1932

Abstract

The continental crust in the overriding plate of the India-Asia collision zone in southern Tibet is characterized by an overthickened layer of felsic composition with an underlying granulite-eclogite layer. A large data set indicates that this crust experienced magmatism from 245 to 10 Ma, as recorded by the Gangdese Batholith. Magmatism was punctuated by flare-ups at 185−170, 90−75, and 55−45 Ma caused by a combination of external and internal factors. The growth of this crust starts with a period dominated by fractional crystallization and the formation of voluminous (ultra)mafic arc cumulates in the lower crust during subduction, followed by their melting during late-subduction and collision, due to changes in convergence rate. This combined accumulation-melting process resulted in the vertical stratification and density sorting of the Gangdese crust. Comparisons with other similarly thickened collision zones suggests that this is a general process that leads to the stabilization of continental crust.

  • ▪  The Gangdese Batholith records the time-integrated development of the world's thickest crust, reaching greater than 50 km at 55–45 Ma and greater than 70 km after 32 Ma.
  • ▪  The Gangdese Batholith records three magmatic flare-ups in response to distinct drivers; the last one at 55−45 Ma marks the arrival of India.
  • ▪  Magmatism was first dominated by fractional crystallization (accumulation) followed by crustal melting: the accumulation-melting process.
  • ▪  Accumulation-melting in other collision zones provides a general process for vertical stratification and stabilization of continental crust.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-110452
2023-05-31
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-032320-110452.html?itemId=/content/journals/10.1146/annurev-earth-032320-110452&mimeType=html&fmt=ahah

Literature Cited

  1. Altherr R, Henes-Klaiber U, Hegner E, Satir M, Langer C. 1999. Plutonism in the Variscan Odenwald (Germany): from subduction to collision. Int. J. Earth Sci. 88:422–43
    [Google Scholar]
  2. Atherton MP, Ghani AA. 2002. Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos 62:65–85
    [Google Scholar]
  3. Bouilhol P, Jagoutz O, Hanchar JM, Dudas FO. 2013. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366:163–75
    [Google Scholar]
  4. Cao WR, Yang JM, Zuza AV, Ji WQ, Ma XX et al. 2020. Crustal tilting and differential exhumation of Gangdese Batholith in southern Tibet revealed by bedrock pressures. Earth Planet. Sci. Lett. 543:116347
    [Google Scholar]
  5. Cawood PA, Hawkesworth CJ, Dhuime B. 2013. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125:14–32
    [Google Scholar]
  6. Chan GHN, Waters DJ, Searle MP, Aitchison JC, Horstwood MSA et al. 2009. Probing the basement of southern Tibet: evidence from crustal xenoliths entrained in a Miocene ultrapotassic dyke. J. Geol. Soc. Lond. 166:45–52
    [Google Scholar]
  7. Chapman JB, Ducea MN, DeCelles PG, Profeta L. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the North American Cordillera. Geology 43:919–22
    [Google Scholar]
  8. Chapman JB, Shields JE, Ducea MN, Paterson SR, Attia S, Ardill KE. 2021. The causes of continental arc flare ups and drivers of episodic magmatic activity in Cordilleran orogenic systems. Lithos 398–399:106307
    [Google Scholar]
  9. Chemenda AI, Burg JP, Mattauer M. 2000. Evolutionary model of the Himalaya–Tibet system: geopoem: based on new modelling, geological and geophysical data. Earth Planet. Sci. Lett. 174:397–409
    [Google Scholar]
  10. Chen L, Zheng YF, Zhao ZF, An W, Hu XM 2022. Continental crust recycling in ancient oceanic subduction zone: geochemical insights from arc basaltic to andesitic rocks and paleo-trench sediments in southern Tibet. Lithos 414–415:106619
    [Google Scholar]
  11. Chen X, Zheng YY, Gao SB, Wu S, Jiang XJ et al. 2020. Age and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny. Gondwana Res. 85:103–23
    [Google Scholar]
  12. Christensen NI, Mooney WD. 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100:B69761–88
