1932

Abstract

Aftershocks can compound the impacts of a major earthquake, disrupting recovery efforts and potentially further damaging weakened buildings and infrastructure. Forecasts of the probability of aftershocks can therefore aid decision-making during earthquake response and recovery. Several countries issue authoritative aftershock forecasts. Most aftershock forecasts are based on simple statistical models that were first developed in the 1980s and remain the best available models. We review these statistical models and the wide-ranging research to advance aftershock forecasting through better statistical, physical, and machine-learning methods. Physics-based forecasts based on mainshock stress changes can sometimes match the statistical models in testing but do not yet outperform them. Physical models are also hampered by unsolved problems such as the mechanics of dynamic triggering and the influence of background conditions. Initial work on machine-learning forecasts shows promise, and new machine-learning earthquake catalogs provide an opportunity to advance all types of aftershock forecasts.

  • ▪  Several countries issue real-time aftershock forecasts following significant earthquakes, providing information to aid response and recovery.
  • ▪  Statistical models based on past aftershocks are used to compute aftershock probability as a function of space, time, and magnitude.
  • ▪  Aftershock forecasting is advancing through better statistical models, constraints on physical triggering mechanisms, and machine learning.
  • ▪  Large high-resolution earthquake catalogs provide an opportunity to advance physical, statistical, and machine-learning aftershock models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040522-102129
2024-07-23
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040522-102129.html?itemId=/content/journals/10.1146/annurev-earth-040522-102129&mimeType=html&fmt=ahah

Literature Cited

  1. AFAD (Disaster Emerg. Manag. Auth.) 2023.. Earthquake catalog. . AFAD. https://deprem.afad.gov.tr/event-catalog
    [Google Scholar]
  2. Ando R, Imanishi K. 2011.. Possibility of Mw 9.0 mainshock triggered by diffusional propagation of after-slip from Mw 7.3 foreshock. . Earth Planets Space 63:(7):76771
    [Crossref] [Google Scholar]
  3. Antonioli A, Piccinini D, Chiaraluce L, Cocco M. 2005.. Fluid flow and seismicity pattern: evidence from the 1997 Umbria-Marche (central Italy) seismic sequence. . Geophys. Res. Lett. 32:(10):L10311
    [Crossref] [Google Scholar]
  4. Bach C, Hainzl S. 2012.. Improving empirical aftershock modeling based on additional source information. . J. Geophys. Res. 117:(B4):B04312
    [Crossref] [Google Scholar]
  5. Bachmann CE, Wiemer S, Woessner J, Hainzl S. 2011.. Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems. . Geophys. J. Int. 186:(2):793807
    [Crossref] [Google Scholar]
  6. Becker JS, Potter SH, McBride SK, Wein A, Doyle EE, Paton D. 2019.. When the earth doesn't stop shaking: how experiences over time influenced information needs, communication, and interpretation of aftershock information during the Canterbury Earthquake Sequence, New Zealand. . Int. J. Disaster Risk Reduct. 34::397411
    [Crossref] [Google Scholar]
  7. Becker JS, Potter SH, Wein A, Doyle EE, Ratliff J. 2015.. Aftershock communication during the Canterbury earthquakes, New Zealand: implications for response and recovery in the built environment. . In New Zealand Society of Earthquake Engineering Proceedings, Pap. O-52 . Wellington, NZ:: NZSEE
    [Google Scholar]
  8. Bosl WJ, Nur A. 2002.. Aftershocks and pore fluid diffusion following the 1992 Landers earthquake. . J. Geophys. Res. 107:(B12):ESE17
    [Crossref] [Google Scholar]
  9. Bourne SJ, Oates SJ. 2017.. Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field. . Neth. J. Geosci. 96:(5):s17582
    [Google Scholar]
  10. Brodsky EE, Roeloffs E, Woodcock D, Gall I, Manga M. 2003.. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. . J. Geophys. Res. 108:(B8):2390
    [Crossref] [Google Scholar]
  11. Brodsky EE, van der Elst NJ. 2014.. The uses of dynamic earthquake triggering. . Annu. Rev. Earth Planet. Sci. 42::31739
    [Crossref] [Google Scholar]
