA, Pearson DG, Nestola F, et al. 2020.. Deep carbon through time: Earth's diamond record and its implications for carbon cycling and fluid speciation in the mantle. . Geochim. Cosmochim. Acta 275::99122
    [Crossref] [Google Scholar]
  67. Hutchison MT, Dale CW, Nowell GM, Laiginhas FA, Pearson DG. 2012.. Age constraints on ultra-deep mantle petrology shown by Juína diamonds. . Int. Kimberl. Conf. Ext. Abstr. 10::10IKC-184
    [Google Scholar]
  68. Hutchison MT, Harte B, Harris JW, Fitzsimmons I. 1995.. Inferences on the exhumation history of lower mantle inclusions in diamonds. . Int. Kimberl. Conf. Ext. Abstr. 6::24244
    [Google Scholar]
  69. Hutchison MT, Hursthouse MB, Light ME. 2001.. Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. . Contrib. Mineral. Petrol. 142::11926
    [Crossref] [Google Scholar]
  70. Ickert RB, Stachel T, Stern RA, Harris JW. 2015.. Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds. . Geochem. Perspect. Lett. 1::6574
    [Google Scholar]
  71. Ishii T, Kojitani H, Akaogi M. 2018.. Phase relations and mineral chemistry in pyrolitic mantle at 1600–2200°C under pressures up to the uppermost lower mantle: phase transitions around the 660-km discontinuity and dynamics of upwelling hot plumes. . Phys. Earth Planet. Inter. 274::12737
    [Crossref] [Google Scholar]
  72. Ishii T, Kojitani H, Akaogi M. 2019.. Phase relations of harzburgite and MORB up to the uppermost lower mantle conditions: precise comparison with pyrolite by multisample cell high-pressure experiments with implication to dynamics of subducted slabs. . J. Geophys. Res. Solid Earth 124::3491507
    [Crossref] [Google Scholar]
  73. Iwamori H. 2004.. Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O. . Earth Planet. Sci. Lett. 227::5771
    [Crossref] [Google Scholar]
  74. Jackson MG, Macdonald FA. 2022.. Hemispheric geochemical dichotomy of the mantle is a legacy of Austral supercontinent assembly and onset of deep continental crust subduction. . AGU Adv. 3::e2022AV000664
    [Crossref] [Google Scholar]
  75. Jordan TH. 1978.. Composition and development of continental tectosphere. . Nature 274::54448
    [Crossref] [Google Scholar]
  76. Joswig W, Stachel T, Harris JW, Baur WH, Brey GP. 1999.. New Ca-silicate inclusions in diamonds—tracers from the lower mantle. . Earth Planet. Sci. Lett. 173::16
    [Crossref] [Google Scholar]
  77. Kaminsky F. 2012.. Mineralogy of the lower mantle: a review of “super deep” mineral inclusions in diamond. . Earth-Sci. Rev. 110::12747
    [Crossref] [Google Scholar]
  78. Kaminsky F, Wirth R, Matsyuk S, Schreiber A, Thomas R. 2009.. Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. . Mineral. Mag. 73::797816
    [Crossref] [Google Scholar]
  79. Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan BGK, Shiryaev AA. 2001.. Superdeep diamonds form the Juína area, Mato Grosso State, Brazil. . Contrib. Mineral. Petrol. 140::73453
    [Crossref] [Google Scholar]
  80. Kelemen PB, Manning CE. 2015.. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. . PNAS 112::39974006
    [Crossref] [Google Scholar]
  81. Kendrick MA, Hémond C, Kamenetsky VS, Danyushevsky L, Devey CW, et al. 2017.. Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere. . Nat. Geosci. 10::22229
    [Crossref] [Google Scholar]
  82. Kendrick MA, Marks MAW, Godard M. 2022.. Halogens in serpentinised-troctolites from the Atlantis Massif: implications for alteration and global volatile cycling. . Contrib. Mineral. Petrol. 177::110
    [Crossref] [Google Scholar]
  83. Kennett BLN, Engdahl ER, Buland R. 1995.. Constraints on seismic velocities in the Earth from traveltimes. . Geophys. J. Int. 122::10824