    [Google Scholar]
  13. Chu MF, Chung SL, O'Reilly SY, Pearson NJ, Wu FY et al. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth Planet. Sci. Lett. 307:479–86
    [Google Scholar]
  14. Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH et al. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci. Rev. 68:173–96
    [Google Scholar]
  15. Collins WJ, Murphy JB, Johnson TE, Huang HQ. 2020. Critical role of water in the formation of continental crust. Nat. Geosci. 13:331–38
    [Google Scholar]
  16. Couzinié S, Laurent O, Moyen J, Zeh A, Bouihol P et al. 2016. Post-collisional magmatism: crustal growth not identified by zircon Hf-O isotopes. Earth Planet. Sci. Lett. 456:182–95
    [Google Scholar]
  17. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A. 2007. Amphibole “sponge” in arc crust?. Geology 35:787–90
    [Google Scholar]
  18. de Silva SL, Riggs NR, Barth AP. 2015. Quickening the pulse: fractal tempos in continental arc magmatism. Elements 11:113–18
    [Google Scholar]
  19. DeCelles PG, Ducea MN, Kapp P, Zandt G. 2009. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2:251–57
    [Google Scholar]
  20. DePaolo DJ. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 53:189–202
    [Google Scholar]
  21. DePaolo DJ, Harrison TM, Wielicki M, Zhao Z, Zhu DC et al. 2019. Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 and 32 Ma at the southern margin of Tibet. Gondwana Res. 73:123–35
    [Google Scholar]
  22. Ding HX, Zhang ZM, Dong X, Tian ZL, Xiang H et al. 2016. Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth Planet. Sci. Lett. 435:64–73
    [Google Scholar]
  23. Ding HX, Zhang ZM, Kohn MJ. 2022b. Late Cretaceous hydrous melting and reworking of juvenile lower crust of the eastern Gangdese magmatic arc, southern Tibet. Gondwana Res. 104:112–25
    [Google Scholar]
  24. Ding HX, Zhang ZM, Palin RM, Kohn MJ, Niu Z et al. 2022c. Late Cretaceous metamorphism and anatexis of the Gangdese magmatic arc, south Tibet: implications for thickening and differentiation of juvenile crust. J. Petrol. 63:egac017
    [Google Scholar]
  25. Ding L, Kapp P, Cai F, Garzione CN, Xiong Z et al. 2022a. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3:652–67
    [Google Scholar]
  26. Dong X, Niu YL, Zhang ZM, Tian ZL, He ZY. 2020. Mesozoic crustal evolution of southern Tibet: constraints from the early Jurassic igneous rocks in the Central Lhasa terrane. Lithos 366–367:105557
    [Google Scholar]
  27. Dong X, Zhang ZM, Liu F, He ZY, Lin YH. 2014. Late Paleozoic intrusive rocks from the southeastern Lhasa terrane, Tibetan Plateau, and their Late Mesozoic metamorphism and tectonic implications. Lithos 198–199:249–62
    [Google Scholar]
  28. Ducea M. 2001. The California arc: thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11:4–10
    [Google Scholar]
  29. Ducea MN, Barton MD. 2007. Igniting flare-up events in Cordilleran arcs. Geology 35:1047–50
    [Google Scholar]
  30. Ducea MN, Chapman AD, Bowman E, Triantafyllou A. 2021. Arclogites and their role in continental evolution; part 1: background, locations, petrography, geochemistry, chronology and thermobarometry. Earth-Sci. Rev. 214:103375
    [Google Scholar]
  31. Ducea MN, Saleeby JB, Bergantz G. 2015. The architecture, chemistry, and evolution of continental magmatic arcs. Annu. Rev. Earth Planet. Sci. 43:299–331
    [Google Scholar]
  32. Dufek J, Bergantz GW. 2005. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. J. Petrol. 46:2167–95
    [Google Scholar]
  33. Elburg MA, Foden J. 1999. Geochemical response to varying tectonic settings: an example from southern Sulawesi (Indonesia). Geochim. Cosmochim. Acta 63:1155–72
    [Google Scholar]
  34. Farner MJ, Lee CTA. 2017. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: a global study. Earth Planet. Sci. Lett. 470:96–107
    [Google Scholar]
  35. Freeburn R, Bouilhol P, Maunder B, Magni V, van Hunen J. 2017. Numerical models of the magmatic processes induced by slab breakoff. Earth Planet. Sci. Lett. 478:203–13
    [Google Scholar]