  12. Cattania C, Hainzl S, Wang L, Enescu B, Roth F. 2015.. Aftershock triggering by postseismic stresses: a study based on Coulomb rate-and-state models. . J. Geophys. Res. Solid Earth 120:(4):2388407
    [Crossref] [Google Scholar]
  13. Cattania C, Hainzl S, Wang L, Roth F, Enescu B. 2014.. Propagation of Coulomb stress uncertainties in physics-based aftershock models. . J. Geophys. Res. Solid Earth 119:(10):784664
    [Crossref] [Google Scholar]
  14. Cattania C, Werner MJ, Marzocchi W, Hainzl S, Rhoades D, et al. 2018.. The forecasting skill of physics-based seismicity models during the 2010–2012 Canterbury, New Zealand, earthquake sequence. . Seismol. Res. Lett. 89:(4):123850
    [Crossref] [Google Scholar]
  15. Cheng Y, Hauksson E, Ben-Zion Y. 2023.. Refined earthquake focal mechanism catalog for southern California derived with deep learning algorithms. . J. Geophys. Res. Solid Earth 128:(2):e2022JB025975
    [Crossref] [Google Scholar]
  16. Churchill RM, Werner MJ, Biggs J, Fagereng Å. 2022.. Relative afterslip moment does not correlate with aftershock productivity: implications for the relationship between afterslip and aftershocks. . Geophys. Res. Lett. 49:(24):e2022GL101165
    [Crossref] [Google Scholar]
  17. Clements RA, Schoenberg FP, Schorlemmer D. 2011.. Residual analysis methods for space–time point processes with applications to earthquake forecast models in California. . Ann. Appl. Stat. 5:(4):254971
    [Crossref] [Google Scholar]
  18. Cocco M, Rice JR. 2002.. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. . J. Geophys. Res. 107:(B2):ESE2
    [Crossref] [Google Scholar]
  19. Dascher-Cousineau K, Brodsky EE, Lay T, Goebel TH. 2020a.. What controls variations in aftershock productivity?. J. Geophys. Res. Solid Earth 125:(2):e2019JB018111
    [Crossref] [Google Scholar]
  20. Dascher-Cousineau K, Lay T, Brodsky EE. 2020b.. Two foreshock sequences post Gulia and Wiemer. 2019.. Seismol. Res. Lett. 91:(5):284350
    [Crossref] [Google Scholar]
  21. Dascher-Cousineau K, Shchur O, Brodsky E. Günnemann S. 2023.. Using deep learning for flexible and scalable earthquake forecasting. . Geophys. Res. Lett. 50:(17):e2023GL103909
    [Crossref] [Google Scholar]
  22. DeVries PM, Viégas F, Wattenberg M, Meade BJ. 2018.. Deep learning of aftershock patterns following large earthquakes. . Nature 560:(7720):63234
    [Crossref] [Google Scholar]
  23. Dieterich J. 1994.. A constitutive law for rate of earthquake production and its application to earthquake clustering. . J. Geophys. Res. 99:(B2):260118
    [Crossref] [Google Scholar]
  24. Enescu B, Hainzl S, Ben-Zion Y. 2009.. Correlations of seismicity patterns in Southern California with surface heat flow data. . Bull. Seismol. Soc. Am. 99:(6):311423
    [Crossref] [Google Scholar]
  25. Felzer KR. 2014.. Pulverization provides a mechanism for the nucleation of earthquakes at low stress on strong faults. . Front. Earth Sci. 2::20
    [Crossref] [Google Scholar]
  26. Felzer KR, Abercrombie RE, Ekström G. 2003.. Secondary aftershocks and their importance for aftershock forecasting. . Bull. Seismol. Soc. Am. 93:(4):143348
    [Crossref] [Google Scholar]
  27. Felzer KR, Brodsky EE. 2006.. Decay of aftershock density with distance indicates triggering by dynamic stress. . Nature 441:(7094):73538
    [Crossref] [Google Scholar]
  28. Field EH, Jordan TH, Jones LM, Michael AJ, Blanpied ML, et al. 2016.. The potential uses of operational earthquake forecasting. . Seismol. Res. Lett. 87:(2A):31322
    [Crossref] [Google Scholar]
  29. Field EH, Milner KR, Hardebeck JL, Page MT, van der Elst N, et al. 2017.. A spatiotemporal clustering model for the third Uniform California Earthquake Rupture Forecast (UCERF3-ETAS): toward an operational earthquake forecast. . Bull. Seismol. Soc. Am. 107:(3):104981
    [Crossref] [Google Scholar]
  30. Freed AM. 2005.. Earthquake triggering by static, dynamic, and postseismic stress transfer. . Annu. Rev. Earth Planet. Sci. 33::33567
    [Crossref] [Google Scholar]
  31. Gahalaut K, Gahalaut VK, Kayal JR. 2008.. Poroelastic relaxation and aftershocks of the 2001 Bhuj earthquake, India. . Tectonophysics 460:(1–4):7682
    [Crossref] [Google Scholar]
  32. Gerstenberger MC, Rhoades DA, McVerry GH. 2016.. A hybrid time-dependent probabilistic seismic-hazard model for Canterbury, New Zealand. . Seismol. Res. Lett. 87:(6):131118
    [Crossref] [Google Scholar]
