1932

Abstract

Continental lithosphere is deformed, destroyed, or otherwise modified in several ways. Processes that modify the lithosphere include subduction, terrane accretion, orogenesis, rifting, volcanism/magmatism, lithospheric loss or delamination, small-scale or edge-driven convection, and plume-lithosphere interaction. The eastern North American margin (ENAM) provides an exceptional locale to study this broad suite of processes, having undergone multiple complete Wilson cycles of supercontinent formation and dispersal, along with ∼200 Ma of postrift evolution. Moreover, recent data collection efforts associated with EarthScope, GeoPRISMS, and related projects have led to a wealth of new observations in eastern North America. Here I highlight recent advances in our understanding of the structure of the continental lithosphere beneath eastern North America and the processes that have modified it through geologic time, with a focus on recent geophysical imaging that has illuminated the lithosphere in unprecedented detail.

  • ▪  Eastern North America experienced a range of processes that deform, destroy, or modify continental lithosphere, providing new insights into how lithosphere evolves through time.
  • ▪  Subduction and terrane accretion, continental rifting, and postrift evolution have all played a role in shaping lithospheric structure beneath eastern North America.
  • ▪  Relict structures from past tectonic events are well-preserved in ENAM lithosphere; however, lithospheric modification that postdates the breakup of Pangea has also been significant.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040522-115229
2024-07-23
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040522-115229.html?itemId=/content/journals/10.1146/annurev-earth-040522-115229&mimeType=html&fmt=ahah

Literature Cited

  1. Amidon WH, Roden-Tice M, Anderson AJ, McKeon RE, Shuster DL. 2016.. Late Cretaceous unroofing of the White Mountains, New Hampshire, USA: an episode of passive margin rejuvenation?. Geology 44::41518
    [Crossref] [Google Scholar]
  2. Aragon JC, Long MD, Benoit MH. 2017.. Lateral variations in SKS splitting across the MAGIC array, central Appalachians. . Geochem. Geophys. Geosyst. 18::413655
    [Crossref] [Google Scholar]
  3. Artemieva IM. 2011.. The Lithosphere: An Interdisciplinary Approach. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  4. Artemieva IM, Mooney WD. 2001.. Thermal thickness and evolution of Precambrian lithosphere: a global study. . J. Geophys. Res. 106:(B8):16387414
    [Crossref] [Google Scholar]
  5. Axen GJ, van Wijk JW, Currie CA. 2018.. Basal continental mantle lithosphere displaced by flat-slab subduction. . Nat. Geosci. 11::96164
    [Crossref] [Google Scholar]
  6. Benson RN. 2003.. Age estimates of the seaward-dipping volcanic wedge, earliest oceanic crust, and earliest drift-stage sediments along the North Atlantic continental margin. . Geophys. Monogr. Ser. 136::6175
    [Google Scholar]
  7. Bird P. 1979.. Continental delamination and the Colorado Plateau. . J. Geophys. Res. 84:(B13):756171
    [Crossref] [Google Scholar]
  8. Biryol CB, Wagner LS, Fischer KM, Hawman RB. 2016.. Relationship between observed upper mantle structures and recent tectonic activity across the Southeastern United States. . J. Geophys. Res. Solid Earth 121::3393414
    [Crossref] [Google Scholar]
  9. Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV, et al. 2013.. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. . Science 340::94145
    [Crossref] [Google Scholar]
  10. Boyce A, Bastow ID, Golos EM, Rondenay S, Burdick S, van der Hilst RD. 2019.. Variable modification of continental lithosphere during the Proterozoic Grenville orogeny: evidence from teleseismic P-wave tomography. . Earth Planet. Sci. Lett. 525::115763
    [Crossref] [Google Scholar]
  11. Broadley MW, Barry PH, Ballentine CJ, Taylor LA, Burgess R. 2018.. End-Permian extinction amplified by plume-induced volatile release of recycled lithospheric volatiles. . Nat. Geosci. 11::68287
    [Crossref] [Google Scholar]
