1932

Abstract

Two major hypotheses have been proposed for the origin of the Martian moons Phobos and Deimos: the in situ formation theory, supported by the fact that they have circular orbits nearly parallel to the Martian equator, and the asteroid capture theory, supported by the similarity of their reflectance spectra to those of carbonaceous asteroids. Regarding the in situ formation theory, recent theoretical studies have focused on the huge impact scenario, which proposes that debris ejected into orbits during the formation of a giant impact basin on Mars accumulated to form the Martian moons. On the other hand, gas drag from a Martian gas envelope composed of gravitationally attracted solar nebula gas has been proposed as a mechanism for trapping the approaching asteroidal objects in areocentric orbits. In particular, an object entering a temporarily captured orbit in the Martian gravitational sphere would easily evolve into a fully captured moon with a near-equatorial orbit under realistic gas densities. The upcoming Phobos sample return mission is expected to elucidate the origin of both moons, with implications for material transport in the early Solar System and the early evolution of Mars.

  • ▪  The origin of Mars' small moons, Phobos and Deimos, has long been an open question.
  • ▪  The leading hypotheses are asteroid capture, inferred from their appearance like primitive asteroids, and giant impact, implied by the regularity of their orbits.
  • ▪  The origin of Phobos will be precisely determined by a sample return mission to be conducted in the late 2020s to early 2030s.
  • ▪  Determining the origin of the Martian moons will provide clues to clarifying how the parent planet Mars formed and came to have a habitable surface environment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040522-110615
2024-07-23
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040522-110615.html?itemId=/content/journals/10.1146/annurev-earth-040522-110615&mimeType=html&fmt=ahah

Literature Cited

  1. Abe M, Takagi Y, Kitazato K, Abe S, Hiroi T, et al. 2006.. Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. . Science 312::133438
    [Crossref] [Google Scholar]
  2. Adachi I, Hayashi C, Nakazawa K. 1976.. The gas drag effect on the elliptic motion of a solid body in the primordial solar nebula. . Prog. Theor. Phys. 56::175671
    [Crossref] [Google Scholar]
  3. Anders E, Grevesse N. 1989.. Abundances of the elements: meteoritic and solar. . Geochim. Cosmochim. Acta 53::197214
    [Crossref] [Google Scholar]
  4. Andert TP, Rosenblatt P, Pätzold M, Häusler B, Dehant V, et al. 2010.. Precise mass determination and the nature of Phobos. . Geophys. Res. Lett. 37::L09202
    [Crossref] [Google Scholar]
  5. Andrews-Hanna JC, Zuber MT. 2010.. Elliptical craters and basins on the terrestrial planets. . Geol. Soc. Am. Spec. Pap. 465:. https://doi.org/10.1130/2010.2465(01)
    [Google Scholar]
  6. Andrews-Hanna JC, Zuber MT, Banerdt WB. 2008.. The Borealis basin and the origin of the martian crustal dichotomy. . Nature 453::121215
    [Crossref] [Google Scholar]
  7. Asphaug E, Melosh HJ. 1993.. The Stickney impact of Phobos: a dynamical model. . Icarus 101::14464
    [Crossref] [Google Scholar]
  8. Bagheri A, Khan A, Efroimsky M, Kruglyakov M, Giardini D. 2021.. Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor. . Nat. Astron. 5::53943
    [Crossref] [Google Scholar]
