1932

Abstract

The largest uncertainty in future sea-level rise is loss of ice from the Greenland and Antarctic Ice Sheets. Ice shelves, freely floating platforms of ice that fringe the ice sheets, play a crucial role in restraining discharge of grounded ice into the ocean through buttressing. However, since the 1990s, several ice shelves have thinned, retreated, and collapsed. If this pattern continues, it could expose thick cliffs that become structurally unstable and collapse in a process called marine ice cliff instability (MICI). However, the feedbacks between calving, retreat, and other forcings are not well understood. Here we review observed modes of calving from ice shelves and marine-terminating glaciers, and their relation to environmental forces. We show that the primary driver of calving is long-term internal glaciological stress, but as ice shelves thin they may become more vulnerable to environmental forcing. This vulnerability—and the potential for MICI—comes from a combination of the distribution of preexisting flaws within the ice and regions where the stress is large enough to initiate fracture. Although significant progress has been made modeling these processes, theories must now be tested against a wide range of environmental and glaciological conditions in both modern and paleo conditions.

  • ▪  Ice shelves, floating platforms of ice fed by ice sheets, shed mass in a near-instantaneous fashion through iceberg calving.
  • ▪  Most ice shelves exhibit a stable cycle of calving front advance and retreat that is insensitive to small changes in environmental conditions.
  • ▪  Some ice shelves have retreated or collapsed completely, and in the future this could expose thick cliffs that could become structurally unstable called ice cliff instability.
  • ▪  The potential for ice shelf and ice cliff instability is controlled by the presence and evolution of flaws or fractures within the ice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040522-122817
2024-07-23
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040522-122817.html?itemId=/content/journals/10.1146/annurev-earth-040522-122817&mimeType=html&fmt=ahah

Literature Cited

  1. Albrecht T, Levermann A. 2012.. Fracture field for large-scale ice dynamics. . J. Glaciol. 58::16576
    [Crossref] [Google Scholar]
  2. Albrecht T, Levermann A. 2014.. Spontaneous ice-front retreat caused by disintegration of adjacent ice shelf in Antarctica. . Earth Planet. Sci. Lett. 393::2630
    [Crossref] [Google Scholar]
  3. Albrecht T, Martin M, Haseloff M, Winkelmann R, Levermann A. 2011.. Parameterization for subgrid-scale motion of ice-shelf calving fronts. . Cryosphere 5::3544
    [Crossref] [Google Scholar]
  4. Alley KE, Scambos TA, Siegfried MR, Fricker HA. 2016.. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. . Nat. Geosci. 9::29093
    [Crossref] [Google Scholar]
  5. Alley KE, Wild CT, Luckman A, Scambos TA, Truffer M, et al. 2021.. Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf. . Cryosphere 15::5187203
    [Crossref] [Google Scholar]
  6. Alley RB, Cuffey KM, Bassis JN, Alley KE, Wang S, et al. 2023.. Iceberg calving: regimes and transitions. . Annu. Rev. Earth Planet. Sci. 51::189215
    [Crossref] [Google Scholar]
  7. Alley RB, Horgan HJ, Joughin I, Cuffey KM, Dupont TK, et al. 2008.. A simple law for ice-shelf calving. . Science 322::1344
    [Crossref] [Google Scholar]
  8. Aster RC, Lipovsky BP, Cole HM, Bromirski PD, Gerstoft P, et al. 2021.. Swell-triggered seismicity at the near-front damage zone of the Ross Ice Shelf. . Seismol. Res. Lett. 92::276892
    [Crossref] [Google Scholar]
  9. Astrom JA, Benn DI. 2019.. Effective rheology across the fragmentation transition for sea ice and ice shelves. . Geophys. Res. Lett. 46::13099106
    [Crossref] [Google Scholar]
  10. Astrom JA, Riikila TI, Tallinen T, Zwinger T, Benn D, et al. 2013.. A particle based simulation model for glacier dynamics. . Cryosphere 7::1591602
    [Crossref] [Google Scholar]
  11. Banwell AF, Caballero M, Arnold NS, Glasser NF, Cathles LM, MacAyeal DR. 2014.. Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study. . Ann. Glaciol. 55::18