  12. Brownlee SJ, Schulte-Pelkum V, Raju A, Mahan K, Condit C, Orlandini OF. 2017.. Characteristics of deep crustal seismic anisotropy from a compilation of rock elasticity tensors and their expression in receiver functions. . Tectonics 36::183557
    [Crossref] [Google Scholar]
  13. Brunsvik BR, Eilon ZC, Lynner C. 2021.. Mantle structure and flow across the continent-ocean transition of the eastern North American margin: anisotropic S-wave tomography. . Geochem. Geophys. Geosyst. 22::e2021GC010084
    [Crossref] [Google Scholar]
  14. Burgess SD, Muirhead JD, Bowring SA. 2017.. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. . Nat. Commun. 8::164
    [Crossref] [Google Scholar]
  15. Burov E, Guillou-Frottier L. 2005.. The plume head–continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. . Geophys. J. Int. 161::46990
    [Crossref] [Google Scholar]
  16. Byrnes JS, Bezada M, Long MD, Benoit MH. 2019.. Thin lithosphere beneath the central Appalachian Mountains: constraints from seismic attenuation beneath the MAGIC array. . Earth Planet. Sci. Lett. 519::297307
    [Crossref] [Google Scholar]
  17. Carlson RW, Pearson DG, James DE. 2005.. Physical, chemical, and chronological characteristics of continental mantle. . Rev. Geophys. 43::RG1001
    [Crossref] [Google Scholar]
  18. Chen H, Tang M, Song S. 2023.. Catastrophic craton destruction via wholesale lithosphere delamination. . Geology 51::46064
    [Crossref] [Google Scholar]
  19. Chu R, Leng W, Helmberger DV, Gurnis M. 2013.. Hidden hotspot track beneath the eastern United States. . Nat. Geosci. 6::93666
    [Crossref] [Google Scholar]
  20. Clift P, Vannucchi P. 2004.. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. . Rev. Geophys. 42::RG2001
    [Crossref] [Google Scholar]
  21. Clowes RM. 2011.. Initiation, development, and benefits of Lithoprobe—shaping the direction of Earth science research in Canada and beyond. . Can. J. Earth Sci. 47::291314
    [Crossref] [Google Scholar]
  22. Conrad CP, Wu B, Smith EI, Bianco TA, Tibbetts A. 2010.. Shear-driven upwelling induced by lateral viscosity variations and asthenospheric shear: a mechanism for intraplate volcanism. . Phys. Earth Planet. Inter. 178::16275
    [Crossref] [Google Scholar]
  23. Cook FA, Percival JA, Clowes RM. 2012.. Tectonic styles in Canada: Lithoprobe perspective on evolution of the North American continent. . Geol. Assoc. Can. Spec. Pap. 49::46798
    [Google Scholar]
  24. Dave R, Li A. 2016.. Destruction of the Wyoming craton: seismic evidence and geodynamic processes. . Geology 44::88386
    [Crossref] [Google Scholar]
  25. Davis M, Kusznir N. 2004.. Depth-dependent lithospheric stretching at rifted continental margins. . In Rheology and Deformation of the Lithosphere at Continental Margins, ed. GD Karner, B Taylor, NW Driscoll, DL Kohlstedt , pp. 92137. New York:: Columbia Univ. Press
    [Google Scholar]
  26. Dawson JB, Smith JV. 1988.. Metasomatized and veined upper-mantle xenoliths from Pello Hill, Tanzania: evidence for anomalously-light mantle beneath the Tanzanian sector of the East African Rift Valley. . Contrib. Mineral. Petrol. 100::51027
    [Crossref] [Google Scholar]
  27. Dong MT, Menke WG. 2017.. Seismic high attenuation region observed beneath southern New England from teleseismic body wave spectra: evidence for high asthenospheric temperature without melt. . Geophys. Res. Lett. 44::1095869
    [Google Scholar]
  28. Ducea M, Saleeby J. 1996.. Buoyancy sources for a large, uprooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. . J. Geophys. Res. 101:(B4):822944
    [Crossref] [Google Scholar]
  29. Ebinger C. 2005.. Continental break-up: the East African perspective. . Astron. Geophys. 26::2.1621
    [Google Scholar]
  30. Eilon Z, Brunsvik B, Lynner C. 2023.. Lithospheric structure across tectonic terranes of the eastern US. Presented at AGU Fall Meet., Dec. 11–15 , San Francisco:, Abstr. T13B-07
    [Google Scholar]
  31. Espinal K, Long MD, Levin VL, Karabinos P, Masis Arce R. 2022.. Lithospheric structure above the Northern Appalachian Anomaly. Presented at AGU Fall Meet., Dec. 12–16 , Chicago:, Abstr. S55D-0140
    [Google Scholar]