  33. Gerstenberger MC, Wiemer S, Jones LM, Reasenberg PA. 2005.. Real-time forecasts of tomorrow's earthquakes in California. . Nature 435:(7040):32831
    [Crossref] [Google Scholar]
  34. Goebel THW, Schorlemmer D, Becker TW, Dresen G, Sammis CG. 2013.. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. . Geophys. Res. Lett. 40:(10):204954
    [Crossref] [Google Scholar]
  35. Goldberg DE, Taymaz T, Reitman NG, Hatem AE, Yolsal-Çevikbilen S, et al. 2023.. Rapid characterization of the February 2023 Kahramanmaraş, Türkiye, earthquake sequence. . Seism. Rec. 3:(2):15667
    [Crossref] [Google Scholar]
  36. Gomberg J. 2001.. The failure of earthquake failure models. . J. Geophys. Res. 106:(B8):1625363
    [Crossref] [Google Scholar]
  37. Gomberg J, Reasenberg PA, Bodin PL, Harris RA. 2001.. Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes. . Nature 411:(6836):46266
    [Crossref] [Google Scholar]
  38. Gulia L, Rinaldi AP, Tormann T, Vannucci G, Enescu B, Wiemer S. 2018.. The effect of a mainshock on the size distribution of the aftershocks. . Geophys. Res. Lett. 45:(24):1327787
    [Crossref] [Google Scholar]
  39. Gulia L, Wiemer S. 2019.. Real-time discrimination of earthquake foreshocks and aftershocks. . Nature 574:(7777):19399
    [Crossref] [Google Scholar]
  40. Gutenberg B, Richter CF. 1944.. Frequency of earthquakes in California. . Bull. Seismol. Soc. Am. 34:(4):18588
    [Crossref] [Google Scholar]
  41. Güvercin SE, Karabulut H, Konca , Doğan U, Ergintav S. 2022.. Active seismotectonics of the East Anatolian Fault. . Geophys. J. Int. 230:(1):5069
    [Crossref] [Google Scholar]
  42. Hain A, Zaghi AE, Padgett JE, Tafur A. 2023.. Case studies of multihazard damage: investigation of the interaction of Hurricane Maria and the January 2020 earthquake sequence in Puerto Rico. . Front. Built Environ. 9::1128573
    [Crossref] [Google Scholar]
  43. Hainzl S. 2016.. Rate-dependent incompleteness of earthquake catalogs. . Seismol. Res. Lett. 87:(2A):33744
    [Crossref] [Google Scholar]
  44. Hainzl S, Enescu B, Cocco M, Woessner J, Catalli F, et al. 2009.. Aftershock modeling based on uncertain stress calculations. . J. Geophys. Res. 114:(B5):B05309
    [Crossref] [Google Scholar]
  45. Hardebeck JL. 2020.. A stress-similarity triggering model for aftershocks of the Mw 6.4 and 7.1 Ridgecrest earthquakes. . Bull. Seismol. Soc. Am. 110:(4):171627
    [Google Scholar]
  46. Hardebeck JL. 2021.. Spatial clustering of aftershocks impacts the performance of physics-based earthquake forecasting models. . J. Geophys. Res. Solid Earth 126:(2):e2020JB020824
    [Crossref] [Google Scholar]
  47. Hardebeck JL, Harris RA. 2022.. Earthquakes in the shadows: why aftershocks occur at surprising locations. . Seism. Rec. 2:(3):20716
    [Crossref] [Google Scholar]
  48. Harris RA. 1998.. Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. . J. Geophys. Res. 103:(B10):2434758
    [Crossref] [Google Scholar]
  49. Harris RA, Simpson RW. 1998.. Suppression of large earthquakes by stress shadows: a comparison of Coulomb and rate-and-state failure. . J. Geophys. Res. 103:(B10):2443951
    [Crossref] [Google Scholar]
  50. Harte D, Vere-Jones D. 2005.. The entropy score and its uses in earthquake forecasting. . Pure Appl. Geophys. 162::122953
    [Crossref] [Google Scholar]
  51. He J, Peltzer G. 2010.. Poroelastic triggering in the 9–22 January 2008 Nima-Gaize (Tibet) earthquake sequence. . Geology 38:(10):90710
    [Crossref] [Google Scholar]
  52. Hearn EH, Bürgmann R, Reilinger RE. 2002.. Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce earthquake hypocenter. . Bull. Seismol. Soc. Am. 92:(1):17293
    [Crossref] [Google Scholar]
  53. Helmstetter A, Kagan YY, Jackson DD. 2006.. Comparison of short-term and time-independent earthquake forecast models for southern California. . Bull. Seismol. Soc. Am. 96:(1):90106
    [Crossref] [Google Scholar]
  54. Helmstetter A, Werner MJ. 2014.. Adaptive smoothing of seismicity in time, space, and magnitude for time-dependent earthquake forecasts for California. . Bull. Seismol. Soc. Am. 104:(2):80922
    [Crossref] [Google Scholar]
  55. Hill DP, Prejean SG. 2015.. Dynamic triggering. . In Treatise on Geophysics, Vol. 4: Earthquake Seismology, ed. H Kanamori , pp. 273304 Amsterdam:: Elsevier, 2nd ed.