    [Crossref] [Google Scholar]
  12. Banwell AF, MacAyeal DR. 2015.. Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes. . Antarct. Sci. 27::58797
    [Crossref] [Google Scholar]
  13. Banwell AF, MacAyeal DR, Sergienko OV. 2013.. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. . Geophys. Res. Lett. 40::587276
    [Crossref] [Google Scholar]
  14. Bart PJ, Kratochvil M. 2022.. A paleo-perspective on West Antarctic Ice Sheet retreat. . Sci. Rep. 12::17693
    [Crossref] [Google Scholar]
  15. Bassis JN. 2011.. The statistical physics of iceberg calving and the emergence of universal calving laws. . J. Glaciol. 57::316
    [Crossref] [Google Scholar]
  16. Bassis JN, Berg B, Crawford AJ, Benn DI. 2021.. Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. . Science 372::134244
    [Crossref] [Google Scholar]
  17. Bassis JN, Fricker HA, Coleman R, Bock Y, Behrens J, et al. 2007.. Seismicity and deformation associated with ice-shelf rift propagation. . J. Glaciol. 53::52336
    [Crossref] [Google Scholar]
  18. Bassis JN, Fricker HA, Coleman R, Minster JB. 2008.. An investigation into the forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East Antarctica. . J. Glaciol. 54::1727
    [Crossref] [Google Scholar]
  19. Bassis JN, Jacobs S. 2013.. Diverse calving patterns linked to glacier geometry. . Nat. Geosci. 6::83336
    [Crossref] [Google Scholar]
  20. Bassis JN, Ma Y. 2015.. Evolution of basal crevasses links ice shelf stability to ocean forcing. . Earth Planet. Sci. Lett. 409::20311
    [Crossref] [Google Scholar]
  21. Bassis JN, Walker CC. 2012.. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. . Proc. R. Soc. A 468::91331
    [Crossref] [Google Scholar]
  22. Batchelor CL, Christie FDW, Ottesen D, Montelli A, Evans J, et al. 2023.. Rapid, buoyancy-driven ice-sheet retreat of hundreds of metres per day. . Nature 617::10510
    [Crossref] [Google Scholar]
  23. Bell RE, Chu WN, Kingslake J, Das I, Tedesco M, et al. 2017.. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. . Nature 544::34448
    [Crossref] [Google Scholar]
  24. Benn DI, Astrom J, Zwinger T, Todd J, Nick FM, et al. 2017.. Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations. . J. Glaciol. 63::691702
    [Crossref] [Google Scholar]
  25. Benn DI, Astrom JA. 2018.. Calving glaciers and ice shelves. . Adv. Phys. X 3::1513819
    [Google Scholar]
  26. Benn DI, Luckman A, Åström JA, Crawford AJ, Cornford SL, et al. 2022.. Rapid fragmentation of Thwaites Eastern Ice Shelf. . Cryosphere 16::254564
    [Crossref] [Google Scholar]
  27. Benn DI, Warren CR, Mottram RH. 2007.. Calving processes and the dynamics of calving glaciers. . Earth-Sci. Rev. 82::14379
    [Crossref] [Google Scholar]
  28. Borstad C, McGrath D, Pope A. 2017.. Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity. . Geophys. Res. Lett. 44::418694
    [Crossref] [Google Scholar]
  29. Borstad CP, Khazendar A, Larour E, Morlighem M, Rignot E, et al. 2012.. A damage mechanics assessment of the Larsen B ice shelf prior to collapse: toward a physically-based calving law. . Geophys. Res. Lett. 39::L18502
    [Crossref] [Google Scholar]
  30. Borstad CP, Rignot E, Mouginot J, Schodlok MP. 2013.. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf. . Cryosphere 7::193147
    [Crossref] [Google Scholar]
  31. Broberg KB. 1999.. Cracks and Fracture. San Diego:: Academic
    [Google Scholar]
  32. Bromirski PD, Sergienko OV, MacAyeal DR. 2010.. Transoceanic infragravity waves impacting Antarctic ice shelves. . Geophys. Res. Lett. 37::L02502
    [Google Scholar]
  33. Brunt KM, Okal EA, MacAyeal DR. 2011.. Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. . J. Glaciol. 57::78588
    [Google Scholar]
  34. Campbell S, Courville Z, Sinclair S, Wilner J. 2017.. Brine, englacial structure and basal properties near the terminus of McMurdo Ice Shelf, Antarctica. . Ann. Glaciol. 58::111
    [Google Scholar]
  35. Choi YM, Morlighem M, Wood M, Bondzio JH. 2018.. Comparison of four calving laws to model Greenland outlet glaciers. . Cryosphere 12::373546
    [Google Scholar]