  32. Evans RL, Benoit MH, Long MD, Elsenbeck J, Ford HA, et al. 2019.. Thin lithosphere beneath the central Appalachian Mountains: a combined seismic and magnetotelluric study. . Earth Planet. Sci. Lett. 519::30816
    [Crossref] [Google Scholar]
  33. Fischer KM. 2002.. Waning buoyancy in the crustal roots of old mountains. . Nature 417::93336
    [Crossref] [Google Scholar]
  34. Fischer KM, Rychert CA, Dalton CA, Miller MS, Beghein C, Schutt DL. 2020.. A comparison of oceanic and continental mantle lithosphere. . Phys. Earth Planet. Inter. 309::106600
    [Crossref] [Google Scholar]
  35. Fullea J, Lebedev S, Martinec Z, Celli NL. 2021.. WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical-petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. . Geophys. J. Int. 226::14691
    [Crossref] [Google Scholar]
  36. Frizon de Lamotte D, Fourdan B, Leleu S, Leparmentier F, de Clarens P. 2015.. Style of rifting and the stages of Pangea breakup. . Tectonics 34::100929
    [Crossref] [Google Scholar]
  37. Frothingham MG, Schulte-Pelkum V, Mahan KH, Merschat AJ, Mather M, Cabrera Gomez Z. 2022.. Don't judge an orogen by its cover: kinematics of the Appalachian décollement from seismic anisotropy. . Geology 50::130611
    [Crossref] [Google Scholar]
  38. Gao H, Li C. 2021.. Lithospheric formation and evolution of eastern North American continent. . Geophys. Res. Lett. 48::e2020GL091074
    [Crossref] [Google Scholar]
  39. Gao H, Yang X, Long MD, Aragon JC. 2020.. Seismic evidence for crustal modification beneath the Hartford rift basin in the northeastern United States. . Geophys. Res. Lett. 47::e2020GL089316
    [Crossref] [Google Scholar]
  40. Goldhagen GB, Ford HA, Long MD. 2022.. Evidence for a lithospheric step and pervasive lithospheric thinning beneath southern New England, northeastern USA. . Geology 50::107882
    [Crossref] [Google Scholar]
  41. Gray R, Pysklywec RN. 2012.. Geodynamic models of mature continental collision: evolution of an orogen from lithospheric subduction to continental retreat/delamination. . J. Geophys. Res. 117:(B3):B03408
    [Crossref] [Google Scholar]
  42. Gutscher M-A. 2018.. Scraped by flat-slab subduction. . Nat. Geosci. 11::89091
    [Crossref] [Google Scholar]
  43. Harig C, Molnar P, Houseman GA. 2010.. Lithospheric thinning and localization of deformation during Rayleigh-Taylor instability with nonlinear rheology and implications for intracontinental magmatism. . J. Geophys. Res. 115:(B2):B02205
    [Crossref] [Google Scholar]
  44. Harry DL, Sawyer DS. 1992.. A dynamic model of extension in the Baltimore Canyon Trough region. . Tectonics 11::42036
    [Crossref] [Google Scholar]
  45. Hatcher RD Jr. 2010.. The Appalachian orogeny: a brief summary. . In From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region, ed. RP Tollo, MJ Hibbard, PM Karabinos , pp. 119. Boulder, CO:: Geol. Soc. Am.
    [Google Scholar]
  46. Hawkesworth CJ, Cawood PA, Dhuime B, Kemp TIS. 2017.. Earth's continental lithosphere through time. . Annu. Rev. Earth Planet. Sci. 45::16998
    [Crossref] [Google Scholar]
  47. Hibbard JP, van Staal CR, Rankin DW, Williams H. 2006.. Lithotectonic map of the Appalachian Orogen, Canada–United States. Geol. Surv. Can., series map 2096A
    [Google Scholar]
  48. Hiett CD, Newell DL, Jessup MJ. 2021.. 3He evidence for fluid transfer and continental hydration above a flat slab. . Earth Planet. Sci. Lett. 556::116722
    [Crossref] [Google Scholar]
  49. Hillenbrand IW, Williams ML. 2021.. Paleozoic evolution of crustal thickness and elevation in the northern Appalachian orogen, USA. . Geology 49::94651
    [Crossref] [Google Scholar]
  50. Hillenbrand IW, Williams ML, Li C, Gao H. 2021.. Rise and fall of the Acadian altiplano: evidence for a Paleozoic orogenic plateau in New England. . Earth Planet. Sci. Lett. 560::116797
    [Crossref] [Google Scholar]
  51. Holbrook WS, Kelemen PB. 1993.. Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. . Nature 364::43336
    [Crossref] [Google Scholar]