    [Google Scholar]
  56. Hughes KL, Masterlark T, Mooney WD. 2010.. Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra–Andaman earthquake. . Earth Planet. Sci. Lett. 293:(3–4):28999
    [Crossref] [Google Scholar]
  57. Jibson RW, Prentice CS, Borissoff BA, Rogozhin EA, Langer CJ. 1994.. Some observations of landslides triggered by the 29 April 1991 Racha earthquake, Republic of Georgia. . Bull. Seismol. Soc. Am. 84:(4):96373
    [Google Scholar]
  58. Johnson PA, Savage H, Knuth M, Gomberg J, Marone C. 2008.. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes. . Nature 451:(7174):5760
    [Crossref] [Google Scholar]
  59. Kamaya N, Takeda K, Hashimoto T. 2017.. New Japanese guidelines for the information of the prospect of seismic activity after large earthquakes and their applications. . J. Disaster Res. 12:(6):110916
    [Crossref] [Google Scholar]
  60. Khawaja AM, Hainzl S, Schorlemmer D, Iturrieta P, Bayona JA, et al. 2023.. Statistical power of spatial earthquake forecast tests. . Geophys. J. Int. 233:(3):205366
    [Crossref] [Google Scholar]
  61. Kilb D, Gomberg J, Bodin P. 2000.. Triggering of earthquake aftershocks by dynamic stresses. . Nature 408:(6812):57074
    [Crossref] [Google Scholar]
  62. King GC, Stein RS, Lin J. 1994.. Static stress changes and the triggering of earthquakes. . Bull. Seismol. Soc. Am. 84:(3):93553
    [Google Scholar]
  63. Krafczyk MS, Shi A, Bhaskar A, Marinov D, Stodden V. 2021.. Learning from reproducing computational results: introducing three principles and the Reproduction Package. . Philos. Trans. R. Soc. A 379:(2197):20200069
    [Crossref] [Google Scholar]
  64. Liu Z, Jiang H, Li S, Li M, Liu J, Zhang J. 2023.. Implementation and verification of a real-time system for automatic aftershock forecasting in China. . Earth Sci. Inform. 16::1891907
    [Crossref] [Google Scholar]
  65. Llenos AL, McGuire JJ, Ogata Y. 2009.. Modeling seismic swarms triggered by aseismic transients. . Earth Planet. Sci. Lett. 281:(1–2):5969
    [Crossref] [Google Scholar]
  66. Llenos AL, Michael AJ. 2019.. Ensembles of ETAS models provide optimal operational earthquake forecasting during swarms: insights from the 2015 San Ramon, California swarm. . Bull. Seismol. Soc. Am. 109:(6):214558
    [Crossref] [Google Scholar]
  67. Llenos AL, van der Elst NJ. 2019.. Improving earthquake forecasts during swarms with a duration model. . Bull. Seismol. Soc. Am. 109:(3):114855
    [Google Scholar]
  68. Lombardi AM, Marzocchi W. 2010.. The assumption of Poisson seismic-rate variability in CSEP/RELM experiments. . Bull. Seismol. Soc. Am. 100:(5A):2293300
    [Crossref] [Google Scholar]
  69. Mancini S, Segou M, Werner MJ, Cattania C. 2019.. Improving physics-based aftershock forecasts during the 2016–2017 Central Italy Earthquake Cascade. . J. Geophys. Res. Solid Earth 124:(8):862643
    [Crossref] [Google Scholar]
  70. Mancini S, Segou M, Werner MJ, Parsons T. 2020.. The predictive skills of elastic Coulomb rate-and-state aftershock forecasts during the 2019 Ridgecrest, California, earthquake sequence. . Bull. Seismol. Soc. Am. 110:(4):173651
    [Crossref] [Google Scholar]
  71. Mancini S, Werner MJ, Segou M, Baptie B. 2021.. Probabilistic forecasting of hydraulic fracturing-induced seismicity using an injection-rate driven ETAS model. . Seismol. Res. Lett. 92:(6):347181
    [Crossref] [Google Scholar]
  72. Marzocchi W, Lombardi AM. 2009.. Real-time forecasting following a damaging earthquake. . Geophys. Res. Lett. 36:(21):L21302
    [Crossref] [Google Scholar]
  73. Marzocchi W, Lombardi AM, Casarotti E. 2014.. The establishment of an operational earthquake forecasting system in Italy. . Seismol. Res. Lett. 85:(5):96169
    [Crossref] [Google Scholar]
  74. Marzocchi W, Taroni M, Falcone G. 2017.. Earthquake forecasting during the complex Amatrice-Norcia seismic sequence. . Sci. Adv. 3:(9):e1701239