  9. Ballouz RL, Baresi N, Crites ST, Kawakatsu Y, Fujimoto M. 2019.. Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion. . Nat. Geosci. 12::22934
    [Crossref] [Google Scholar]
  10. Basilevsky AT, Lorenz CA, Shingareva TV, Head JW, Ramsley KR, Zubarev AE. 2014.. The surface geology and geomorphology of Phobos. . Planet. Space Sci. 102::95118
    [Crossref] [Google Scholar]
  11. Black BA, Mittal T. 2015.. The demise of Phobos and development of a Martian ring system. . Nat. Geosci. 8::91317
    [Crossref] [Google Scholar]
  12. Bottke WF Jr., Love SG, Tytell D, Glotch T. 2000.. Interpreting the elliptical crater populations on Mars, Venus, and the Moon. . Icarus 145::10821
    [Crossref] [Google Scholar]
  13. Burns JA. 1972.. Dynamical characteristics of Phobos and Deimos. . Rev. Geophys. 10::46383
    [Crossref] [Google Scholar]
  14. Burns JA. 1978.. The dynamical evolution and origin of the Martian moons. . Vistas Astron. 22::193210
    [Crossref] [Google Scholar]
  15. Burns JA. 1992.. Contradictory clues as to the origin of the Martian moons. . In Mars, ed. HH Kieffer, BM Jakosky, CW Snyder, MS Matthews , pp. 1283301. Tucson:: Univ. Arizona Press
    [Google Scholar]
  16. Canup R, Salmon J. 2018.. Origin of Phobos and Deimos by the impact of a Vesta-to-Ceres sized body with Mars. . Sci. Adv. 4::eaar6887
    [Crossref] [Google Scholar]
  17. Carry B. 2012.. Density of asteroids. . Planet. Space Sci. 73::98118
    [Crossref] [Google Scholar]
  18. Cho Y, Böttger U, Rull F, Hübers HW, Belenguer T, et al. 2021.. In situ science on Phobos with the Raman spectrometer for MMX (RAX): preliminary design and feasibility of Raman measurements. . Earth Planets Space 73::232
    [Crossref] [Google Scholar]
  19. Cibulková H, Nortunen H, Ďurech J, Kaasalainen M, Vereš P, et al. 2018.. Distribution of shape elongations of main belt asteroids derived from Pan-STARRS1 photometry. . Astron. Astrophys. 611::A86
    [Crossref] [Google Scholar]
  20. Citron RI, Genda H, Ida S. 2015.. Formation of Phobos and Deimos via a giant impact. . Icarus 252::33438
    [Crossref] [Google Scholar]
  21. Craddock RA. 2011.. Are Phobos and Deimos the result of a giant impact?. Icarus 211::115061
    [Crossref] [Google Scholar]
  22. Dauphas N, Pourmand A. 2011.. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. . Nature 473::48992
    [Crossref] [Google Scholar]
  23. DeMeo FE, Binzel RP, Slivan SM, Bus SJ. 2009.. An extension of the Bus asteroid taxonomy into the near-infrared. . Icarus 202::16080
    [Crossref] [Google Scholar]
  24. DeMeo FE, Carry B. 2014.. Solar System evolution from compositional mapping of the asteroid belt. . Nature 505::62934
    [Crossref] [Google Scholar]
  25. Emelyanov NV, Vashkovyak SN, Nasonova LP. 1993.. The dynamics of Martian satellites from observations. . Astron. Astrophys. 267::63442
    [Google Scholar]
  26. Fanale FP, Salvail JR. 1990.. Evolution of the water regime of Phobos. . Icarus 88::38095
    [Crossref] [Google Scholar]
  27. Fraeman AA, Arvidson RE, Murchie SL, Rivkin A, Bibring JP, et al. 2012.. Analysis of disk-resolved OMEGA and CRISM spectral observations of Phobos and Deimos. . J. Geophys. Res. 117:(E11):E00J15
    [Crossref] [Google Scholar]
  28. Fraeman AA, Murchie SL, Arvidson RE, Clark RN, Morris RV, et al. 2014.. Spectral absorptions on Phobos and Deimos in the visible/near infrared wavelengths and their compositional constraints. . Icarus 229::196205