  36. Ganade CE, Lanari P, Rubatto D, Hermann J, Weinberg RF et al. 2021. Magmatic flare-up causes crustal thickening at the transition from subduction to continental collision. Commun. Earth Environ. 2:41
    [Google Scholar]
  37. Gao R, Lu ZW, Klemperer SL, Wang HY, Dong SW et al. 2016. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nat. Geosci. 9:555–60
    [Google Scholar]
  38. Garzanti E, Baud A, Mascle G. 1987. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodin. Acta 1:297–312
    [Google Scholar]
  39. Gaschnig RM, Vervoort JD, Tikoff B, Lewis RS. 2017. Construction and preservation of batholiths in the northern U.S. Cordillera. Lithosphere 9:315–24
    [Google Scholar]
  40. Gianni GM, Luján SP. 2021. Geodynamic controls on magmatic arc migration and quiescence. Earth-Sci. Rev. 218:103676
    [Google Scholar]
  41. Göğüş OH, Pysklywec RN. 2008. Near-surface diagnostics of dripping or delaminating lithosphere. J. Geophys. Res. 113:B11B11404
    [Google Scholar]
  42. Gregory RT, Taylor HP Jr. 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res. 86:B42737–55
    [Google Scholar]
  43. Guo L, Jagoutz O, Shinevar WJ, Zhang HF. 2020. Formation and composition of the Late Cretaceous Gangdese arc lower crust in southern Tibet. Contrib. Mineral. Petrol. 175:58
    [Google Scholar]
  44. Guo X, Li C, Gao R, Li S, Xu X et al. 2022. The India-Eurasia convergence system: Late Oligocene to early Miocene passive roof thrusting driven by deep-rooted duplex stacking. Geosyst. Geoenviron. 1:100006
    [Google Scholar]
  45. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, Johnston ST, Pastor-Galán D et al. 2011. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 30:TC5008
    [Google Scholar]
  46. Hacker BR, Kelemen PB, Behn MD. 2015. Continental lower crust. Annu. Rev. Earth Planet. Sci. 43:167–205
    [Google Scholar]
  47. Hagen-Peter G, Cottle J 2018. Evaluating the relative roles of crustal growth versus reworking through continental arc magmatism: a case study from the Ross orogen, Antarctica. Gondwana Res. 55:153–66
    [Google Scholar]
  48. Harris NBW, Ronghua X, Lewis CL, Hawkesworth CJ, Yuquan Z et al. 1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philos. Trans. R. Soc. A 327:263–85
    [Google Scholar]
  49. Hu F, Wu F, Chapman JB, Ducea MN, Ji W, Liu S 2020. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from whole-rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47:e2020GL089202
    [Google Scholar]
  50. Hu X, Garzanti E, Wang J, Huang W, An W, Webb A 2016. The timing of India-Asia collision onset—facts, theories, controversies. Earth-Sci. Rev. 160:264–99
    [Google Scholar]
  51. Hu X, Ma A, Xue W, Garzanti E, Cao Y et al. 2022. Exploring a lost ocean in the Tibetan Plateau: birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Sci. Rev. 229:104031
    [Google Scholar]
  52. Hu Y, Teng FZ, Chauvel C. 2021. Potassium isotopic evidence for sedimentary input to the mantle source of Lesser Antilles lavas. Geochim. Cosmochim. Acta 295:98–111
    [Google Scholar]
  53. Huang F, Xu J, Zeng Y, Chen J, Wang B et al. 2017. Slab breakoff of the Neo-Tethys Ocean in the Lhasa Terrane inferred from contemporaneous melting of the mantle and crust. Geochem. Geophys. Geosyst. 18:4074–95
    [Google Scholar]
  54. Hughes GR, Mahood GA. 2008. Tectonic controls on the nature of large silicic calderas in volcanic arcs. Geology 36:627–30
    [Google Scholar]
  55. Jagoutz O. 2014. Arc crustal differentiation mechanisms. Earth Planet. Sci. Lett. 396:267–77
    [Google Scholar]
  56. Jagoutz O, Bouilhol P, Schaltegger U, Müntener O. 2019. The isotopic evolution of the Kohistan Ladakh arc from subduction initiation to continent arc collision. Geol. Soc. Lond. Spec. Publ. 483:165–82
    [Google Scholar]
  57. Jagoutz O, Klein B. 2018. On the importance of crystallization-differentiation for the generation of SiO2-rich melts and the compositional build-up of arc (and continental) crust. Am. J. Sci. 318:29–63
    [Google Scholar]
  58. Jagoutz O, Müntener O, Schmidt MW, Burg JP. 2011. The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet. Sci. Lett. 303:25–36