    [Crossref] [Google Scholar]
  75. Marzocchi W, Zechar JD, Jordan TH. 2012.. Bayesian forecast evaluation and ensemble earthquake forecasting. . Bull. Seismol. Soc. Am. 102:(6):257484
    [Crossref] [Google Scholar]
  76. McBride SK, Llenos AL, Page MT, van der Elst N. 2020.. #EarthquakeAdvisory: exploring discourse between government officials, news media, and social media during the 2016 Bombay Beach swarm. . Seismol. Res. Lett. 91:(1):43851
    [Crossref] [Google Scholar]
  77. McCloskey J, Nalbant SS, Steacy S, Nostro C, Scotti O, Baumont D. 2003.. Structural constraints on the spatial distribution of aftershocks. . Geophys. Res. Lett. 30:(12):1610
    [Crossref] [Google Scholar]
  78. Meier MA, Werner MJ, Woessner J, Wiemer S. 2014.. A search for evidence of secondary static stress triggering during the 1992 Mw7. 3 Landers, California, earthquake sequence. . J. Geophys. Res. Solid Earth 119:(4):335470
    [Crossref] [Google Scholar]
  79. Meng X, Peng Z. 2014.. Seismicity rate changes in the Salton Sea geothermal field and the San Jacinto fault zone after the 2010 MW 7.2 El Mayor-Cucapah earthquake. . Geophys. J. Int. 197:(3):175062
    [Crossref] [Google Scholar]
  80. Michael AJ, McBride SK, Hardebeck JL, Barall M, Martinez E, et al. 2019.. Statistical seismology and communication of the USGS operational aftershock forecasts for the 30 November 2018 Mw 7.1 Anchorage, Alaska, earthquake. . Seismol. Res. Lett. 91:(1):15373
    [Crossref] [Google Scholar]
  81. Michael AJ, Werner MJ. 2018.. Preface to the focus section on the Collaboratory for the Study of Earthquake Predictability (CSEP): new results and future directions. . Seismol. Res. Lett. 89:(4):122628
    [Crossref] [Google Scholar]
  82. Mignan A, Broccardo M. 2019.. One neuron versus deep learning in aftershock prediction. . Nature 574::E13
    [Crossref] [Google Scholar]
  83. Miller SA. 2020.. Aftershocks are fluid-driven and decay rates controlled by permeability dynamics. . Nat. Commun. 11:(1):5787
    [Crossref] [Google Scholar]
  84. Miller SA, Collettini C, Chiaraluce L, Cocco M, Barchi M, Kaus BJ. 2004.. Aftershocks driven by a high-pressure CO2 source at depth. . Nature 427:(6976):72427
    [Crossref] [Google Scholar]
  85. Milner KR, Field EH, Savran WH, Page MT, Jordan TH. 2020.. Operational earthquake forecasting during the 2019 Ridgecrest, California, earthquake sequence with the UCERF3-ETAS model. . Seismol. Res. Lett. 91:(3):156778
    [Crossref] [Google Scholar]
  86. Mizrahi L, Nandan S, Wiemer S. 2021.. Embracing data incompleteness for better earthquake forecasting. . J. Geophys. Res. Solid Earth 126:(12):e2021JB022379
    [Crossref] [Google Scholar]
  87. Molkenthin C, Donner C, Reich S, Zöller G, Hainzl S, et al. 2022.. GP-ETAS: semiparametric Bayesian inference for the spatio-temporal epidemic type aftershock sequence model. . Stat. Comput. 32:(2):29
    [Crossref] [Google Scholar]
  88. Nanjo KZ, Tsuruoka H, Yokoi S, Ogata Y, Falcone G, et al. 2012.. Predictability study on the aftershock sequence following the 2011 Tohoku-Oki, Japan, earthquake: first results. . Geophys. J. Int. 191:(2):65358
    [Crossref] [Google Scholar]
  89. Ogata Y. 1978.. The asymptotic behaviour of maximum likelihood estimators for stationary point processes. . Ann. Inst. Stat. Math. 30:(1):24361
    [Crossref] [Google Scholar]
  90. Ogata Y. 1988.. Statistical models for earthquake occurrences and residual analysis for point processes. . J. Am. Stat. Assoc. 83:(401):927
    [Crossref] [Google Scholar]
  91. Ogata Y, Zhuang J. 2006.. Space-time ETAS models and an improved extension. . Tectonophysics 413:(1–2):1323
    [Crossref] [Google Scholar]
  92. Okada Y. 1992.. Internal deformation due to shear and tensile faults in a half-space. . Bull. Seismol. Soc. Am. 82:(2):101840
    [Crossref] [Google Scholar]