    [Crossref] [Google Scholar]
  84. Kesson SE, Fitzgerald JD. 1992.. Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowüstite: implications for the origin of inclusions in diamond and the composition of the lower mantle. . Earth Planet. Sci. Lett. 111::22940
    [Crossref] [Google Scholar]
  85. Kiseeva ES, Korolev N, Koemets I, Zedgenizov DA, Unitt R, et al. 2022.. Subduction-related oxidation of the sublithospheric mantle evidenced by ferropericlase and magnesiowüstite diamond inclusions. . Nat. Commun. 13::7517
    [Crossref] [Google Scholar]
  86. Kiseeva ES, Litasov KD, Yaxley GM, Ohtani E, Kamenetsky VS. 2013.. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. . J. Petrol. 54::155583
    [Crossref] [Google Scholar]
  87. Kjarsgaard BA, de Wit M, Heaman LM, Pearson DG, Stiefenhofer J, et al. 2022.. A review of the geology of global diamond mines and deposits. . Rev. Mineral. Geochem. 88::1117
    [Crossref] [Google Scholar]
  88. Komabayashi T, Omori S. 2006.. Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35 GPa, 1600°C: implications for water circulation in the Earth's deep mantle. . Phys. Earth Planet. Inter. 156::89107
    [Crossref] [Google Scholar]
  89. Kurz MD, Gurney JJ, Jenkins WJ, Lott DE III. 1987.. Helium isotopic variability within single diamonds from the Orapa kimberlite pipe. . Earth Planet. Sci. Lett. 86::5768
    [Crossref] [Google Scholar]
  90. Li C, Van der Hilst RD, Engdahl ER, Burdick S. 2008.. A new global model for P wave speed variations in Earth's mantle. . Geochem. Geophys. Geosyst. 9::Q05108
    [Google Scholar]
  91. Li K, Li L, Pearson DG, Stachel T. 2019.. Altered igneous oceanic crust dominates deep carbon recycling. . Earth Planet. Sci. Lett. 516::190201
    [Crossref] [Google Scholar]
  92. Litasov KD, Shatskiy A, Ohtani E. 2014.. Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3–16 GPa. . Earth Planet. Sci. Lett. 391::8799
    [Crossref] [Google Scholar]
  93. Liu L-G. 1975.. Post-oxide phases of forsterite and enstatite. . Geophys. Res. Lett. 2::41719
    [Crossref] [Google Scholar]
  94. Liu L-G, Ringwood AE. 1975.. Synthesis of a perovskite-type polymorph of CaSiO3. . Earth Planet. Sci. Lett. 28::20911
    [Crossref] [Google Scholar]
  95. Lowry D, Mattey DP, Harris JW. 1999.. Oxygen isotope composition of syngenetic inclusions in diamond from the Finsch Mine, RSA. . Geochim. Cosmochim. Acta 63::182536
    [Crossref] [Google Scholar]
  96. Luth RW, Palyanov YN, Bureau H. 2022.. Experimental petrology applied to natural diamond growth. . Rev. Mineral. Geochem. 88::755808
    [Crossref] [Google Scholar]
  97. Luth RW, Stachel T. 2014.. The buffering capacity of lithospheric mantle: implications for diamond formation. . Contrib. Mineral. Petrol. 168::1083
    [Crossref] [Google Scholar]
  98. Marschall HR. 2018.. Boron isotopes in the ocean floor realm and the mantle. . In Boron Isotopes: The Fifth Element, ed. HR Marschall, G Foster , pp. 189215. Cham, Switz.:: Springer
    [Google Scholar]
  99. Marty B, Dauphas N. 2003.. The nitrogen record of crust–mantle interaction and mantle convection from Archean to present. . Earth Planet. Sci. Lett. 206::397410
    [Crossref] [Google Scholar]
  100. Mazza SE, Gazel E, Bizimis M, Moucha R, Béguelin P, et al. 2019.. Sampling the volatile-rich transition zone beneath Bermuda. . Nature 569::398403
    [Crossref] [Google Scholar]
  101. McDonough WF, Sun SS. 1995.. The composition of the Earth. . Chem. Geol. 120::22353
    [Crossref] [Google Scholar]
  102. McNeill J, Pearson DG, Klein-BenDavid O, Nowell GM, Ottley CJ, Chinn I. 2009.. Quantitative analysis of trace element concentrations in some gem-quality diamonds. . J. Phys. 21::364207