  36. Christianson K, Bushuk M, Dutrieux P, Parizek BR, Joughin IR, et al. 2016.. Sensitivity of Pine Island Glacier to observed ocean forcing. . Geophys. Res. Lett. 43::1081725
    [Google Scholar]
  37. Clayton T, Duddu R, Siegert M, Martinez-Paneda E. 2022.. A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves. . Eng. Fract. Mech. 272::108693
    [Google Scholar]
  38. Clerc F, Minchew BM, Behn MD. 2019.. Marine ice cliff instability mitigated by slow removal of ice shelves. . Geophys. Res. Lett. 46::1210816
    [Google Scholar]
  39. Colgan W, Rajaram H, Abdalati W, McCutchan C, Mottram R, et al. 2016.. Glacier crevasses: observations, models, and mass balance implications. . Rev. Geophys. 54::11961
    [Google Scholar]
  40. Copland L, Mortimer C, White A, McCallum MR, Mueller D. 2017.. Factors contributing to recent Arctic ice shelf losses. . In Arctic Ice Shelves and Ice Islands, ed. L Copland, D Mueller , pp. 26385. Dordrecht, Neth:.: Springer
    [Google Scholar]
  41. Crawford AJ, Benn DI, Todd J, Astrom JA, Bassis JN, Zwinger T. 2021.. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. . Nat. Commun. 12::2701
    [Google Scholar]
  42. Cundall PA, Strack ODL. 1980.. A discrete numerical-model for granular assemblies—reply. . Geotechnique 30::33536
    [Google Scholar]
  43. Davis PED, Jenkins A, Nicholls KW, Brennan PV, Abrahamsen EP, et al. 2018.. Variability in basal melting beneath Pine Island Ice Shelf on weekly to monthly timescales. . J. Geophys. Res. Oceans 123::865569
    [Google Scholar]
  44. De Rydt J, Gudmundsson GH, Nagler T, Wuite J. 2019.. Calving cycle of the Brunt Ice Shelf, Antarctica, driven by changes in ice shelf geometry. . Cryosphere 13::277187
    [Google Scholar]
  45. De Rydt J, Gudmundsson GH, Nagler T, Wuite J, King EC. 2018.. Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica. . Cryosphere 12::50520
    [Google Scholar]
  46. DeConto RM, Pollard D. 2016.. Contribution of Antarctica to past and future sea-level rise. . Nature 531::59197
    [Google Scholar]
  47. Doake CSM, Corr HFJ, Rott H, Skvarca P, Young NW. 1998.. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. . Nature 391::77880
    [Google Scholar]
  48. Domack E, Duran D, Leventer A, Ishman S, Doane S, et al. 2005.. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. . Nature 436::68185
    [Google Scholar]
  49. Dow CF, Lee WS, Greenbaum JS, Greene CA, Blankenship DD, et al. 2018.. Basal channels drive active surface hydrology and transverse ice shelf fracture. . Sci. Adv. 4::eaao7212
    [Google Scholar]
  50. Dowdeswell JA. 2017.. Eurasian Arctic ice shelves and tidewater ice margins. . In Arctic Ice Shelves and Ice Islands, ed. L Copland, D Mueller , pp. 5574. Dordrecht, Neth.:: Springer
    [Google Scholar]
  51. Dowdeswell JA, Gorman MR, Glazovsky AF, Macheret YY. 1994.. Evidence for floating ice shelves in Franz-Josef-Land, Russian High Arctic. . Arctic Alpine Res. 26::8692
    [Google Scholar]
  52. Duddu R, Bassis JN, Waisman H. 2013.. A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics. . Geophys. Res. Lett. 40::306468
    [Google Scholar]
  53. Duddu R, Jimenez S, Bassis J. 2020.. A non-local continuum poro-damage mechanics model for hydrofracturing of surface crevasses in grounded glaciers. . J. Glaciol. 66::41529
    [Google Scholar]
  54. Duddu R, Waisman H. 2012.. A temperature dependent creep damage model for polycrystalline ice. . Mech. Mater. 46::2341
    [Google Scholar]
  55. Dutrieux P, Vaughan DG, Corr HFJ, Jenkins A, Holland PR, et al. 2013.. Pine Island glacier ice shelf melt distributed at kilometre scales. . Cryosphere 7::154355
    [Google Scholar]
  56. Echelmeyer K, Clarke TS, Harrison WD. 1991.. Surficial glaciology of Jakobshavns Isbrae, West Greenland: part 1. Surface-morphology. . J. Glaciol. 37::36882
    [Google Scholar]
  57. Edwards TL, Brandon MA, Durand G, Edwards NR, Golledge NR, et al. 2019.. Revisiting Antarctic ice loss due to marine ice-cliff instability. . Nature 566::5864
    [Google Scholar]
  58. Enderlin EM, Bartholomaus TC. 2019.. Poor performance of a common crevasse model at marine-terminating glaciers. . Cryosphere Discuss. 2019::119
    [Google Scholar]