  93. Omi T, Ogata Y, Hirata Y, Aihara K. 2013.. Forecasting large aftershocks within one day after the main shock. . Sci. Rep. 3:(1):2218
    [Crossref] [Google Scholar]
  94. Omi T, Ogata Y, Hirata Y, Aihara K. 2015.. Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches. . J. Geophys. Res. Solid Earth 120:(4):256178
    [Crossref] [Google Scholar]
  95. Page MT, van der Elst NJ. 2022.. Aftershocks preferentially occur in previously active areas. . Seism. Rec. 2:(2):1006
    [Crossref] [Google Scholar]
  96. Page MT, van der Elst N, Hardebeck J, Felzer K, Michael AJ. 2016.. Three ingredients for improved global aftershock forecasts: tectonic region, time-dependent catalog incompleteness, and intersequence variability. . Bull. Seismol. Soc. Am. 106:(5):2290301
    [Crossref] [Google Scholar]
  97. Parsons T. 2005.. A hypothesis for delayed dynamic earthquake triggering. . Geophys. Res. Lett. 32:(4):L04302
    [Crossref] [Google Scholar]
  98. Parsons T. 2020.. On the use of receiver operating characteristic tests for evaluating spatial earthquake forecasts. . Geophys. Res. Lett. 47:(17):e2020GL088570
    [Crossref] [Google Scholar]
  99. Parsons T, Ogata Y, Zhuang J, Geist EL. 2012.. Evaluation of static stress change forecasting with prospective and blind tests. . Geophys. J. Int. 188:(3):142540
    [Crossref] [Google Scholar]
  100. Peng Z, Zhao P. 2009.. Migration of early aftershocks following the 2004 Parkfield earthquake. . Nat. Geosci. 2:(12):87781
    [Crossref] [Google Scholar]
  101. Perfettini H, Avouac JP. 2004.. Postseismic relaxation driven by brittle creep: a possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. . J. Geophys. Res. 109:(B2):B02304
    [Crossref] [Google Scholar]
  102. Pollitz FF, Cattania C. 2017.. Connecting crustal seismicity and earthquake-driven stress evolution in Southern California. . J. Geophys. Res. Solid Earth 122:(8):647390
    [Crossref] [Google Scholar]
  103. Pollitz FF, Johnston MJ. 2006.. Direct test of static stress versus dynamic stress triggering of aftershocks. . Geophys. Res. Lett. 33:(15):L15318
    [Crossref] [Google Scholar]
  104. Pollitz FF, Sacks IS. 2002.. Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake. . Bull. Seismol. Soc. Am. 92:(4):148796
    [Crossref] [Google Scholar]
  105. Pollitz FF, Stein RS, Sevilgen V, Bürgmann R. 2012.. The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. . Nature 490:(7419):25053
    [Crossref] [Google Scholar]
  106. Reasenberg PA, Jones LM. 1989.. Earthquake hazard after a mainshock in California. . Science 243:(4895):117376
    [Crossref] [Google Scholar]
  107. Reasenberg PA, Simpson RW. 1992.. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. . Science 255:(5052):168790
    [Crossref] [Google Scholar]
  108. Rhoades DA, Christophersen A, Gerstenberger MC, Liukis M, Silva F, et al. 2018.. Highlights from the first ten years of the New Zealand earthquake forecast testing center. . Seismol. Res. Lett. 89:(4):122937
    [Crossref] [Google Scholar]
  109. Rhoades DA, Schorlemmer D, Gerstenberger M, Christophersen A, Zechar J, Imoto M. 2011.. Efficient testing of earthquake forecasting models. . Acta Geophys. 59:(4):72847
    [Crossref] [Google Scholar]
  110. Richards-Dinger K, Stein RS, Toda S. 2010.. Decay of aftershock density with distance does not indicate triggering by dynamic stress. . Nature 467:(7315):58386
    [Crossref] [Google Scholar]
  111. Roeloffs E, Goltz J. 2017.. The California earthquake advisory plan: a history. . Seismol. Res. Lett. 88:(3):78497
    [Crossref] [Google Scholar]
  112. Ross GJ. 2021.. Bayesian estimation of the ETAS model for earthquake occurrences. . Bull. Seismol. Soc. Am. 111:(3):147380
    [Crossref] [Google Scholar]
  113. Ross ZE, Rollins C, Cochran ES, Hauksson E, Avouac JP, Ben-Zion Y. 2017.. Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh. . Geophys. Res. Lett. 44:(16):826067
    [Crossref] [Google Scholar]