    [Google Scholar]
  103. Melekhova E, Schmidt MW, Ulmer P, Pettke T. 2007.. The composition of liquids coexisting with dense hydrous magnesium silicates at 11–13.5 GPa and the endpoints of the solidi in the MgO-SiO2-H2O system. . Geochim. Cosmochim. Acta 71::334860
    [Crossref] [Google Scholar]
  104. Meyer NA, Stachel T, Pearson DG, Stern RA, Harris JW, Walter MJ. 2023.. Diamonds reveal subducted slab harzburgite in the lower mantle. . Geology 51::23841
    [Crossref] [Google Scholar]
  105. Mitchell RH, Giuliani A, O'Brien H. 2019.. What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. . Elements 15::38186
    [Crossref] [Google Scholar]
  106. Moore RO, Gurney JJ. 1985.. Pyroxene solid solution in garnets included in diamond. . Nature 318::55355
    [Crossref] [Google Scholar]
  107. Moore RO, Otter ML, Rickard RS, Harris JW, Gurney JJ. 1986.. The occurrence of moissanite and ferro-periclase as inclusions in diamond. . Int. Kimberl. Conf. Ext. Abstr. 4::40911
    [Google Scholar]
  108. Müller RD, Flament N, Cannon J, Tetley MG, Williams SE, et al. 2022.. A tectonic-rules-based mantle reference frame since 1 billion years ago—implications for supercontinent cycles and plate-mantle system evolution. . Solid Earth 13::112759
    [Crossref] [Google Scholar]
  109. Müller RD, Sdrolias M, Gaina C, Roest WR. 2008.. Age, spreading rates, and spreading asymmetry of the world's ocean crust. . Geochem. Geophys. Geosyst. 9::Q04006
    [Crossref] [Google Scholar]
  110. Nestola F, Burnham AD, Peruzzo L, Tauro L, Alvaro M, et al. 2016.. Tetragonal almandine-pyrope phase, TAPP: finally a name for it, the new mineral jeffbenite. . Mineral. Mag. 80::121932
    [Crossref] [Google Scholar]
  111. Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson DG, et al. 2018a.. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. . Nature 555::23741
    [Crossref] [Google Scholar]
  112. Nestola F, Prencipe M, Nimis P, Sgreva N, Perritt SH, et al. 2018b.. Toward a robust elastic geobarometry of kyanite inclusions in eclogitic diamonds. . J. Geophys. Res. Solid Earth 123::641123
    [Crossref] [Google Scholar]
  113. Nestola F, Regier ME, Luth RW, Pearson DG, Stachel T, et al. 2023.. Extreme redox variations in a superdeep diamond from a subducted slab. . Nature 613::8589
    [Crossref] [Google Scholar]
  114. Newton MG, Melton CE, Giardini AA. 1977.. Mineral inclusions in an Arkansas diamond. . Am. Mineral. 62::58386
    [Google Scholar]
  115. Nimis P. 2022.. Pressure and temperature data for diamonds. . Rev. Mineral. Geochem. 88::53365
    [Crossref] [Google Scholar]
  116. Nimis P, Alvaro M, Nestola F, Angel RJ, Marquardt K, et al. 2016.. First evidence of hydrous silicic fluid films around solid inclusions in gem-quality diamonds. . Lithos 260::38489
    [Crossref] [Google Scholar]
  117. Ohtani E. 2015.. Hydrous minerals and the storage of water in the deep mantle. . Chem. Geol. 418::615
    [Crossref] [Google Scholar]
  118. Orcutt BN, Daniel I, Dasgupta R, eds. 2020.. Deep Carbon: Past to Present. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  119. Oxburgh ER, Parmentier EM. 1978.. Thermal processes in the formation of continental lithosphere. . Philos. Trans. R. Soc. A 288::41529
    [Google Scholar]
  120. Ozima M, Zashu S. 1983.. Primitive helium in diamonds. . Science 219::106768
    [Crossref] [Google Scholar]
  121. Pabst S, Zack T, Savov I, Ludwig T, Rost D, Vicenzi E. 2011.. Evidence for boron incorporation into the serpentine crystal structure. . Am. Mineral. 96::111219
    [Crossref] [Google Scholar]
  122. Palot M, Cartigny P, Harris JW, Kaminsky FV, Stachel T. 2012.. Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. . Earth Planet. Sci. Lett. 357–358::17993