  59. England J. 1999.. Coalescent Greenland and Innuitian ice during the Last Glacial Maximum: revising the Quaternary of the Canadian High Arctic. . Quat. Sci. Rev. 18::42156
    [Google Scholar]
  60. England JH, Evans DJA, Lakeman TR. 2017.. Holocene history of Arctic ice shelves. . In Arctic Ice Shelves and Ice Islands, ed. L Copland, D Mueller , pp. 185205. Dordrecht, Neth:.: Springer
    [Google Scholar]
  61. England JH, Lakeman TR, Lemmen DS, Bednarski JM, Stewart TG, Evans DJA. 2008.. A millennial-scale record of Arctic Ocean sea ice variability and the demise of the Ellesmere Island ice shelves. . Geophys. Res. Lett. 35::L19502
    [Crossref] [Google Scholar]
  62. Fox-Kemper B, Hewitt HT, Xiao C, Aðethalgeirsdóttir G, Drijfhout SS, et al. 2021.. Ocean, cryosphere and sea level change. . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al. , pp. 1211362. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  63. Francis D, Fonseca R, Mattingly KS, Marsh OJ, Lhermitte S, Cherif C. 2022.. Atmospheric triggers of the brunt ice shelf calving in February 2021. . J. Geophys. Res. Atmos. 127::e2021JD036424
    [Crossref] [Google Scholar]
  64. Francis D, Mattingly KS, Lhermitte S, Temimi M, Heil P. 2021.. Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf. . Cryosphere 15::214765
    [Crossref] [Google Scholar]
  65. Fricker HA, Young NW, Allison I, Coleman R. 2002.. Iceberg calving from the Amery Ice Shelf, East Antarctica. . Ann. Glaciol. 34:(34):24146
    [Crossref] [Google Scholar]
  66. Glendinning P. 1994.. Stability, Instability, and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. New York:: Cambridge Univ. Press
    [Google Scholar]
  67. Goldberg D, Holland DM, Schoof C. 2009.. Grounding line movement and ice shelf buttressing in marine ice sheets. . J. Geophys. Res. 114:(F4):F04026
    [Crossref] [Google Scholar]
  68. Gomez-Fell R, Rack W, Purdie H, Marsh O. 2022.. Parker Ice Tongue collapse, Antarctica, triggered by loss of stabilizing land-fast sea ice. . Geophys. Res. Lett. 49::e2021GL096156
    [Crossref] [Google Scholar]
  69. Graham AGC, Wåhlin A, Hogan KA, Nitsche FO, Heywood KJ, et al. 2022.. Rapid retreat of Thwaites Glacier in the pre-satellite era. . Nat. Geosci. 15::70613
    [Crossref] [Google Scholar]
  70. Grosswald MG, Hughes TJ. 2002.. The Russian component of an Arctic Ice Sheet during the Last Glacial Maximum. . Quat. Sci. Rev. 21::12146
    [Crossref] [Google Scholar]
  71. Haran T, Bohlander J, Scambos TA, Painter T, Fahnestock M. 2018a.. MEaSUREs MODIS Mosaic of Greenland (MOG) 2005, 2010, and 2015 Image Maps. Boulder, CO:: NASA Natl. Snow and Ice Data Cent.
    [Google Scholar]
  72. Haran T, Klinger M, Bohlander J, Fahnestock M, Painter T, Scambos T. 2018b.. MEaSUREs MODIS Mosaic of Antarctica 2013–2014 (MOA2014) Image Map, Version 1. Boulder, CO:: NASA Natl. Snow and Ice Data Cent.
    [Google Scholar]
  73. Hindmarsh RCA. 2012.. An observationally validated theory of viscous flow dynamics at the ice-shelf calving front. . J. Glaciol. 58::37587
    [Crossref] [Google Scholar]
  74. Hoffman MJ, Perego M, Price SF, Lipscomb WH, Zhang T, et al. 2018.. MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids. . Geosci. Model Dev. 11::374780
    [Crossref] [Google Scholar]
  75. Holdsworth G, Glynn J. 1978.. Iceberg calving from floating glaciers by a vibrating mechanism. . Nature 274::46466
    [Crossref] [Google Scholar]
  76. Holland DM, Thomas RH, De Young B, Ribergaard MH, Lyberth B. 2008.. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. . Nat. Geosci. 1::65964
    [Crossref] [Google Scholar]
  77. Hoyle A. 2021.. Investigating North Greenland ice shelves and their response to warming climate. PhD Diss. , Scott Polar Res. Inst., Univ. Cambridge, Cambridge, UK:
    [Google Scholar]
  78. Hubbard B, Christoffersen P, Doyle SH, Chudley TR, Schoonman CM, et al. 2021.. Borehole-based characterization of deep mixed-mode crevasses at a Greenlandic Outlet Glacier. . AGU Adv. 2::e2020AV000291
    [Crossref] [Google Scholar]
  79. Hughes T. 1977.. West Antarctic ice streams. . Rev. Geophys. 15::146
    [Crossref] [Google Scholar]
  80. Hughes T, Denton GH, Grosswald MG. 1977.. Was there a late-Würm Arctic ice sheet. . Nature 266::596602