  52. Hopper E, Fischer KM. 2018.. The changing face of the lithosphere-asthenosphere boundary: imaging continental scale patterns in upper mantle structure across the contiguous U.S. with Sp converted waves. . Geochem. Geophys. Geosyst. 19::2593614
    [Crossref] [Google Scholar]
  53. Hopper E, Fischer KM, Wagner LS, Hawman RB. 2017.. Reconstructing the end of the Appalachian orogeny. . Geology 45::1518
    [Crossref] [Google Scholar]
  54. Jordan TH. 1978.. Composition and development of the continental tectosphere. . Nature 247::54448
    [Crossref] [Google Scholar]
  55. Jourdan F, Marzoli A, Bertrand G, Cirilli S, Tanner LH, et al. 2009.. 40Ar/39Ar ages of CAMP in North America: implications for the Triassic–Jurassic boundary and the 40K decay constant bias. . Lithos 110::16780
    [Crossref] [Google Scholar]
  56. Kaislaniemi L, van Hunen J. 2014.. Dynamics of lithospheric thinning and mantle melting by edge-driven convection: application to Moroccan Atlas mountains. . Geochem. Geophys. Geosyst. 15::317589
    [Crossref] [Google Scholar]
  57. Karabinos P, Macdonald FA, Crowley JL. 2017.. Bridging the gap between the foreland and hinterland I: geochronology and plate tectonic geometry of Ordovician magmatism and terrane accretion on the Laurentian margin of New England. . Am. J. Sci. 317::51554
    [Crossref] [Google Scholar]
  58. King SD, Anderson DL. 1998.. Edge-driven convection. . Earth Planet. Sci. Lett. 160::28996
    [Crossref] [Google Scholar]
  59. Kinney ST, MacLennan SA, Keller CB, Schoene B, Setera JB, et al. 2021.. Zircon U-Pb geochronology constraints continental expression of Great Meteor Hotspot magmatism. . Geophys. Res. Lett. 48::e2020GL091390
    [Crossref] [Google Scholar]
  60. Kinney ST, MacLennan SA, Szymanowski D, Keller CB, VanTongeren JA, et al. 2022.. Onset of long-lived silicic and alkaline magmatism in eastern North America preceded Central Atlantic Magmatic Province emplacement. . Geology 50::13015
    [Crossref] [Google Scholar]
  61. Kogan LS, Fisseha S, Bendick R, Reilinger R, McClusky S, et al. 2012.. Lithospheric strength and strain localization in continental extension from observations of the East African Rift. . J. Geophys. Res. 117:(B3):B03402
    [Crossref] [Google Scholar]
  62. Lee C-TA. 2003.. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. . J. Geophys. Res. 108:(B9):2441
    [Crossref] [Google Scholar]
  63. Lee C-TA, Luffi P, Chin EJ. 2011.. Building and destroying continental mantle. . Annu. Rev. Earth Planet. Sci. 39::5990
    [Crossref] [Google Scholar]
  64. Levin V, Lebedev S, Fullea J, Li Y, Chen X. 2023.. Defining continental lithosphere as a layer with abundant frozen-in structures that scatter seismic waves. . J. Geophys. Res. Solid Earth 128::e2022JB026309
    [Crossref] [Google Scholar]
  65. Levin V, Long MD, Skryzalin P, Li Y, López I. 2018.. Seismic evidence for a recently formed mantle upwelling beneath New England. . Geology 46::8790
    [Crossref] [Google Scholar]
  66. Levin V, Park J, Brandon MT, Menke W. 2000.. Thinning of the upper mantle during late Paleozoic Appalachian orogenesis. . Geology 28::23942
    [Crossref] [Google Scholar]
  67. Levin V, Servali A, VanTongeren J, Menke W, Darbyshire F. 2017.. Crust-mantle boundary in eastern North America, from the (oldest) craton to the (youngest) rift. . Geol. Soc. Am. Spec. Pap. 526::10731
    [Google Scholar]
  68. Li C, Gao H. 2021.. Modification of crust and mantle lithosphere beneath the southern part of the eastern North American passive margin. . Geophys. Res. Lett. 48::e2020GL090555
    [Crossref] [Google Scholar]
  69. Li C, Gao H, Williams ML. 2020.. Seismic characteristics of the eastern North American crust with Ps converted waves: terrane accretion and modification of continental crust. . J. Geophys. Res. Solid Earth 125::e2019JB018727
    [Crossref] [Google Scholar]
  70. Li C, Gao H, Williams ML, Levin V. 2018.. Crustal thickness variation in the northern Appalachian Mountains: implications for the geometry of 3-D tectonic boundaries within the crust. . Geophys. Res. Lett. 45::606170
    [Crossref] [Google Scholar]
  71. Li C, Hibbard L, Gao H, Williams ML. 2023.. Seismic evidence for metamorphic densification of the lower continental crust in eastern North America. . J. Geophys. Res. Solid Earth 128::e2023JB026602