    [Crossref] [Google Scholar]
  29. Frey H. 2008.. Ages of very large impact basins on Mars: implications for the late heavy bombardment in the inner solar system. . Geophys. Res. Lett. 35::L13203
    [Crossref] [Google Scholar]
  30. Gendrin A, Langevin Y, Erard S. 2005.. ISM observation of Phobos reinvestigated: identification of a mixture of olivine and low-calcium pyroxene. . J. Geophys. Res. 110:(E4):E04014
    [Crossref] [Google Scholar]
  31. Giuranna M, Roush TL, Duxbury T, Hogan RC, Carli C, et al. 2011.. Compositional interpretation of PFS/MEx and TES/MGS thermal infrared spectra of Phobos. . Planet. Space Sci. 59::130825
    [Crossref] [Google Scholar]
  32. Glotch TD, Edwards CS, Yesiltas M, Shirley KA, McDougall DS, et al. 2018.. MGS-TES spectra suggest a basaltic component in the regolith of Phobos. . J. Geophys. Res. Planets 123::246784
    [Crossref] [Google Scholar]
  33. Goldreich P. 1965.. Inclination of satellite orbits about an oblate precessing planet. . Astron. J. 70::59
    [Crossref] [Google Scholar]
  34. Hall A. 1878.. Discovery of satellites of Mars. . MNRAS 38::2059
    [Google Scholar]
  35. Hasegawa S, Marsset M, DeMeo FE, Bus SJ, Ishiguro M, et al. 2022.. The appearance of a ``fresh'' surface on 596 Scheila as a consequence of the 2010 impact event. . Astrophys. J. Lett. 924::L9
    [Crossref] [Google Scholar]
  36. Hayashi C, Nakazawa K, Nakagawa Y. 1985.. Formation of the solar system. . In Protostars and Planets II, ed. DC Black, MS Matthews , pp. 110053. Tucson:: Univ. Arizona Press
    [Google Scholar]
  37. Hemmi R, Miyamoto H. 2020.. Morphology and morphometry of sub-kilometer craters on the nearside of Phobos and implications for regolith properties. . Trans. Jpn. Soc. Aeronaut. Space Sci. 63::12431
    [Crossref] [Google Scholar]
  38. Heppenheimer TA, Porco C. 1977.. New contributions to the problem of capture. . Icarus 30::385401
    [Crossref] [Google Scholar]
  39. Hesselbrock AJ, Minton DA. 2017.. An ongoing satellite–ring cycle of Mars and the origins of Phobos and Deimos. . Nat. Geosci. 10::26669
    [Crossref] [Google Scholar]
  40. Higuchi A, Ida S. 2017.. Temporary capture of asteroids by an eccentric planet. . Astron. J. 153::155
    [Crossref] [Google Scholar]
  41. Hirata N. 2017.. Spatial distribution of impact craters on Deimos. . Icarus 288::6977
    [Crossref] [Google Scholar]
  42. Hu X, Oberst J, Willner K. 2020.. Equipotential figure of Phobos suggests its late accretion near 3.3 Mars radii. . Geophys. Res. Lett. 47::e2019GL085958
    [Crossref] [Google Scholar]
  43. Hunten DM. 1979.. Capture of Phobos and Deimos by photoatmospheric drag. . Icarus 37::11323
    [Crossref] [Google Scholar]
  44. Hyodo R, Genda H, Charnoz S, Pignatale FC, Rosenblatt P. 2018.. On the impact origin of Phobos and Deimos. IV. Volatile depletion. . Astrophys. J. 860::150
    [Crossref] [Google Scholar]
  45. Hyodo R, Genda H, Charnoz S, Rosenblatt P. 2017a.. On the impact origin of Phobos and Deimos. I. Thermodynamic and physical aspects. . Astrophys. J. 845::125
    [Crossref] [Google Scholar]
  46. Hyodo R, Genda H, Sekiguchi R, Madeira G, Charnoz S. 2022.. Challenges in forming Phobos and Deimos directly from a splitting of an ancestral single moon. . Planet. Sci. J. 3::204
    [Crossref] [Google Scholar]
  47. Hyodo R, Rosenblatt P, Genda H, Charnoz S. 2017b.. On the impact origin of Phobos and Deimos. II. True polar wander and disk evolution. . Astrophys. J. 851::122