    [Crossref] [Google Scholar]
  81. Hulbe C, Fahnestock M. 2007.. Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica. . J. Geophys. Res. 112:(F3):F03S27
    [Crossref] [Google Scholar]
  82. Hulbe CL, LeDoux C, Cruikshank K. 2010.. Propagation of long fractures in the Ronne Ice Shelf, Antarctica, investigated using a numerical model of fracture propagation. . J. Glaciol. 56::45972
    [Crossref] [Google Scholar]
  83. Huth A, Duddu R, Smith B. 2021.. A generalized interpolation material point method for shallow ice shelves. 2: Anisotropic nonlocal damage mechanics and rift propagation. . J. Adv. Model. Earth Syst. 13::e2020MS002292
    [Crossref] [Google Scholar]
  84. Huth A, Duddu R, Smith B, Sergienko O. 2023.. Simulating the processes controlling ice-shelf rift paths using damage mechanics. . J. Glaciol. 2023::114
    [Crossref] [Google Scholar]
  85. Jakobsson M, Nilsson J, Anderson L, Backman J, Bjork G, et al. 2016.. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. . Nat. Commun. 7::10365
    [Crossref] [Google Scholar]
  86. Jeffries MO. 1992.. Arctic ice shelves and ice islands—origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics. . Rev. Geophys. 30::24567
    [Crossref] [Google Scholar]
  87. Jeffries MO. 2017.. The Ellesmere Ice Shelves, Nunavut, Canada. . In Arctic Ice Shelves and Ice Islands, ed. L Copland, D Mueller , pp. 2354. Dordrecht, Neth.:: Springer
    [Google Scholar]
  88. Jenkins A. 1991.. A one-dimensional model of ice shelf-ocean interaction. . J. Geophys. Res. 96:(C11):2067177
    [Crossref] [Google Scholar]
  89. Jeong S, Howat IM, Bassis JN. 2016.. Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica. . Geophys. Res. Lett. 43::1172025
    [Crossref] [Google Scholar]
  90. Jezek KC. 1984.. Recent changes in the dynamic condition of the Ross Ice Shelf, Antarctica. . J. Geophys. Res. 89:(B1):40916
    [Crossref] [Google Scholar]
  91. Jimenez S, Duddu R. 2018.. On the evaluation of the stress intensity factor in calving models using linear elastic fracture mechanics. . J. Glaciol. 64::75970
    [Crossref] [Google Scholar]
  92. Joughin I, Abdalati W, Fahnestock M. 2004.. Large fluctuations in speed on Greenland's Jakobshavn Isbrae glacier. . Nature 432::60810
    [Crossref] [Google Scholar]
  93. Joughin I, MacAyeal DR. 2005.. Calving of large tabular icebergs from ice shelf rift systems. . Geophys. Res. Lett. 32::L02501
    [Google Scholar]
  94. Joughin I, Shapero D, Smith B, Dutrieux P, Barham M. 2021.. Ice-shelf retreat drives recent Pine Island Glacier speedup. . Sci. Adv. 7::eabg3080
    [Crossref] [Google Scholar]
  95. Kachuck SB, Whitcomb M, Bassis JN, Martin DF, Price SF. 2022.. Simulating ice-shelf extent using damage mechanics. . J. Glaciol. 68::98798
    [Google Scholar]
  96. Kilfeather AA, Cofaigh CO, Lloyd JM, Dowdeswell JA, Xu S, Moreton SG. 2011.. Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: sedimentological and foraminiferal signatures. . Geol. Soc. Am. Bull. 123::9971015
    [Crossref] [Google Scholar]
  97. Kingslake J, Ely JC, Das I, Bell RE. 2017.. Widespread movement of meltwater onto and across Antarctic ice shelves. . Nature 544::34952
    [Crossref] [Google Scholar]
  98. Kulessa B, Jansen D, Luckman AJ, King EC, Sammonds PR. 2014.. Marine ice regulates the future stability of a large Antarctic ice shelf. . Nat. Commun. 5::3707
    [Crossref] [Google Scholar]
  99. Lai CY, Kingslake J, Wearing MG, Chen PHC, Gentine P, et al. 2020.. Vulnerability of Antarctica's ice shelves to meltwater-driven fracture. . Nature 584::57478
    [Crossref] [Google Scholar]
  100. Larour E, Khazendar A, Borstad CP, Seroussi H, Morlighem M, Rignot E. 2014.. Representation of sharp rifts and faults mechanics in modeling ice shelf flow dynamics: application to Brunt/Stancomb-Wills Ice Shelf, Antarctica. . J. Geophys. Res. Earth Surf. 119::191835
    [Crossref] [Google Scholar]
  101. Larour E, Rignot E, Poinelli M, Scheuchl B. 2021.. Physical processes controlling the rifting of Larsen C Ice Shelf, Antarctica, prior to the calving of iceberg A68. . PNAS 118::e2105080118
    [Crossref] [Google Scholar]