    [Crossref] [Google Scholar]
  72. Li Y, Levin V, Elkington S, Hlavaty J. 2019.. Localized anisotropic domains beneath eastern North America. . Geochem. Geophys. Geosyst. 20::5499521
    [Crossref] [Google Scholar]
  73. Liu L, Morgan JP, Xu Y, Menzies M. 2018.. Craton destruction 1: cratonic keel delamination along a weak midlithospheric discontinuity layer. . J. Geophys. Res. Solid Earth 123::1004068
    [Google Scholar]
  74. Long MD, Aragon JC. 2020.. Probing the structure of the crust and mantle lithosphere beneath the southern New England Appalachians via the SEISConn deployment. . Seismol. Res. Lett. 91::297686
    [Crossref] [Google Scholar]
  75. Long MD, Benoit MH, Aragon JC, King SD. 2019.. Seismic imaging of mid-crustal structure beneath central and eastern North America: possibly the elusive Grenville deformation?. Geology 47::37174
    [Crossref] [Google Scholar]
  76. Long MD, Benoit MH, Evans RL, Aragon JC, Elsenbeck J. 2020.. The MAGIC experiment: a combined seismic and magnetotelluric deployment to investigate the structure, dynamics, and evolution of the Central Appalachians. . Seismol. Res. Lett. 91::296075
    [Crossref] [Google Scholar]
  77. Long MD, Jackson KG, McNamara JF. 2016.. SKS splitting beneath Transportable Array stations in eastern North America and the signature of past lithospheric deformation. . Geochem. Geophys. Geosyst. 17::215
    [Crossref] [Google Scholar]
  78. Long MD, Levin V, Karabinos P, Kuiper YD, Webb LE, et al. 2022.. New insights into crustal and mantle structure beneath the New England Appalachians from temporary broadband seismic deployments and integration with geological constraints. Presented at AGU Fall Meet., Dec. 12–16 , Chicago:, Abstr. S45C-05
    [Google Scholar]
  79. Long MD, Wagner LS, King SD, Evans RL, Mazza SE, et al. 2021.. Evaluating models for lithospheric loss and intraplate volcanism beneath the Central Appalachian Mountains. . J. Geophys. Res. Solid Earth 126::e2021JB022571
    [Crossref] [Google Scholar]
  80. Lopes E, Long MD, Karabinos P, Aragon JC. 2020.. SKS splitting and upper mantle anisotropy beneath the southern New England Appalachians: constraints from the dense SEISConn array. . Geochem. Geophys. Geosyst. 21::e2020GC009401
    [Crossref] [Google Scholar]
  81. Luo Y, Long MD, Karabinos P, Kuiper YD, Rondenay S, et al. 2021.. High-resolution Ps receiver function imaging of the crust and mantle lithosphere beneath southern New England and tectonic implications. . J. Geophys. Res. Solid Earth 126::e2021JB022170
    [Crossref] [Google Scholar]
  82. Luo Y, Long MD, Karabinos P, Rondenay S, Masis Arce R. 2023a.. First-order transition in Appalachian orogenic processes revealed by along-strike variation of the Moho geometry. . J. Geophys. Res. Solid Earth. 128::e2023JB027024
    [Crossref] [Google Scholar]
  83. Luo Y, Long MD, Link F, Karabinos P, Kuiper YD. 2023b.. Insights from layered anisotropy beneath southern New England: from ancient tectonism to present-day mantle flow. . Geochem. Geophys. Geosyst. 24::e2023GC011118
    [Crossref] [Google Scholar]
  84. Luo Y, Long MD, Rondenay S, Karabinos P, Kuiper YD. 2022.. Wavefield migration imaging of Moho geometry and upper mantle structure beneath southern New England. . Geophys. Res. Lett. 49::e2022GL099013
    [Crossref] [Google Scholar]
  85. Lynner C, Bodmer M. 2017.. Mantle flow along the eastern North American margin inferred from shear wave splitting. . Geology 45::86770
    [Crossref] [Google Scholar]
  86. Lynner C, Porritt RW. 2017.. Crustal structure across the eastern North American margin from ambient noise tomography. . Geophys. Res. Lett. 44::665157
    [Crossref] [Google Scholar]
  87. Lynner C, Van Avendonk HJA, Bécel A, Christeson GL, Dugan B, et al. 2019.. The eastern North American margin community seismic experiment: an amphibious active- and passive-source dataset. . Seismol. Res. Lett. 91::53340
    [Crossref] [Google Scholar]