  114. Ross ZE, Trugman DT, Hauksson E, Shearer PM. 2019.. Searching for hidden earthquakes in Southern California. . Science 364:(6442):76771
    [Crossref] [Google Scholar]
  115. Savran WH, Bayona JA, Iturrieta P, Asim KM, Bao H, et al. 2022.. pyCSEP: a Python toolkit for earthquake forecast developers. . Seismol. Res. Lett. 93:(5):285870
    [Crossref] [Google Scholar]
  116. Savran WH, Werner MJ, Marzocchi W, Rhoades DA, Jackson DD, et al. 2020.. Pseudoprospective evaluation of UCERF3-ETAS forecasts during the 2019 Ridgecrest sequence. . Bull. Seismol. Soc. Am. 110:(4):1799817
    [Crossref] [Google Scholar]
  117. Schorlemmer D, Gerstenberger MC. 2007.. RELM testing center. . Seismol. Res. Lett. 78:(1):3036
    [Crossref] [Google Scholar]
  118. Schorlemmer D, Gerstenberger MC, Wiemer S, Jackson DD, Rhoades DA. 2007.. Earthquake likelihood model testing. . Seismol. Res. Lett. 78:(1):1729
    [Crossref] [Google Scholar]
  119. Schorlemmer D, Werner MJ, Marzocchi W, Jordan TH, Ogata Y, et al. 2018.. The Collaboratory for the Study of Earthquake Predictability: achievements and priorities. . Seismol. Res. Lett. 89:(4):130513
    [Crossref] [Google Scholar]
  120. Segou M, Parsons T, Ellsworth W. 2013.. Comparative evaluation of physics-based and statistical forecasts in northern California. . J. Geophys. Res. Solid Earth 118:(12):621940
    [Crossref] [Google Scholar]
  121. Seif S, Mignan A, Zechar JD, Werner MJ, Wiemer S. 2017.. Estimating ETAS: the effects of truncation, missing data, and model assumptions. . J. Geophys. Res. Solid Earth 122:(1):44969
    [Crossref] [Google Scholar]
  122. Steacy S, Gomberg J, Cocco M. 2005.. Introduction to special section: stress transfer, earthquake triggering, and time-dependent seismic hazard. . J. Geophys. Res. 110:(B5):B05S01
    [Google Scholar]
  123. Stein RS, Barka AA, Dieterich JH. 1997.. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. . Geophys. J. Int. 128:(3):594604
    [Crossref] [Google Scholar]
  124. Stockman S, Lawson DJ, Werner MJ. 2023.. Forecasting the 2016–2017 Central Apennines earthquake sequence with a neural point process. . Earth's Future 11:e2023EF003777
  125. Tan YJ, Waldhauser F, Ellsworth WL, Zhang M, Zhu W, et al. 2021.. Machine-learning-based high-resolution earthquake catalog reveals how complex fault structures were activated during the 2016–2017 central Italy sequence. . Seism. Rec. 1:(1):1119
    [Crossref] [Google Scholar]
  126. Taroni M, Marzocchi W, Schorlemmer D, Werner MJ, Wiemer S, et al. 2018.. Prospective CSEP evaluation of 1-day, 3-month, and 5-yr earthquake forecasts for Italy. . Seismol. Res. Lett. 89:(4):125161
    [Crossref] [Google Scholar]
  127. Uchide T. 2020.. Focal mechanisms of small earthquakes beneath the Japanese islands based on first-motion polarities picked using deep learning. . Geophys. J. Int. 223:(3):165871
    [Crossref] [Google Scholar]
  128. Utsu T. 1971.. Aftershocks and earthquake statistics (2): further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. . J. Fac. Sci. Hokkaido Univ. Series 7 Geophys. 3:(4):197266
    [Google Scholar]
  129. Utsu T, Ogata Y. 1995.. The centenary of the Omori formula for a decay law of aftershock activity. . J. Phys. Earth 43:(1):133
    [Crossref] [Google Scholar]
  130. van der Elst NJ. 2021.. B-positive: a robust estimator of aftershock magnitude distribution in transiently incomplete catalogs. . J. Geophys. Res. Solid Earth 126:(2):e2020JB021027
    [Crossref] [Google Scholar]
  131. van der Elst NJ, Brodsky EE. 2010.. Connecting near-field and far-field earthquake triggering to dynamic strain. . J. Geophys. Res. 115:(B7):B07311
    [Crossref] [Google Scholar]
  132. van der Elst NJ, Hardebeck JL, Michael AJ, McBride SK, Vanacore E. 2022.. Prospective and retrospective evaluation of the US Geological Survey public aftershock forecast for the 2019–2021 Southwest Puerto Rico Earthquake and aftershocks. . Seismol. Res. Lett. 93:(2A):62040