  102. Lawn BR. 1993.. Fracture of Brittle Solids. New York:: Cambridge Univ. Press
    [Google Scholar]
  103. Lazzara MA, Jezek KC, Scambos TA, MacAyeal DR, Van der Veen CJ. 2008.. On the recent calving of icebergs from the Ross ice shelf. . Polar Geogr. 31::1526
    [Crossref] [Google Scholar]
  104. Levermann A, Albrecht T, Winkelmann R, Martin MA, Haseloff M, Joughin I. 2012.. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. . Cryosphere 6::27386
    [Crossref] [Google Scholar]
  105. Lhermitte S, Sun SN, Shuman C, Wouters B, Pattyn F, et al. 2020.. Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. . PNAS 117::2473541
    [Crossref] [Google Scholar]
  106. Lipovsky BP. 2018.. Ice shelf rift propagation and the mechanics of wave-induced fracture. . J. Geophys. Res. Oceans 123::401433
    [Crossref] [Google Scholar]
  107. Lipovsky BP. 2020.. Ice shelf rift propagation: stability, three-dimensional effects, and the role of marginal weakening. . Cryosphere 14::167383
    [Crossref] [Google Scholar]
  108. Lipscomb WH, Price SF, Hoffman MJ, Leguy GR, Bennett AR, et al. 2019.. Description and evaluation of the Community Ice Sheet Model (CISM) v2.1. . Geosci. Model Dev. 12::387424
    [Crossref] [Google Scholar]
  109. Liu Y, Moore JC, Cheng X, Gladstone RM, Bassis JN, et al. 2015.. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. . PNAS 112::326368
    [Crossref] [Google Scholar]
  110. Ma Y, Bassis JN. 2019.. The effect of submarine melting on calving from marine terminating glaciers. . J. Geophys. Res. Earth Surf. 124::33446
    [Crossref] [Google Scholar]
  111. Ma Y, Tripathy CS, Bassis JN. 2017.. Bounds on the calving cliff height of marine terminating glaciers. . Geophys. Res. Lett. 44::136975
    [Crossref] [Google Scholar]
  112. MacAyeal DR, Scambos TA, Hulbe CL, Fahnestock MA. 2003.. Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. . J. Glaciol. 49::2236
    [Crossref] [Google Scholar]
  113. Majewski W, Bart PJ, McGlannan AJ. 2018.. Foraminiferal assemblages from ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea, Antarctica. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 493::6481
    [Crossref] [Google Scholar]
  114. Massom RA, Giles AB, Fricker HA, Warner RC, Legresy B, et al. 2010.. Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: another factor in ice sheet stability?. J. Geophys. Res. 115:(C12):C12027
    [Crossref] [Google Scholar]
  115. Massom RA, Giles AB, Warner RC, Fricker HA, Legresy B, et al. 2015.. External influences on the Mertz Glacier Tongue (East Antarctica) in the decade leading up to its calving in 2010. . J. Geophys. Res. Earth Surf. 120::490506
    [Crossref] [Google Scholar]
  116. Massom RA, Scambos TA, Bennetts LG, Reid P, Squire VA, Stammerjohn SE. 2018.. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. . Nature 558::38389
    [Crossref] [Google Scholar]
  117. Mercer JH. 1970.. A former ice sheet in the Arctic Ocean?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 8::1927
    [Crossref] [Google Scholar]
  118. Mercer JH. 1978.. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. . Nature 271::32125
    [Crossref] [Google Scholar]
  119. Miles BWJ, Stokes CR, Jamieson SSR. 2017.. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up. . Cryosphere 11::42742
    [Crossref] [Google Scholar]
  120. Miles BWJ, Stokes CR, Jamieson SSR. 2018.. Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event. . Cryosphere 12::312336
    [Crossref] [Google Scholar]
  121. Miles BWJ, Stokes CR, Jenkins A, Jordan JR, Jamieson SSR, Gudmundsson GH. 2020.. Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018. . J. Glaciol. 66::48595
    [Crossref] [Google Scholar]
  122. Milillo P, Rignot E, Rizzoli P, Scheuchl B, Mouginot J, et al. 2019.. Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. . Sci. Adv. 5::eaau3433
    [Crossref] [Google Scholar]
  123. Mobasher ME, Duddu R, Bassis JN, Waisman H. 2016.. Modeling hydraulic fracture of glaciers using continuum damage mechanics. . J. Glaciol. 62::794804
    [Crossref] [Google Scholar]
  124. Moon T, Joughin I. 2008.. Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007. . J. Geophys. Res. 113:(F3):F02022