  88. Macdonald FA, Ryan-Davis J, Coish RA, Crowley JL, Karabinos P. 2014.. A newly identified Gondwanan terrane in the northern Appalachian Mountains: implications for the Taconic orogeny and closure of the Iapetus Ocean. . Geology 42::53942
    [Crossref] [Google Scholar]
  89. Marzen RE, Shillington DJ, Lizarralde D, Harder SH. 2019.. Constraints on Appalachian orogenesis and continental rifting in the southeastern United States from wide-angle seismic data. . J. Geophys. Res. Solid Earth 124::662552
    [Crossref] [Google Scholar]
  90. Marzen RE, Shillington DJ, Lizarralde D, Knapp JH, Heffner DM, et al. 2020.. Limited and localized magmatism in the Central Atlantic Magmatic Province. . Nat. Commun. 11::3397
    [Crossref] [Google Scholar]
  91. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A. 1999.. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. . Science 284::61618
    [Crossref] [Google Scholar]
  92. Masis Arce R, Long MD. 2023.. Seismic analysis of lithospheric structure of Laurentia and peri-Gondwanan terranes: a comparative study between North America, Ireland, and Great Britain. Presented at AGU Fall Meet., Dec. 11–15 , San Francisco:, Abstr. S23F-0438
    [Google Scholar]
  93. Mazza SE, Gazel EA, Johnson EA, Bizimis M, McAleer R, Biryol CB. 2017.. Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin. . Geochem. Geophys. Geosyst. 18::322
    [Crossref] [Google Scholar]
  94. Mazza SE, Gazel EA, Johnson EA, Kunk MJ, McAller R, et al. 2014.. Volcanoes of the passive margin: the youngest magmatic event in eastern North America. . Geology 42::48386
    [Crossref] [Google Scholar]
  95. Menke W, Lamoureaux J, Abbott D, Hopper E, Hutson D, Marrero A. 2018.. Crustal heating and lithospheric alternation and erosion associated with asthenospheric upwelling beneath southern New England (USA). . J. Geophys. Res. Solid Earth 123::89959008
    [Crossref] [Google Scholar]
  96. Menke W, Skryzalin P, Levin V, Harper T, Darbyshire F, Dong T. 2016.. The Northern Appalachian Anomaly: a modern asthenospheric upwelling. . Geophys. Res. Lett. 43::1017379
    [Crossref] [Google Scholar]
  97. Menzies M, Xu Y, Zhang H, Fan W. 2007.. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. . Lithos 96::121
    [Crossref] [Google Scholar]
  98. Michelfelder GS, Feeley TC, Wilder AD, Klemetti EW. 2013.. Modification of the continental crust by subduction zone magmatism and vice-versa: across-strike geochemical variations of silicic lavas from individual eruptive centers in the Andean Central Volcanic Zone. . Geosciences 3::63367
    [Crossref] [Google Scholar]
  99. Miller MS, Zhang P, Dahlquist MP, West AJ, Becker TW, Harris CW. 2021.. Inherited lithospheric structures control arc-continent collisional heterogeneity. . Geology 49::65256
    [Crossref] [Google Scholar]
  100. Miller SR, Sak PB, Kirby E, Bierman PR. 2013.. Neogene rejuvenation of central Appalachian topography: evidence for differential rock uplift from stream profiles and erosion rates. . Earth Planet. Sci. Lett. 369–370::112
    [Crossref] [Google Scholar]
  101. Mittal T, Richards MA, Fendley IM. 2021.. The magmatic architecture of continental flood basalts I: observations from the Deccan traps. . J. Geophys. Res. Solid Earth 126::e2021GB021808
    [Crossref] [Google Scholar]
  102. Mittal V, Long MD, Evans RL, Byrnes JS, Bezada M. 2023.. Joint analysis of seismic and electrical observables beneath the Central Appalachians requires partial melt in the upper mantle. . Geochem. Geophys. Geosyst. 24::e2022GC010690
    [Crossref] [Google Scholar]
  103. Moucha R, Forte AM, Mitrovica JX, Rowley DB, Quéré S, et al. 2008.. Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform. . Earth Planet. Sci. Lett. 271::1018
    [Crossref] [Google Scholar]
  104. Munch FD, Grayver A. 2023.. Multi-scale imaging of 3-D electrical conductivity structure under the contiguous US constraints lateral variations in the upper mantle water content. . Earth Planet. Sci. Lett. 602::117939
    [Crossref] [Google Scholar]
  105. Murphy BS, Egbert GD. 2017.. Electrical conductivity structure of southeastern North America: implications for lithospheric architecture and Appalachian topographic rejuvenation. . Earth Planet. Sci. Lett. 462::6675