    [Google Scholar]
  59. Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ. 2009. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol. 262:229–45
    [Google Scholar]
  60. Ji WQ, Wu FY, Chung SL, Liu CZ. 2012. Identification of Early Carboniferous granitoids from southern Tibet and implications for terrane assembly related to the Paleo-Tethyan evolution. J. Geol. 120:531–41
    [Google Scholar]
  61. Ji WQ, Wu FY, Chung SL, Wang XC, Liu CZ et al. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet. Geology 44:283–86
    [Google Scholar]
  62. Kapp P, DeCelles PG. 2019. Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319:159–254
    [Google Scholar]
  63. Kay RW, Kay SM. 1993. Delamination and delamination magmatism. Tectonophysics 219:177–89
    [Google Scholar]
  64. Keller CB, Schoene B, Barboni M, Samperton KM, Husson JM. 2015. Volcanic-plutonic parity and the differentiation of the continental crust. Nature 523:301–7
    [Google Scholar]
  65. Kohn MJ, Parkinson CD. 2002. Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology 30:591–94
    [Google Scholar]
  66. Kong HL, Li YZ, Li JC, Jia QZ, Guo XZ et al. 2021.. [ Petrogenesis of Xiwanggou olivine gabbro in East Kunlun Mountains: constraints from geochemistry, zircon U-Pb dating and Hf isotopes. ]. Geol. China 48:173–88 ( In Chinese with English abstract )
    [Google Scholar]
  67. Lackey JS, Valley JW, Saleeby JB. 2005. Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet. Sci. Lett. 235:315–30
    [Google Scholar]
  68. Lang XH, Wang XH, Tang JX, Deng YL, Cui ZW et al. 2018. Composition and age of Jurassic diabase dikes in the Xiongcun porphyry copper–gold district, southern margin of the Lhasa terrane, Tibet, China: petrogenesis and tectonic setting. Geol. J. 53:1973–93
    [Google Scholar]
  69. Lee CTA, Bachmann O. 2014. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet. Sci. Lett. 393:266–74
    [Google Scholar]
  70. Lee CTA, Cheng X, Horodyskyj U. 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib. Mineral. Petrol. 151:222–42
    [Google Scholar]
  71. Lee CTA, Morton DM, Kistler RW, Baird AK. 2007. Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet. Sci. Lett. 263:370–87
    [Google Scholar]
  72. Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY et al. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 477:20–35
    [Google Scholar]
  73. Li SM, Wang Q, Zhu DC, Cawood PA, Stern RJ et al. 2020b. Reconciling orogenic drivers for the evolution of the Bangong-Nujiang Tethys during Middle-Late Jurassic. Tectonics 39:e2019TC005951
    [Google Scholar]
  74. Li X, Zeng Z, Dan W, Yang H, Wang X et al. 2020a. Source lithology and crustal assimilation recorded in low δ18O olivine from Okinawa Trough, back-arc basin. Lithos 360–361:105444
    [Google Scholar]
  75. Lin TH, Chung SL, Kumar A, Wu FY, Chiu HY, Lin IJ. 2013. Linking a prolonged Neo-Tethyan magmatic arc in South Asia: zircon U-Pb and Hf isotopic constraints from the Lohit Batholith, NE India. Terra Nova 25:453–58
    [Google Scholar]
  76. Liu AL, Wang Q, Zhu DC, Cawood PA, Xia Y et al. 2022. Temporal and spatial variations of enriched source components in Linzizong volcanic succession, Tibet, and implications for the India–Asia collision. J. Petrol. 63:egab103
    [Google Scholar]
  77. Liu HY, Zhu Q, Yang XZ. 2019. Electrical conductivity of OH‑bearing omphacite and garnet in eclogite: the quantitative dependence on water content. Contrib. Mineral. Petrol. 174:57
    [Google Scholar]
  78. Luffi P, Ducea M. 2022. Chemical mohometry: assessing crustal thickness of ancient orogens using geochemical and isotopic data. Rev. Geophys. 60:e2021RG000753
    [Google Scholar]
  79. Ma L, Kerr AC, Wang Q, Jiang ZQ, Hu WL. 2018. Early Cretaceous (∼140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: products of crust-mantle interaction during lithospheric extension. Lithos 300–301:212–26
    [Google Scholar]
  80. Ma L, Kerr AC, Wang Q, Jiang ZQ, Tang GJ et al. 2019. Nature and evolution of crust in southern Lhasa, Tibet: transformation from microcontinent to juvenile terrane. J. Geophys. Res. Solid Earth 124:6452–74