    [Crossref] [Google Scholar]
  123. Palot M, Jacobsen SD, Townsend JP, Nestola F, Marquardt K, et al. 2016.. Evidence for H2O-bearing fluids in the lower mantle from diamond inclusions. . Lithos 265::23743
    [Crossref] [Google Scholar]
  124. Palot M, Pearson DG, Stachel T, Stern RA, Pioufle AL, et al. 2017.. The transition zone as a host for recycled volatiles: evidence from nitrogen and carbon isotopes in ultra-deep diamonds from Monastery and Jagersfontein (South Africa). . Chem. Geol. 466::73349
    [Crossref] [Google Scholar]
  125. Palot M, Pearson DG, Stern RA, Stachel T, Harris JW. 2014.. Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea). . Geochim. Cosmochim. Acta 139::2646
    [Crossref] [Google Scholar]
  126. Pawley A, Chinnery NJ, Clark SM, Walter MJ. 2011.. Experimental study of the dehydration of 10-Å phase, with implications for its H2O content and stability in subducted lithosphere. . Contrib. Mineral. Petrol. 162::127989
    [Crossref] [Google Scholar]
  127. Pearson DG. 1999.. The age of continental roots. . Lithos 48::17194
    [Crossref] [Google Scholar]
  128. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, et al. 2014.. Hydrous mantle transition zone indicated by ringwoodite included within diamond. . Nature 507::22124
    [Crossref] [Google Scholar]
  129. Pearson DG, Scott JM, Liu J, Schaeffer A, Wang LH, et al. 2021.. Deep continental roots and cratons. . Nature 596::199210
    [Crossref] [Google Scholar]
  130. Pearson DG, Shirey SB. 1999.. Isotopic dating of diamonds. . In Application of Radiogenic Isotopes to Ore Deposit Research and Exploration, ed. DD Lambert, J Ruiz , pp. 14371. Boulder, CO:: Soc. Econ. Geol.
    [Google Scholar]
  131. Perry SN, Pigott JS, Panero WR. 2017.. Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth's lower mantle. . Am. Mineral. 102::32126
    [Crossref] [Google Scholar]
  132. Pokhilenko NP, Sobolev NV, Reutsky VN, Hall AE, Taylor LA. 2004.. Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. . Lithos 77::5767
    [Crossref] [Google Scholar]
  133. Poli S, Schmidt MW. 2002.. Petrology of subducted slabs. . Annu. Rev. Earth Planet. Sci. 30::20735
    [Crossref] [Google Scholar]
  134. Ragozin A, Zedgenizov D, Shatsky V, Kuper K, Kagi H. 2019.. Deformation features of super-deep diamonds. . Minerals 10::1832
    [Crossref] [Google Scholar]
  135. Regier ME, Pearson DG, Stachel T, Luth RW, Stern RA, Harris JW. 2020.. The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds. . Nature 585::23438
    [Crossref] [Google Scholar]
  136. Regier ME, Smit KV, Chalk TB, Stachel T, Stern RA, et al. 2023.. Boron isotopes in blue diamond record seawater-derived fluids in the lower mantle. . Earth Planet. Sci. Lett. 602::117923
    [Crossref] [Google Scholar]
  137. Richardson SH, Gurney JJ, Erlank AJ, Harris JW. 1984.. Origin of diamonds in old enriched mantle. . Nature 310::198202
    [Crossref] [Google Scholar]
  138. Ringwood AE. 1967.. The pyroxene-garnet transformation in the earth's mantle. . Earth Planet. Sci. Lett. 2::25563
    [Crossref] [Google Scholar]
  139. Ringwood AE. 1968.. Phase transformations in the mantle. . Earth Planet. Sci. Lett. 5::40112
    [Crossref] [Google Scholar]
  140. Ringwood AE. 1975.. Composition and Petrology of the Earth's Mantle. New York:: McGraw-Hill
    [Google Scholar]
  141. Ringwood AE. 1982.. Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal evolution. . J. Geol. 90::61143
    [Crossref] [Google Scholar]
  142. Ringwood AE. 1991.. Phase transformations and their bearing on the constitution and dynamics of the mantle. . Geochim. Cosmochim. Acta 55::2083110