    [Crossref] [Google Scholar]
  106. Murphy BS, Egbert GD. 2019.. Synthesizing seemingly contradictory seismic and magnetotelluric observations in the southeastern United States to image physical properties of the lithosphere. . Geochem. Geophys. Geosyst. 20::260625
    [Crossref] [Google Scholar]
  107. Parker EH Jr., Hawman RB, Fischer KM, Wagner LS. 2013.. Crustal evolution across the southern Appalachians: initial results from the SESAME broadband array. . Geophys. Res. Lett. 40::385357
    [Crossref] [Google Scholar]
  108. Pazzaglia FJ, Brandon MT. 1996.. Macrogeomorphic evolution of the post-Triassic Appalachian mountains determined by deconvolution of the offshore basin sedimentary record. . Basin Res. 8::25578
    [Crossref] [Google Scholar]
  109. Pearson DG. 1999.. The age of continental roots. . Lithos 48::17194
    [Crossref] [Google Scholar]
  110. Porter R, Liu Y, Holt WE. 2016.. Lithospheric records of orogeny within the continental US. . Geophys. Res. Lett. 43::14453
    [Crossref] [Google Scholar]
  111. Poupinet G, Shapiro NM. 2009.. Worldwide distribution of ages of the continental lithosphere derived from a global seismic tomographic model. . Lithos 109::12530
    [Crossref] [Google Scholar]
  112. Priestly K, McKenzie D, Ho T. 2019.. A lithosphere–asthenosphere boundary—a global model derived from multimode surface-wave tomography and petrology. . In Lithospheric Discontinuities, Vol. 239, ed. H Yuan, B Romanowicz , pp. 11123. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  113. Pysklywec RN, Gogus O, Percival J, Cruden AR, Beaumont C. 2010.. Insights from geodynamical modeling on possible fates of continental mantle lithosphere: collision, removal, and overturn. . Can. J. Earth Sci. 47::54163
    [Crossref] [Google Scholar]
  114. Ribe NM, Christensen UR. 1994.. Three-dimensional modeling of plume-lithosphere interaction. . J. Geophys. Res. 99:(B1):66982
    [Crossref] [Google Scholar]
  115. Rudnick RL, McDonough WF, O'Connell RJ. 1998.. Thermal structure, thickness and composition of continental lithosphere. . Chem. Geol. 145::395411
    [Crossref] [Google Scholar]
  116. Russell JB, Gaherty JB. 2021.. Lithosphere structure and seismic anisotropy offshore eastern North America: implications for continental breakup and ultra-slow spreading dynamics. . J. Geophys. Res. Solid Earth 126::e2021JB022955
    [Crossref] [Google Scholar]
  117. Rychert CA, Fischer KM, Rondenay S. 2005.. A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. . Nature 436::54245
    [Crossref] [Google Scholar]
  118. Schmandt B, Lin F-C. 2014.. P and S wave tomography of the mantle beneath the United States. . Geophys. Res. Lett. 41::634249
    [Crossref] [Google Scholar]
  119. Schulte-Pelkum V, Mahan KH. 2014.. A method for mapping crustal deformation and anisotropy with receiver function and first results from USArray. . Earth Planet. Sci. Lett. 402::22133
    [Crossref] [Google Scholar]
  120. Schulte-Pelkum V, Monsalve PG, Sheehan A, Pandey MR, Sapkota S, et al. 2005.. Imaging the Indian subcontinent beneath the Himalaya. . Nature 435::122225
    [Crossref] [Google Scholar]
  121. Schutt DL, Lesher CE. 2010.. Compositional trends among Kaapvaal Craton garnet peridotite xenoliths and their effects on seismic velocity and density. . Earth Planet. Sci. Lett. 300::36773
    [Crossref] [Google Scholar]
  122. Shuck BD, Van Avendonk HJA, Bécel A. 2019.. The role of mantle melts in the transition from rifting to seafloor spreading offshore eastern North America. . Earth Planet. Sci. Lett. 525::115756
    [Crossref] [Google Scholar]
  123. Silver PG. 1996.. Seismic anisotropy beneath the continents: probing the depths of geology. . Annu. Rev. Earth Planet. Sci. 24::385432
    [Crossref] [Google Scholar]
  124. Swanson-Hysell NL, Rivers T, van der Lee S. 2023.. The late Mesoproterozoic to early Neoproterozoic Grenvillian orogeny and the assembly of Rodinia: turning point in the tectonic evolution of Laurentia. . In Laurentia: Turning Points in the Evolution of a Continent, ed. SJ Whitmeyer, ML Williams, DA Kellett, B Tikoff , pp. 22150. Boulder, CO:: Geol. Soc. Am.