    [Crossref] [Google Scholar]
  48. Jacobson RA. 2010.. The orbits and masses of the Martian satellites and the libration of Phobos. . Astron. J. 139::66879
    [Crossref] [Google Scholar]
  49. Jacobson RA, Lainey V. 2014.. Martian satellite orbits and ephemerides. . Planet. Space Sci. 102::3544
    [Crossref] [Google Scholar]
  50. Jacobson RA, Synnott SP, Campbell JK. 1989.. The orbits of the satellites of Mars from spacecraft and Earthbased observations. . Astron. Astrophys. 225::54854
    [Google Scholar]
  51. Johansen A, Lambrechts M. 2017.. Forming planets via pebble accretion. . Annu. Rev. Earth Planet. Sci. 45::35987
    [Crossref] [Google Scholar]
  52. Johansen A, Ronnet T, Bizzarro M, Schiller M, Lambrechts M, et al. 2021.. A pebble accretion model for the formation of the terrestrial planets in the Solar System. . Sci. Adv. 7::eabc0444
    [Crossref] [Google Scholar]
  53. Kawakatsu Y, Kuramoto K, Usui T, Sugahara H, Ootake H, et al. 2023.. Preliminary design of Martian Moons eXploration (MMX). . Acta Astronaut. 202::71528
    [Crossref] [Google Scholar]
  54. Kitazato K, Milliken RE, Iwata T, Abe M, Ohtake M, et al. 2019.. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. . Science 364::27275
    [Crossref] [Google Scholar]
  55. Klaasen KP, Duxbury TC, Veverka J. 1979.. Photometry of Phobos and Deimos from Viking Orbiter images. . J. Geophys. Res. 84:(B14):847886
    [Crossref] [Google Scholar]
  56. Kuramoto K, Kawakatsu Y, Fujimoto M, Araya A, Barucci MA, et al. 2022.. Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets. . Earth Planets Space 74::12
    [Crossref] [Google Scholar]
  57. Kurokawa H, Tanigawa T. 2018.. Suppression of atmospheric recycling of planets embedded in a protoplanetary disc by buoyancy barrier. . MNRAS 479::63548
    [Crossref] [Google Scholar]
  58. Kuwahara A, Kurokawa H, Ida S. 2019.. Gas flow around a planet embedded in a protoplanetary disc-dependence on planetary mass. . Astron. Astrophys. 623::A179
    [Crossref] [Google Scholar]
  59. Kuzmin RO, Zabalueva EV. 2003.. The temperature regime of the surface layer of the Phobos regolith in the region of the potential Fobos–Grunt space station landing site. . Solar Syst. Res. 37::48088
    [Crossref] [Google Scholar]
  60. Lainey V, Pasewaldt A, Robert V, Rosenblatt P, Jaumann R, et al. 2021.. Mars moon ephemerides after 14 years of Mars Express data. . Astron. Astrophys. 650::A64
    [Crossref] [Google Scholar]
  61. Laskar J. 1988.. Secular evolution of the solar system over 10 million years. . Astron. Astrophys. 198::34162
    [Google Scholar]
  62. Laskar J, Robutel P. 1993.. The chaotic obliquity of the planets. . Nature 361::60812
    [Crossref] [Google Scholar]
  63. Lawrence DJ, Peplowski PN, Beck AW, Burks MT, Chabot NL, et al. 2019.. Measuring the elemental composition of Phobos: the Mars-moon Exploration with GAmma rays and NEutrons (MEGANE) investigation for the Martian Moons eXploration (MMX) Mission. . Earth Space Sci. 6::260523
    [Crossref] [Google Scholar]
  64. Madeira G, Charnoz S, Zhang Y, Hyodo R, Michel P, et al. 2023.. Exploring the recycling model of Phobos formation: rubble-pile satellites. . Astron. J. 165::161
    [Crossref] [Google Scholar]
  65. Mahlke M, Carry B, Mattei PA. 2022.. Asteroid taxonomy from cluster analysis of spectrometry and albedo. . Astron. Astrophys. 665::A26
    [Crossref] [Google Scholar]