    [Crossref] [Google Scholar]
  143. Ringwood AE, Major A. 1971.. Synthesis of majorite and other high pressure garnets and perovskites. . Earth Planet. Sci. Lett. 12::41118
    [Crossref] [Google Scholar]
  144. Rohrbach A, Schmidt MW. 2011.. Redox freezing and melting in the Earth's deep mantle resulting from carbon–iron redox coupling. . Nature 472::20912
    [Crossref] [Google Scholar]
  145. Sautter V, Haggerty SE, Field S. 1991.. Ultradeep (>300 kilometers) ultramafic xenoliths: petrological evidence from the transition zone. . Science 252::82730
    [Crossref] [Google Scholar]
  146. Schmandt B, Jacobsen SD, Becker TW, Liu Z, Dueker KG. 2014.. Dehydration melting at the top of the lower mantle. . Science 344::126568
    [Crossref] [Google Scholar]
  147. Schulze DJ, Harte B, Page FZ, Valley JW, Channer DMD, Jaques AL. 2013.. Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin. . Geology 41::45558
    [Crossref] [Google Scholar]
  148. Scott-Smith BH, Danchin RV, Harris JW, Stracke KJ. 1984.. Kimberlites near Orroroo, South Australia. . Dev. Petrol. 11::12142
    [Google Scholar]
  149. Shilobreeva S, Martinez I, Busigny V, Agrinier P, Laverne C. 2011.. Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. . Geochim. Cosmochim. Acta 75::223755
    [Crossref] [Google Scholar]
  150. Shirey SB, Cartigny P, Frost DJ, Keshav S, Nestola F, et al. 2013.. Diamonds and the geology of mantle carbon. . Rev. Mineral. Geochem. 75::355421
    [Crossref] [Google Scholar]
  151. Shirey SB, Richardson SH. 2011.. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. . Science 333::43436
    [Crossref] [Google Scholar]
  152. Shirey SB, Wagner LS, Walter MJ, Pearson DG, van Keken PE. 2021.. Slab transport of fluids to deep focus earthquake depths—thermal modeling constraints and evidence from diamonds. . AGU Adv. 2::e2020AV000304
    [Crossref] [Google Scholar]
  153. Smit KV, Shirey SB, Hauri EH, Stern RA. 2019.. Sulfur isotopes in diamonds reveal differences in continent construction. . Science 364::38385
    [Crossref] [Google Scholar]
  154. Smit KV, Shirey SB, Stern RA, Steele A, Wang W. 2016.. Diamond growth from C–H–N–O recycled fluids in the lithosphere: evidence from CH4 micro-inclusions and δ13C–δ15N–N content in Marange mixed-habit diamonds. . Lithos 265::6881
    [Crossref] [Google Scholar]
  155. Smit KV, Timmerman S, Aulbach S, Shirey SB, Richardson SH, et al. 2022.. Geochronology of diamonds. . Rev. Mineral. Geochem. 88::567636
    [Crossref] [Google Scholar]
  156. Smith EM, Krebs MY, Genzel P-T, Brenker FE. 2022.. Raman identification of inclusions in diamond. . Rev. Mineral. Geochem. 88::45173
    [Crossref] [Google Scholar]
  157. Smith EM, Ni P, Shirey SB, Richardson SH, Wang W, Shahar A. 2021.. Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor. . Sci. Adv. 7::eabe9773
    [Crossref] [Google Scholar]
  158. Smith EM, Shirey SB, Nestola F, Bullock ES, Wang J, et al. 2016.. Large gem diamonds from metallic liquid in Earth's deep mantle. . Science 354::14035
    [Crossref] [Google Scholar]
  159. Smith EM, Shirey SB, Richardson SH, Nestola F, Bullock ES, et al. 2018.. Blue boron-bearing diamonds from Earth's lower mantle. . Nature 560::8487
    [Crossref] [Google Scholar]
  160. Smith EM, Shirey SB, Wang W. 2017.. The very deep origin of the world's biggest diamonds. . Gems Gemol. 53::388403
    [Crossref] [Google Scholar]
  161. Stachel T. 2001.. Diamonds from the asthenosphere and the transition zone. . Eur. J. Mineral. 13::88392
    [Crossref] [Google Scholar]
  162. Stachel T. 2014.. Diamond. . In Geology of Gem Deposits, ed. LA Groat , pp. 128. Vancouver, Can.:: Mineral. Assoc. Can. , 2nd ed..