    [Google Scholar]
  81. Ma L, Wang Q, Li ZX, Wyman DA, Jiang ZQ et al. 2013. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere–asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet). Lithos 172–173:17–30
    [Google Scholar]
  82. Ma L, Wang Q, Li ZX, Wyman DA, Yang JH et al. 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (∼35 Ma): insights from the Quguosha gabbros in southern Lhasa block. Gondwana Res. 41:77–92
    [Google Scholar]
  83. Ma XX, Xu ZQ, Meert JG, Tian ZL, Li HB. 2021. Early Eocene high-flux magmatism and concurrent high-temperature metamorphism in the Gangdese belt, southern Tibet. Geol. Soc. Am. Bull. 133:1194–216
    [Google Scholar]
  84. Maierová P, Schulmann K, Lexa O, Guillot S, Štípská P et al. 2016. European Variscan orogenic evolution as an analogue of Tibetan-Himalayan orogen: insights from petrology and numerical modeling. Tectonics 35:1760–80
    [Google Scholar]
  85. McDonough WF, Sun SS. 1995. The composition of the Earth. Chem. Geol. 120:223–53
    [Google Scholar]
  86. Moyen JF. 2020. Granites and crustal heat budget. Geol. Soc. Lond. Spec. Publ. 491:77–100
    [Google Scholar]
  87. Moyen JF, Janoušek V, Laurent O, Bachmann O, Jacob JB et al. 2021. Crustal melting versus fractionation of basaltic magmas: part 1, granites and paradigms. Lithos 402–403:106291
    [Google Scholar]
  88. Müntener O, Ulmer P. 2018. Arc crust formation and differentiation constrained by experimental petrology. Am. J. Sci. 318:64–89
    [Google Scholar]
  89. Murphy JB. 2020. Appinite suites and their genetic relationship with coeval voluminous granitoid batholiths. Int. Geol. Rev. 62:683–713
    [Google Scholar]
  90. Nábělek J, György H, Vergne J, Sapkota S, Kafle B et al. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325:1371–74
    [Google Scholar]
  91. Negredo AM, Replumaz A, Villaseñor A, Guillot S. 2007. Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region. Earth Planet. Sci. Lett. 259:212–25
    [Google Scholar]
  92. Pan GT, Ding J, Yao DS, Wang LQ. 2004. Guidebook of 1: 1,500,000 Geologic Map of the Qinghai–Xizang (Tibet) Plateau and Adjacent Areas Chengdu, China: Chengdu Cartogr. Publ. House
  93. Pilet S. 2015. Generation of low-silica alkaline lavas: petrological constraints, models, and thermal implications. Geol. Soc. Am. Spec. Pap. 71:281–304
    [Google Scholar]
  94. Pitcher WS. 1987. Granites and yet more granites 40 years on. Geol. Rundsch. 76:51–79
    [Google Scholar]
  95. Priestley K, Jackson J, McKenzie D 2008. Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophys. J. Int. 172:345–62
    [Google Scholar]
  96. Profeta L, Ducea MN, Chapman JB, Paterson SR, Gonzales SMH et al. 2015. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 5:17786
    [Google Scholar]
  97. Putirka K. 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Mineral. 101:841–58
    [Google Scholar]
  98. Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation London: Longman
  99. Rudnick RL. 1995. Making continental crust. Nature 378:571–78
    [Google Scholar]
  100. Rudnick RL, Gao S 2003. Composition of the continental crust. Treatise on Geochemistry 3 RL Rudnick 1–64. Amsterdam: Elsevier
    [Google Scholar]
  101. Saleeby J, Ducea M, Clemens-Knott D. 2003. Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics 22:1064
    [Google Scholar]
  102. Schmidt MW. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 110:304–10
    [Google Scholar]
  103. Sen C, Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib. Mineral. Petrol. 117:394–409
    [Google Scholar]
  104. Shu CT, Long XP, Yin CQ, Yuan C, Wang Q et al. 2018. Continental crust growth induced by slab breakoff in collisional orogens: evidence from the Eocene Gangdese granitoids and their mafic enclaves, South Tibet. Gondwana Res. 64:35–49
    [Google Scholar]
  105. Sisson TW, Grove TL, Coleman DS. 1996. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib. Mineral. Petrol. 126:81–108
    [Google Scholar]