  66. Michel P, Ulamec S, Böttger U, Grott M, Murdoch N, et al. 2022.. The MMX rover: performing in situ surface investigations on Phobos. . Earth Planets Space 74::2
    [Crossref] [Google Scholar]
  67. Miyamoto H, Niihara T, Wada K, Ogawa K, Senshu H, et al. 2021.. Surface environment of Phobos and Phobos simulant UTPS. . Earth Planets Space 73::214
    [Crossref] [Google Scholar]
  68. Murchie S, Erard S. 1996.. Spectral properties and heterogeneity of Phobos from measurements by Phobos 2. . Icarus 123::6386
    [Crossref] [Google Scholar]
  69. Murchie S, Thomas N, Britt D, Herkenhoff K, Bell JF III 1999.. Mars Pathfinder spectral measurements of Phobos and Deimos: comparison with previous data. . J. Geophys. Res. 104:(E4):906979
    [Crossref] [Google Scholar]
  70. Murchie SL, Britt DT, Head JW, Pratt SF, Fisher PC, et al. 1991.. Color heterogeneity of the surface of Phobos: relationships to geologic features and comparison to meteorite analogs. . J. Geophys. Res. 96:(B4):592545
    [Crossref] [Google Scholar]
  71. Murray CD, Dermott SF. 1999.. Solar System Dynamics. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  72. Nakamura E, Kobayashi K, Tanaka R, Kunihiro T, Kitagawa H, et al. 2022.. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective. . Proc. Jpn. Acad. Ser. B 98::22782
    [Crossref] [Google Scholar]
  73. Nakamura T, Noguchi T, Tanaka M, Zolensky ME, Kimura M, et al. 2011.. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. . Science 333::111316
    [Crossref] [Google Scholar]
  74. Nakazawa K, Ida S. 1988.. Hill's approximation in the three-body problem. . Prog. Theor. Phys. Suppl. 96::16774
    [Crossref] [Google Scholar]
  75. Nakazawa K, Komuro T, Hayashi C. 1983.. Origin of the Moon—capture by gas drag of the Earth's primordial atmosphere. . Moon Planets 28::31127
    [Crossref] [Google Scholar]
  76. Opeil CP, Britt DT, Macke RJ, Consolmagno GJ. 2020.. The surprising thermal properties of CM carbonaceous chondrites. . Meteorit. Planet. Sci. 55:. https://doi.org/10.1111/maps.13556
    [Crossref] [Google Scholar]
  77. Pang KD, Pollack JB, Veverka J, Lane AL, Ajello JM. 1978.. The composition of Phobos: evidence for carbonaceous chondrite surface from spectral analysis. . Science 199::6466
    [Crossref] [Google Scholar]
  78. Pang KD, Rhoads JW, Lane AL, Ajello JM. 1980.. Spectral evidence for a carbonaceous chondrite surface composition on Deimos. . Nature 283::27778
    [Crossref] [Google Scholar]
  79. Pignatale FC, Charnoz S, Rosenblatt P, Hyodo R, Nakamura T, Genda H. 2018.. On the impact origin of Phobos and Deimos. III. Resulting composition from different impactors. . Astrophys. J. 853::118
    [Crossref] [Google Scholar]
  80. Poggiali G, Matsuoka M, Barucci MA, Brucato JR, Beck P, et al. 2022.. Phobos and Deimos surface composition: search for spectroscopic analogues. . MNRAS 516::46576
    [Crossref] [Google Scholar]
  81. Pollack JB, Burns JA, Tauber ME. 1979.. Gas drag in primordial circumplanetary envelopes: a mechanism for satellite capture. . Icarus 37::587611
    [Crossref] [Google Scholar]
  82. Quillen AC, Lane M, Nakajima M, Wright E. 2020.. Excitation of tumbling in Phobos and Deimos. . Icarus 340::113641
    [Crossref] [Google Scholar]
  83. Ramsley KR, Head JW. 2013.. Mars impact ejecta in the regolith of Phobos: bulk concentration and distribution. . Planet. Space Sci. 87::11529
    [Crossref] [Google Scholar]