    [Crossref] [Google Scholar]
  133. van der Elst NJ, Page MT. 2017.. Nonparametric aftershock forecasts based on similar sequences in the past. . Seismol. Res. Lett. 89:(1):14552
    [Crossref] [Google Scholar]
  134. van der Elst NJ, Savage HM. 2015.. Frequency dependence of delayed and instantaneous triggering on laboratory and simulated faults governed by rate-state friction. . J. Geophys. Res. Solid Earth 120::340629
    [Crossref] [Google Scholar]
  135. van der Elst NJ, Shaw BE. 2015.. Larger aftershocks happen farther away: nonseparability of magnitude and spatial distributions of aftershocks. . Geophys. Res. Lett. 42:(14):577178
    [Crossref] [Google Scholar]
  136. Veen A, Schoenberg FP. 2008.. Estimation of space–time branching process models in seismology using an em–type algorithm. . J. Am. Stat. Assoc. 103:(482):61424
    [Crossref] [Google Scholar]
  137. Ventura-Valentín W, Brudzinski MR. 2022.. Characterization of swarm and mainshock–aftershock behavior in Puerto Rico. . Seismol. Res. Lett. 93:(2A):64152
    [Crossref] [Google Scholar]
  138. Vidale JE, Shearer PM. 2006.. A survey of 71 earthquake bursts across southern California: exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. . J. Geophys. Res. 111:(B5):B05312
    [Crossref] [Google Scholar]
  139. Wang Q, Schoenberg FP, Jackson DD. 2010.. Standard errors of parameter estimates in the ETAS model. . Bull. Seismol. Soc. Am. 100:(5A):19892001
    [Crossref] [Google Scholar]
  140. Weiss JR, Walters RJ, Morishita Y, Wright TJ, Lazecky M, et al. 2020.. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data. . Geophys. Res. Lett. 47:(17):e2020GL087376
    [Crossref] [Google Scholar]
  141. Woessner J, Hainzl S, Marzocchi W, Werner MJ, Lombardi AM, et al. 2011.. A retrospective comparative forecast test on the 1992 Landers sequence. . J. Geophys. Res. 116:(B5):B05305
    [Crossref] [Google Scholar]
  142. Yang W, Ben-Zion Y. 2009.. Observational analysis of correlations between aftershock productivities and regional conditions in the context of a damage rheology model. . Geophys. J. Int. 177:(2):48190
    [Crossref] [Google Scholar]
  143. Yoon CE, Cochran ES, Vanacore EA, Huerfano V, Báez-Sánchez G, et al. 2023.. A detailed view of the 2020–2023 southwestern Puerto Rico seismic sequence with deep learning. . Bull. Seismol. Soc. Am. 113:(6):2377415
    [Crossref] [Google Scholar]
  144. Yoshida K, Hasegawa A, Yoshida T, Matsuzawa T. 2019.. Heterogeneities in stress and strength in Tohoku and its relationship with earthquake sequences triggered by the 2011 M9 Tohoku-Oki earthquake. . Pure Appl. Geophys. 176::133555
    [Crossref] [Google Scholar]
  145. Zechar JD, Gerstenberger MC, Rhoades DA. 2010.. Likelihood-based tests for evaluating space-rate-magnitude earthquake forecasts. . Bull. Seismol. Soc. Am. 100:(3):118495
    [Crossref] [Google Scholar]
  146. Zechar JD, Schorlemmer D, Werner MJ, Gerstenberger MC, Rhoades DA, Jordan TH. 2013.. Regional earthquake likelihood models I: first-order results. . Bull. Seismol. Soc. Am. 103:(2A):78798
    [Crossref] [Google Scholar]
  147. Zhang X, Shcherbakov R. 2016.. Power-law rheology controls aftershock triggering and decay. . Sci. Rep. 6::36668
    [Crossref] [Google Scholar]
  148. Zhuang J, Ogata Y, Wang T. 2017.. Data completeness of the Kumamoto earthquake sequence in the JMA catalog and its influence on the estimation of the ETAS parameters. . Earth Planets Space 69::36
    [Crossref] [Google Scholar]
  149. Zlydenko O, Elidan G, Hassidim A, Kukliansky D, Matias Y, . 2023.. A neural encoder for earthquake rate forecasting. . Sci. Rep. 13:12350
    [Google Scholar]
/content/journals/10.1146/annurev-earth-040522-102129
Loading
/content/journals/10.1146/annurev-earth-040522-102129
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error