    [Google Scholar]
  163. Stachel T. 2021.. Diamond Inclusion Database: Borealis V2, University of Alberta, Edmonton, Can:. https://doi.org/10.7939/DVN/EJUE1G
    [Google Scholar]
  164. Stachel T, Aulbach S, Harris JW. 2022a.. Mineral inclusions in lithospheric diamonds. . Rev. Mineral. Geochem. 88::30791
    [Crossref] [Google Scholar]
  165. Stachel T, Brey G, Harris J. 2005.. Inclusions in sublithospheric diamonds: glimpses of deep Earth. . Elements 1::7378
    [Crossref] [Google Scholar]
  166. Stachel T, Brey GP, Harris JW. 2000a.. Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. . Contrib. Mineral. Petrol. 140::115
    [Crossref] [Google Scholar]
  167. Stachel T, Cartigny P, Chacko T, Pearson DG. 2022b.. Carbon and nitrogen in mantle-derived diamonds. . Rev. Mineral. Geochem. 88::80975
    [Crossref] [Google Scholar]
  168. Stachel T, Harris JW, Aulbach S, Deines P. 2002.. Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds. . Contrib. Mineral. Petrol. 142::46575
    [Crossref] [Google Scholar]
  169. Stachel T, Harris JW, Brey GP, Joswig W. 2000b.. Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. . Contrib. Mineral. Petrol. 140::1627
    [Crossref] [Google Scholar]
  170. Stachel T, Luth RW. 2015.. Diamond formation—where, when and how?. Lithos 220–223::20020
    [Crossref] [Google Scholar]
  171. Stagno V, Ojwang DO, McCammon CA, Frost DJ. 2013.. The oxidation state of the mantle and the extraction of carbon from Earth's interior. . Nature 493::8488
    [Crossref] [Google Scholar]
  172. Sverjensky DA, Huang F. 2015.. Diamond formation due to a pH drop during fluid–rock interactions. . Nat. Commun. 6::9702
    [Crossref] [Google Scholar]
  173. Syracuse EM, van Keken PE, Abers GA. 2010.. The global range of subduction zone thermal models. . Phys. Earth Planet. Inter. 183::7390
    [Crossref] [Google Scholar]
  174. Tackley PJ. 2012.. Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. . Earth-Sci. Rev. 110::125
    [Crossref] [Google Scholar]
  175. Takaoka N, Ozima M. 1978.. Rare gas isotopic compositions in diamonds. . Nature 271::4546
    [Crossref] [Google Scholar]
  176. Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP. 2005.. Subducting oceanic crust: the source of deep diamonds. . Geology 33::56568
    [Crossref] [Google Scholar]
  177. Tappert R, Tappert MC. 2011.. Diamonds in Nature: A Guide to Rough Diamonds. New York:: Springer
    [Google Scholar]
  178. Thomassot E, Cartigny P, Harris JW, Lorand JP, Rollion-Bard C, Chaussidon M. 2009.. Metasomatic diamond growth: a multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). . Earth Planet. Sci. Lett. 282::7990
    [Crossref] [Google Scholar]
  179. Thomson AR, Kohn SC, Bulanova GP, Smith CB, Araujo D, Walter MJ. 2014.. Origin of sub-lithospheric diamonds from the Juína-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. . Contrib. Mineral. Petrol. 168::1081
    [Crossref] [Google Scholar]
  180. Thomson AR, Kohn SC, Bulanova GP, Smith CB, Araujo DP, Walter MJ. 2016a.. Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juína-5 kimberlite: evidence for diamond growth from slab melts. . Lithos 265::10824
    [Crossref] [Google Scholar]
  181. Thomson AR, Kohn SC, Prabhu A, Walter MJ. 2021.. Evaluating the formation pressure of diamond-hosted majoritic garnets: a machine learning majorite barometer. . J. Geophys. Res. Solid Earth 126::e2020JB020604
    [Crossref] [Google Scholar]
  182. Thomson AR, Walter MJ, Kohn SC, Brooker RA. 2016b.. Slab melting as a barrier to deep carbon subduction. . Nature 529::7679
    [Crossref] [Google Scholar]
  183. Timmerman S, Honda M, Burnham AD, Amelin Y, Woodland S, et al. 2019a.. Primordial and recycled helium isotope signatures in the mantle transition zone. . Science 365::69294
    [Crossref] [Google Scholar]
  184. Timmerman S, Stachel T, Koornneef JM, Smit KV, Harlou R, et al. 2023.. Sublithospheric diamonds and the supercontinent cycle. . Nature 623::75256