  84. Ramsley KR, Head JW. 2017.. The Stickney Crater ejecta secondary impact crater spike on Phobos: implications for the age of Stickney and the surface of Phobos. . Planet. Space Sci. 138::724
    [Crossref] [Google Scholar]
  85. Ramsley KR, Head JW. 2021.. The origins and geological histories of Deimos and Phobos: hypotheses and open questions. . Space Sci. Rev. 217::86
    [Crossref] [Google Scholar]
  86. Raymond SN, Izidoro A. 2017.. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion. . Icarus 297::13448
    [Crossref] [Google Scholar]
  87. Ribas Á, Bouy H, Merín B. 2015.. Protoplanetary disk lifetimes versus stellar mass and possible implications for giant planet populations. . Astron. Astrophys. 576::A52
    [Crossref] [Google Scholar]
  88. Rivkin AS, Brown RH, Trilling DE, Bell JF III, Plassmann JH. 2002.. Near-infrared spectrophotometry of Phobos and Deimos. . Icarus 156::6475
    [Crossref] [Google Scholar]
  89. Rosenblatt P. 2011.. The origin of the Martian moons revisited. . Astron. Astrophys. Rev. 19::44
    [Crossref] [Google Scholar]
  90. Rosenblatt P, Charnoz S, Dunseath KM, Terao-Dunseath M, Trinh A, et al. 2016.. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. . Nat. Geosci. 9::58183
    [Crossref] [Google Scholar]
  91. Sagdeev RZ, Zakharov AV. 1989.. Brief history of the Phobos mission. . Nature 341::58185
    [Crossref] [Google Scholar]
  92. Saito H, Kuramoto K. 2018.. Formation of a hybrid-type proto-atmosphere on Mars accreting in the solar nebula. . MNRAS 475::127487
    [Crossref] [Google Scholar]
  93. Sanderson K. 2012.. Russian Mars moon probe crashes down. . Nature. https://doi.org/10.1038/nature.2012.9813
    [Google Scholar]
  94. Sasaki S. 1990.. Origin of Phobos–aerodynamic drag capture by the primary atmosphere of Mars. . Abstr. Lunar Planet. Sci. Conf. 21::106970
    [Google Scholar]
  95. Schmedemann N, Michael GG, Ivanov BA, Murray JB, Neukum G. 2014.. The age of Phobos and its largest crater, Stickney. . Planet. Space Sci. 102::15263
    [Crossref] [Google Scholar]
  96. Schultz PH, Lutz-Garihan AB. 1982.. Grazing impacts on Mars: a record of lost satellites. . J. Geophys. Res. 87:(S01):A8496
    [Crossref] [Google Scholar]
  97. Suetsugu R, Ohtsuki K, Tanigawa T. 2011.. Temporary capture of planetesimals by a planet from their heliocentric orbits. . Astron. J. 142::200
    [Crossref] [Google Scholar]
  98. Szeto AM. 1983.. Orbital evolution and origin of the Martian satellites. . Icarus 55::13368
    [Crossref] [Google Scholar]
  99. Takir D, Matsuoka M, Waiters A, Kaluna H, Usui T. 2022.. Observations of Phobos and Deimos with SpeX at NASA infrared telescope facility. . Icarus 371::114691
    [Crossref] [Google Scholar]
  100. Tang H, Dauphas N. 2014.. 60Fe–60 Ni chronology of core formation in Mars. . Earth Planet. Sci. Lett. 390::26474
    [Crossref] [Google Scholar]
  101. Thomas N, Stelter R, Ivanov A, Bridges NT, Herkenhoff KE, McEwen AS. 2011.. Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. . Planet. Space Sci. 59::128192
    [Crossref] [Google Scholar]
  102. Thomas P. 1979.. Surface features of Phobos and Deimos. . Icarus 40::22343
    [Crossref] [Google Scholar]
  103. Thomas P, Veverka J. 1980.. Crater densities on the satellites of Mars. . Icarus 41::36580
    [Crossref] [Google Scholar]
  104. Thomas PC. 1989.. The shapes of small satellites. . Icarus 77::24874
    [Crossref] [Google Scholar]