    [Google Scholar]
  125. Morlighem M, Bondzio J, Seroussi H, Rignot E, Larour E, et al. 2016.. Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing. . Geophys. Res. Lett. 43::265966
    [Crossref] [Google Scholar]
  126. Mottram RH, Benn DI. 2009.. Testing crevasse-depth models: a field study at Breioamerkurjokull, Iceland. . J. Glaciol. 55::74652
    [Crossref] [Google Scholar]
  127. Mueller D, Copland L, Jeffries MO. 2017a.. Changes in Canadian Arctic ice shelf extent since 1906. . In Arctic Ice Shelves and Ice Islands, ed. L Copeland, D Mueller , pp. 10948. Dordrecht, Neth:.: Springer
    [Google Scholar]
  128. Mueller D, Copland L, Jeffries MO. 2017b.. Northern Ellesmere Island ice shelf and ice tongue extents, v. 1.0 (1906–2015). . Nordicana D28 2017::10
    [Google Scholar]
  129. Munchow A, Padman L, Washam P, Nicholls KW. 2016.. The ice shelf of Petermann Gletscher, North Greenland, and its connection to the Arctic and Atlantic Oceans. . Oceanography 29::8495
    [Crossref] [Google Scholar]
  130. Needell C, Holschuh N. 2023.. Evaluating the retreat, arrest, and regrowth of Crane Glacier against marine ice cliff process models. . Geophys. Res. Lett. 50::e2022GL102400
    [Crossref] [Google Scholar]
  131. Nick FM, van der Veen CJ, Oerlemans J. 2007.. Controls on advance of tidewater glaciers: results from numerical modeling applied to Columbia Glacier. . J. Geophys. Res. 112:(F3):F03S24
    [Crossref] [Google Scholar]
  132. Nick FM, van der Veen CJ, Vieli A, Benn DI. 2010.. A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. . J. Glaciol. 56::78194
    [Crossref] [Google Scholar]
  133. Nick FM, Vieli A, Howat IM, Joughin I. 2009.. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. . Nat. Geosci. 2::11014
    [Crossref] [Google Scholar]
  134. Nye JF. 1957.. The distribution of stress and velocity in glaciers and ice-sheets. . Proc. R. Soc. A 239::11333
    [Google Scholar]
  135. Olinger SD, Lipovsky BP, Wiens DA, Aster RC, Bromirski PD, et al. 2019.. Tidal and thermal stresses drive seismicity along a major Ross Ice Shelf rift. . Geophys. Res. Lett. 46::664452
    [Crossref] [Google Scholar]
  136. Paolo FS, Fricker HA, Padman L. 2015.. Volume loss from Antarctic ice shelves is accelerating. . Science 348::32731
    [Crossref] [Google Scholar]
  137. Parizek BR, Christianson K, Alley RB, Voytenko D, Vankova I, et al. 2019.. Ice-cliff failure via retrogressive slumping. . Geology 47::44952
    [Crossref] [Google Scholar]
  138. Phillips HA. 1998.. Surface meltstreams on the Amery Ice Shelf, East Antarctica. . Ann. Glaciol. 27:(27):17781
    [Crossref] [Google Scholar]
  139. Polyak L, Edwards MH, Coakley BJ, Jakobsson M. 2001.. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. . Nature 410::45357
    [Crossref] [Google Scholar]
  140. Pralong A, Funk M. 2005.. Dynamic damage model of crevasse opening and application to glacier calving. . J. Geophys. Res. 110:(B1):B01309
    [Crossref] [Google Scholar]
  141. Pralong A, Funk M, Luthi MP. 2003.. A description of crevasse formation using continuum damage mechanics. . Ann. Glaciol. 37:(37):7782
    [Crossref] [Google Scholar]
  142. Prasanna M, Polojarvi A, Wei MD, Astrom J. 2022.. Modeling ice block failure within drift ice and ice rubble. . Phys. Rev. E 105::045001
    [Crossref] [Google Scholar]
  143. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA. 2009.. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. . Nature 461::97175
    [Crossref] [Google Scholar]
  144. Rack W, Rott H. 2004.. Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula. . Ann. Glaciol. 39:(39):50510
    [Crossref] [Google Scholar]
  145. Reeh N, Thomsen HH, Higgins AK, Weidick A. 2001.. Sea ice and the stability of north and northeast Greenland floating glaciers. . Ann. Glaciol. 33:(33):47480
    [Crossref] [Google Scholar]
  146. Rist MA, Sammonds PR, Oerter H, Doake CSM. 2002.. Fracture of Antarctic shelf ice. . J. Geophys. Res. 107:(B1):ECV 21ECV 2-13
    [Crossref] [Google Scholar]
  147. Robel AA. 2017.. Thinning sea ice weakens buttressing force of iceberg melange and promotes calving. . Nat. Commun. 8::14596
    [Crossref] [Google Scholar]