    [Crossref] [Google Scholar]
  185. Timmerman S, Yeow H, Honda M, Howell D, Jaques AL, et al. 2019b.. U-Th/He systematics of fluid-rich ‘fibrous’ diamonds—evidence for pre- and syn-kimberlite eruption ages. . Chem. Geol. 515::2236
    [Crossref] [Google Scholar]
  186. Torsvik TH, Cocks LRM. 2013.. Gondwana from top to base in space and time. . Gondwana Res. 24::9991030
    [Crossref] [Google Scholar]
  187. Tschauner O, Huang S, Greenberg E, Prakapenka VB, Ma C, et al. 2018.. Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth's deep mantle. . Science 359::113639
    [Crossref] [Google Scholar]
  188. van Keken PE, Hauri EH, Ballentine CJ. 2002.. Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. . Annu. Rev. Earth Planet. Sci. 30::493525
    [Crossref] [Google Scholar]
  189. Walter MJ, Bulanova GP, Armstrong LS, Keshav S, Blundy JD, et al. 2008.. Primary carbonatite melt from deeply subducted oceanic crust. . Nature 454::62225
    [Crossref] [Google Scholar]
  190. Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, et al. 2011.. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. . Science 334::5457
    [Crossref] [Google Scholar]
  191. Walter MJ, Thomson AR, Smith EM. 2022.. Geochemistry of silicate and oxide inclusions in sublithospheric diamonds. . Rev. Mineral. Geochem. 88::393450
    [Crossref] [Google Scholar]
  192. Wang J, Takahashi E, Xiong X, Chen L, Li L, et al. 2020.. The water-saturated solidus and second critical endpoint of peridotite: implications for magma genesis within the mantle wedge. . J. Geophys. Res. Solid Earth 125::e2020JB01945
    [Google Scholar]
  193. Weiss Y, Czas J, Navon O. 2022.. Fluid inclusions in fibrous diamonds. . Rev. Mineral. Geochem. 88::475532
    [Crossref] [Google Scholar]
  194. Weiss Y, Kiro Y, Class C, Winckler G, Harris JW, Goldstein SL. 2021.. Helium in diamonds unravels over a billion years of craton metasomatism. . Nat. Commun. 12::2667
    [Crossref] [Google Scholar]
  195. Wiens DA. 2001.. Seismological constraints on the mechanism of deep earthquakes: temperature dependence of deep earthquake source properties. . Phys. Earth Planet. Inter. 127::14563
    [Crossref] [Google Scholar]
  196. Wilding MC, Harte B, Harris JW. 1991.. Evidence for a deep origin for Sao Luiz diamonds. . Int. Kimberl. Conf. Ext. Abstr. 5::45658
    [Google Scholar]
  197. Wirth R, Vollmer C, Brenker F, Matsyuk S, Kaminsky F. 2007.. Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juína (Mato Grosso State, Brazil). . Earth Planet. Sci. Lett. 259::38499
    [Crossref] [Google Scholar]
  198. Wood BJ. 2000.. Phase transformations and partitioning relations in peridotite under lower mantle conditions. . Earth Planet. Sci. Lett. 174::34154
    [Crossref] [Google Scholar]
  199. Yagi T, Bell P, Mao H. 1979.. Phase relations in the system MgO-FeO-SiO2 between 150 and 700 kbar at 1000°C. Carnegie Inst. . Washington Yearbook 78::61418
    [Google Scholar]
  200. Yaxley GM, Ghosh S, Kiseeva ES, Mallik A, Spandler C, et al. 2019.. CO2-rich melts in Earth. . In Deep Carbon: Past to Present, ed. BN Orcutt, I Daniel, R Dasgupta , pp. 12962. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  201. Zedgenizov DA, Shatskiy A, Ragozin AL, Kagi H, Shatsky VS. 2014.. Merwinite in diamond from Sao Luiz, Brazil: a new mineral of the Ca-rich mantle environment. . Am. Mineral. 99::54750
    [Crossref] [Google Scholar]
  202. Zhan Z. 2020.. Mechanisms and implications of deep earthquakes. . Annu. Rev. Earth Planet. Sci. 48::14774
    [Crossref] [Google Scholar]
  203. Zhang Y, Wang C, Jin Z. 2020.. Decarbonation of stagnant slab in the mantle transition zone. . J. Geophys. Res. 125::e2020JB019533
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-105438
Loading
/content/journals/10.1146/annurev-earth-032320-105438
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error