  106. Sisson TW, Ratajeski K, Hankins WB, Glazner AF. 2005. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 148:635–61
    [Google Scholar]
  107. Streule MJ, Strachan RA, Searle MP, Law RD. 2010. Comparing Tibet-Himalayan and Caledonian crustal architecture, evolution and mountain building processes. Geol. Soc. Lond. Spec. Publ. 335:207–32
    [Google Scholar]
  108. Sun X, Lu YJ, McCuaig TC, Zheng YY, Chang HF et al. 2018. Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J. Petrol. 59:341–86
    [Google Scholar]
  109. Sundell KE, Laskowski AK, Kapp PA, Ducea MN, Chapman JB. 2021. Jurassic to Neogene quantitative crustal thickness estimates in southern Tibet. GSA Today 31:4–10
    [Google Scholar]
  110. Tang M, Ji WQ, Chu X, Wu A, Chen C. 2021. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49:76–80
    [Google Scholar]
  111. Tassara S, Ague JJ, Valencia V. 2021. The deep magmatic cumulate roots of the Acadian orogen, eastern North America. Geology 49:168–73
    [Google Scholar]
  112. Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T. 2008. Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J. Geophys. Res. 113:B2B02203
    [Google Scholar]
  113. Thompson AB, Connolly JAD. 1995. Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J. Geophys. Res. 100:B815565–79
    [Google Scholar]
  114. van Hinsbergen DJJ, Steinberger B, Doubrovine PV, Gassmöller R. 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. 116:B6B06101
    [Google Scholar]
  115. van Hinsbergen DJJ, Steinberger B, Guilmette C, Maffione M, Gürer D et al. 2021. A record of plume-induced plate rotation triggering subduction initiation. Nat. Geosci. 14:626–30
    [Google Scholar]
  116. Wang C, Ding L, Zhang LY, Kapp P, Pullen A, Yue YH. 2016a. Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese crust, southern Lhasa terrane: implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos 262:320–33
    [Google Scholar]
  117. Wang G, Thybo H, Artemieva IM. 2021. No mafic layer in 80 km thick Tibetan crust. Nat. Commun. 12:1069
    [Google Scholar]
  118. Wang R, Collins WJ, Weinberg RF, Li JX, Li QY et al. 2016b. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust. Contrib. Mineral. Petrol. 171:62
    [Google Scholar]
  119. Wang R, Weinberg RF, Collins WJ, Richards JP, Zhu DC. 2018. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Sci. Rev. 181:122–43
    [Google Scholar]
  120. Weinberg RF, Hasalová P. 2015. Water-fluxed melting of the continental crust: a review. Lithos 212–215:158–88
    [Google Scholar]
  121. Weller OM, Mottram CM, St-Onge MR, Möller C, Strachan R et al. 2021. The metamorphic and magmatic record of collisional orogens. Nat. Rev. Earth Environ. 2:781–99
    [Google Scholar]
  122. Whalen JB, McNicoll VJ, van Staal CR, Lissenberg CJ, Longstaffe FJ et al. 2006. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: an example of a rapidly evolving magmatic system related to slab break-off. Lithos 89:377–404
    [Google Scholar]
  123. Wittlinger G, Farra V, Hetényi G, Vergne J, Nábělek J. 2009. Seismic velocities in Southern Tibet lower crust: a receiver function approach for eclogite detection. Geophys. J. Int. 177:1037–49
    [Google Scholar]
  124. Wörner G, Mamani M, Blum-Oeste M. 2018. Magmatism in the central Andes. Elements 14:237–44
    [Google Scholar]
  125. Wu FY, Ji WQ, Liu CZ, Chung SL. 2010. Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol. 271:13–25
    [Google Scholar]
  126. Xie FW, Tang JX, Lang XH, Ma D. 2018. The different sources and petrogenesis of Jurassic intrusive rocks in the southern Lhasa subterrane, Tibet: evidence from the trace element compositions of zircon, apatite, and titanite. Lithos 314–315:447–62
    [Google Scholar]
  127. Xin W, Sun FY, Zhang YT, Fan XZ, Wang YC, Li L. 2019. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: petrogenesis and implications for regional geodynamic evolution during the Triassic. Lithos 346:105159
    [Google Scholar]
  128. Xiong FH, Ma CQ, Zhang JY, Liu B. 2014. Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J. Geol. Soc. Lond. 171:847–63
    [Google Scholar]