    [Google Scholar]
  125. Tao Z, Li A, Fischer KM. 2021.. Hotspot signatures at the North American passive margin. . Geology 49::52530
    [Crossref] [Google Scholar]
  126. Tetrault JL, Buiter SJH. 2012.. Geodynamic models of terrane accretion: testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. . J. Geophys. Res. 117:(B8):B08403
    [Google Scholar]
  127. Thybo H, Artemieva IM. 2013.. Moho and magmatic underplating in continental lithosphere. . Tectonophysics 609::60519
    [Crossref] [Google Scholar]
  128. van Staal CR, Zagorevski A. 2023.. A note on the timing and nature of the Moho geometry and upper mantle structure beneath southern New England. . Geophys. Res. Lett. 50::e2022GL102057
    [Crossref] [Google Scholar]
  129. Wagner LS, Anderson ML, Jackson JM, Beck SL, Zandt G. 2008.. Seismic evidence for orthopyroxene enrichment in the continental lithosphere. . Geology 36::93538
    [Crossref] [Google Scholar]
  130. Wagner LS, Fisher KM, Hawman R, Hopper E, Howell D. 2018.. The relative roles of inheritance and long-term passive margin lithospheric evolution on the modern structure and tectonic activity in the southeastern United States. . Geosphere 14::1385410
    [Crossref] [Google Scholar]
  131. Wang H, Currie CA. 2015.. Magmatic expressions of continental lithosphere removal. . J. Geophys. Res. Solid Earth 120:(10):723960
    [Crossref] [Google Scholar]
  132. Wang H, Currie CA, DeCelles PG. 2021.. Coupling between lithosphere removal and mantle flow in the Central Andes. . Geophys. Res. Lett. 48::e2021GL095075
    [Crossref] [Google Scholar]
  133. Wang H, van Hunen J, Pearson DG. 2015.. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. . Geochem. Geophys. Geosyst. 16::115671
    [Crossref] [Google Scholar]
  134. Warren JM, Hansen LN. 2023.. Ductile deformation of the lithospheric mantle. . Annu. Rev. Earth Planet. Sci. 51::581609
    [Crossref] [Google Scholar]
  135. Whalen L, Gazel E, Vidito C, Puffer J, Bizimis M, et al. 2015.. Supercontinental inheritance and its influence on supercontinental breakup: the Central Atlantic Magmatic Province and the breakup of Pangea. . Geochem. Geophys. Geosyst. 16::353254
    [Crossref] [Google Scholar]
  136. White RS, McKenzie D. 1995.. Mantle plumes and flood basalts. . J. Geophys. Res. 100:(B9):1754385
    [Crossref] [Google Scholar]
  137. White-Gaynor AL, Nyblade AA. 2017.. Shear wave splitting across the mid-Atlantic region of North America: a fossil anisotropy interpretation. . Geology 45::55558
    [Crossref] [Google Scholar]
  138. Whitmeyer WJ, Karlstrom KE. 2007.. Tectonic model for the Proterozoic grown of North America. . Geosphere 3::22059
    [Crossref] [Google Scholar]
  139. Williams ML, Dumond G, Mahan K, Regan S, Holland M. 2014.. Garnet-forming reactions in felsic orthogneiss: implications for densification and strengthening of lower continental crust. . Earth Planet. Sci. Lett. 405::20719
    [Crossref] [Google Scholar]
  140. Wintsch RP, Yi K, Dorais MJ. 2014.. Crustal thickening by tectonic wedging of the Ganderian rocks, southern New England, USA: evidence from cataclastic zircon microstructures and U-Pb ages. . J. Struct. Geol. 69::42848
    [Crossref] [Google Scholar]
  141. Withjack M, Malinconico M, Durcanin M. 2020.. The “passive” margin of eastern North America: rifting and the influence of prerift orogenic activity on postrift development. . Lithosphere 2020::8876280
    [Crossref] [Google Scholar]
  142. Withjack MO, Schlische RW, Olsen PE. 2012.. Development of the passive margin of Eastern North America: Mesozoic rifting, igneous activity, and breakup. . In Phanerozoic Rift Systems and Sedimentary Basins, ed. DG Roberts, AW Bally , pp. 30035. Amsterdam:: Elsevier
    [Google Scholar]
  143. Wolin E, Stein S, Pazzaglia F, Meltzer A, Kafka A, Berti C. 2012.. Mineral, Virginia, earthquake illustrates seismicity of a passive-aggressive margin. . Geophys. Res. Lett. 39::L02305
    [Crossref] [Google Scholar]
  144. Yang BB, Liu Y, Dahm H, Liu KH, Gao SS. 2017.. Seismic azimuthal anisotropy beneath the eastern United States and its geodynamic implications. . Geophys. Res. Lett. 44::267078
    [Crossref] [Google Scholar]
  145. Yassminh R, Laphim P, Sandvol E. 2020.. Seismic attenuation and velocity measurements of the uppermost mantle beneath the Central and Eastern United States and implications for the temperature of the North American lithosphere. . J. Geophys. Res. Solid Earth 125::e2019JB017728
    [Crossref] [Google Scholar]
  146. Zhang B, Bao X, Xu Y. 2022.. Seismic anisotropy in the central Tien Shan unveils rheology-controlled deformation during intracontinental orogenesis. . Geology 50::81216
    [Crossref] [Google Scholar]
  147. Zhang Z, Klemperer SL. 2005.. West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data. . J. Geophys. Res. 110:(B9):B09403
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040522-115229
Loading
/content/journals/10.1146/annurev-earth-040522-115229
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error