  105. Thomas PC, Adinolfi D, Helfenstein P, Simonelli D, Veverka J. 1996.. The surface of Deimos: contribution of materials and processes to its unique appearance. . Icarus 123::53656
    [Crossref] [Google Scholar]
  106. Thomas PC, Veverka J, Sullivan R, Simonelli DP, Malin MC, et al. 2000.. Phobos: regolith and ejecta blocks investigated with Mars Orbiter Camera images. . J. Geophys. Res. 105:(E6):15091106
    [Crossref] [Google Scholar]
  107. Usui T, Bajo KI, Fujiya W, Furukawa Y, Koike, et al. 2020.. The importance of Phobos sample return for understanding the Mars-moon system. . Space Sci. Rev. 216::49
    [Crossref] [Google Scholar]
  108. Vernazza P, Ferrais M, Jorda L, Hanuš J, Carry B, et al. 2021.. VLT/SPHERE imaging survey of the largest main-belt asteroids: final results and synthesis. . Astron. Astrophys. 654::A56
    [Crossref] [Google Scholar]
  109. Visser RG, Ormel CW, Dominik C, Ida S. 2020.. Spinning up planetary bodies by pebble accretion. . Icarus 335::113380
    [Crossref] [Google Scholar]
  110. Wada K, Grott M, Michel P, Walsh KJ, Barucci AM, et al. 2018.. Asteroid Ryugu before the Hayabusa2 encounter. . Prog. Earth Planet. Sci. 5::82
    [Crossref] [Google Scholar]
  111. Warren PH. 2011.. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. . Earth Planet. Sci. Lett. 311::93100
    [Crossref] [Google Scholar]
  112. Willner K, Shi X, Oberst J. 2014.. Phobos' shape and topography models. . Planet. Space Sci. 102::5159
    [Crossref] [Google Scholar]
  113. Wood JA. 1986.. Moon over Mauna Loa: a review of hypotheses of formation of Earth's moon. . In Origin of the Moon, ed. WK Hartmann, RJ Phillips, GJ Taylor , pp. 1755. Houston, TX:: Lunar Planet. Inst.
    [Google Scholar]
  114. Woolfson M. 1978.. The origin of the Martian satellites. . Q. J. R. Astron. Soc. 19::1017
    [Google Scholar]
  115. Yada T, Abe M, Okada T, Nakato A, Yogata K, et al. 2022.. Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. . Nat. Astron. 6::21420
    [Crossref] [Google Scholar]
  116. Yamamoto S, Watanabe S, Matsunaga T. 2018.. Space-weathered anorthosite as spectral D-type material on the Martian satellites. . Geophys. Res. Lett. 45::130512
    [Crossref] [Google Scholar]
  117. Yeomans DK, Antreasian PG, Barriot JP, Chesley SR, Dunham DW, et al. 2000.. Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros. . Science 289::208588
    [Crossref] [Google Scholar]
  118. Yoder CF. 1982.. Tidal rigidity of Phobos. . Icarus 49::32746
    [Crossref] [Google Scholar]
  119. Yokota S, Terada N, Matsuoka A, Murata N, Saito Y, et al. 2021.. In situ observations of ions and magnetic field around Phobos: the mass spectrum analyzer (MSA) for the Martian Moons eXploration (MMX) mission. . Earth Planets Space 73::216
    [Crossref] [Google Scholar]
  120. Yokoyama T, Nagashima K, Nakai I, Young ED, Abe Y, et al. 2022.. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. . Science 379::eabn7850
    [Crossref] [Google Scholar]
  121. Zellner BH, Capen RC. 1974.. Photometric properties of the Martian satellites. . Icarus 23::43744
    [Crossref] [Google Scholar]
  122. Zhang X, Showman AP. 2018.. Global-mean vertical tracer mixing in planetary atmospheres. I. Theory and fast-rotating planets. . Astrophys. J. 866::1
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040522-110615
Loading
/content/journals/10.1146/annurev-earth-040522-110615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error