  129. Xu Q, Zhao JM, Yuan XH, Liu HB, Pei SP. 2015. Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting. Gondwana Res. 27:1487–93
    [Google Scholar]
  130. Xu W, Zhu DC, Wang Q, Weinberg RF, Wang R et al. 2019. Constructing the early Mesozoic Gangdese crust in southern Tibet by hornblende-dominated magmatic differentiation. J. Petrol. 60:51–52
    [Google Scholar]
  131. Xu W, Zhu DC, Wang Q, Weinberg RF, Wang R et al. 2021. Cumulate mush hybridization by melt invasion: evidence from compositionally diverse amphiboles in ultramafic–mafic arc cumulates within the eastern Gangdese Batholith, southern Tibet. J. Petrol. 62:egab073
    [Google Scholar]
  132. Yang SH, Li ZH, Gerya T, Xu ZQ, Shi YL. 2018. Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet. Tectonophysics 746:212–28
    [Google Scholar]
  133. Yang ZM, Lu YJ, Hou ZQ, Chang ZS. 2015. High-Mg diorite from Qulong in southern Tibet: implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J. Petrol. 56:227–54
    [Google Scholar]
  134. Yi JK, Zhu DC, Weinberg RF, Wang Q, Xie JC et al. 2022. Origin of Tibetan post-collisional high-K adakitic granites: anatexis of intermediate to felsic arc rocks. Geology 50:771–75
    [Google Scholar]
  135. Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28:211–80
    [Google Scholar]
  136. Zhang SH, Ji WQ, Zhang H, Chen GH, Wang JG et al. 2020a. Identification of forearc sediments in the Milin-Zedong region and their constraints on tectonomagmatic evolution of the Gangdese arc, southern Tibet. Lithosphere 2020:8835259
    [Google Scholar]
  137. Zhang Z, Ding H, Palin RM, Dong X, Tian Z, Chen Y. 2020b. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust. Gondwana Res. 77:136–46
    [Google Scholar]
  138. Zhang Z, Dong X, Xiang H, Ding H, He Z, Liou JG. 2015. Reworking of the Gangdese magmatic arc, southeastern Tibet: post-collisional metamorphism and anatexis. J. Metamorph. Geol. 33:1–21
    [Google Scholar]
  139. Zhang Z, Dong X, Xiang H, He Z, Liou J. 2014. Metagabbros of the Gangdese arc root, south Tibet: implications for the growth of continental crust. Geochim. Cosmochim. Acta 143:268–84
    [Google Scholar]
  140. Zhang ZM, Shen K, Santosh M, Dong X. 2011. High density carbonic fluids in a slab window: evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet. J. Asian Earth Sci. 42:515–24
    [Google Scholar]
  141. Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Shen K 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Res. 17:615–31
    [Google Scholar]
  142. Zheng YF. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem. Geol. 328:5–48
    [Google Scholar]
  143. Zheng YF, Gao P. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos 402–403:106232
    [Google Scholar]
  144. Zhu DC, Wang Q, Cawood PA, Zhao ZD, Mo XX. 2017. Raising the Gangdese Mountains in southern Tibet. J. Geophys. Res. Solid Earth 122:214–23
    [Google Scholar]
  145. Zhu DC, Wang Q, Chung SL, Cawood PA, Zhao ZD. 2019. Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geol. Soc. Lond. Spec. Publ. 483:583–604
    [Google Scholar]
  146. Zhu DC, Wang Q, Weinberg RF, Cawood PA, Chung SL et al. 2022. Interplay between oceanic subduction and continental collision in building continental crust. Nat. Commun. 13:7141
    [Google Scholar]
  147. Zhu DC, Wang Q, Zhao ZD, Chung SL, Cawood PA et al. 2015. Magmatic record of India-Asia collision. Sci. Rep. 5:14289
    [Google Scholar]
  148. Zhu DC, Zhao ZD, Niu Y, Dilek Y, Hou ZQ, Mo XX. 2013a. The origin and pre-Cenozoic evolution of the Tibetan plateau. Gondwana Res. 23:1429–54
    [Google Scholar]
  149. Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL et al. 2011. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 301:241–55
    [Google Scholar]
  150. Zhu G, Gerya TV, Tackley PJ, Kissling E. 2013b. Four-dimensional numerical modeling of crustal growth at active continental margins. J. Geophys. Res. Solid Earth 118:4682–98
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-110452
Loading
/content/journals/10.1146/annurev-earth-032320-110452
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error