  148. Rott H, Rack W, Nagler T, Skvarca P. 1998.. Climatically induced retreat and collapse of northern Larsen Ice Shelf, Antarctic Peninsula. . Ann. Glaciol. 27:(27):8692
    [Crossref] [Google Scholar]
  149. Ruckamp M, Neckel N, Berger S, Humbert A, Helm V. 2019.. Calving induced speedup of Petermann Glacier. . J. Geophys. Res. Earth Surf. 124::21628
    [Crossref] [Google Scholar]
  150. Scambos T, Hulbe C, Fahnestock M. 2003.. Climate-induced ice shelf disintegration in the Antarctic Peninsula. . Antarct. Penins. Clim. Var. Hist. Paleoenviron. Perspect. 79::7992
    [Google Scholar]
  151. Scambos TA, Bell RE, Alley RB, Anandakrishnan S, Bromwich DH, et al. 2017.. How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. . Glob. Planet. Change 153::1634
    [Crossref] [Google Scholar]
  152. Scambos TA, Bohlander JA, Shuman CA, Skvarca P. 2004.. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. . Geophys. Res. Lett. 31::L18402
    [Crossref] [Google Scholar]
  153. Schmidt BE, Washam P, Davis PED, Nicholls KW, Holland DM, et al. 2023.. Heterogeneous melting near the Thwaites Glacier grounding line. . Nature 614::47178
    [Crossref] [Google Scholar]
  154. Schoof C. 2012.. Marine ice sheet stability. . J. Fluid Mech. 698::6272
    [Crossref] [Google Scholar]
  155. Schulson EM. 2002.. Brittle failure of ice. . Plast. Deform. Minerals Rocks 51::20152
    [Crossref] [Google Scholar]
  156. Skvarca P. 1993.. Fast recession of the northern Larsen Ice Shelf monitored by space images. . Ann. Glaciol. 17::31721
    [Crossref] [Google Scholar]
  157. Smith R. 1976.. The application of fracture mechanics to the problem of crevasse penetration. . J. Glaciol. 17::22328
    [Crossref] [Google Scholar]
  158. Sondershaus R, Humbert A, Müller R. 2023.. A phase field model for fractures in ice shelves. . PAMM 22::e202200256
    [Crossref] [Google Scholar]
  159. Spergel JJ, Kingslake J, Creyts T, van Wessem M, Fricker HA. 2021.. Surface meltwater drainage and ponding on Amery Ice Shelf, East Antarctica, 1973–2019. . J. Glaciol. 67::98598
    [Crossref] [Google Scholar]
  160. Sun S, Cornford SL, Moore JC, Gladstone R, Zhao LY. 2017.. Ice shelf fracture parameterization in an ice sheet model. . Cryosphere 11::254354
    [Crossref] [Google Scholar]
  161. Sun XM, Duddu R, Hirshikesh. 2021.. A poro-damage phase field model for hydrofracturing of glacier crevasses. . Extreme Mech. Lett. 45::101277
    [Crossref] [Google Scholar]
  162. Thomas RH, MacAyeal DR. 1978.. Glaciological measurements on the Ross Ice Shelf. . Antarct. J. U. S. 13::5556
    [Google Scholar]
  163. Todd J, Christoffersen P, Zwinger T, Raback P, Chauche N, et al. 2018.. A full-Stokes 3-D calving model applied to a large Greenlandic glacier. . J. Geophys. Res. Earth Surf. 123::41032
    [Crossref] [Google Scholar]
  164. Trevers M, Payne AJ, Cornford SL, Moon T. 2019.. Buoyant forces promote tidewater glacier iceberg calving through large basal stress concentrations. . Cryosphere 13::187787
    [Crossref] [Google Scholar]
  165. van der Veen CJ. 1996.. Tidewater calving. . J. Glaciol. 42::37585
    [Crossref] [Google Scholar]
  166. van der Veen CJ. 1998a.. Fracture mechanics approach to penetration of bottom crevasses on glaciers. . Cold Regions Sci. Technol. 27::21323
    [Crossref] [Google Scholar]
  167. van der Veen CJ. 1998b.. Fracture mechanics approach to penetration of surface crevasses on glaciers. . Cold Regions Sci. Technol. 27::3147
    [Crossref] [Google Scholar]
  168. van Wessem JM, van den Broeke MR, Wouters B, Lhermitte S. 2023.. Variable temperature thresholds of melt pond formation on Antarctic ice shelves. . Nat. Clim. Change 13::16166
    [Crossref] [Google Scholar]
  169. Vaughan DG, Corr HFJ, Bindschadler RA, Dutrieux P, Gudmundsson GH, et al. 2012.. Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. . J. Geophys. Res. 117:(F3):F03012
    [Crossref] [Google Scholar]
  170. Vaughan DG, Doake CSM. 1996.. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. . Nature 379::32831
    [Crossref] [Google Scholar]
  171. Vermassen F, Bjork AA, Sicre MA, Jaeger JM, Wangner DJ, et al. 2020.. A major collapse of Kangerlussuaq Glacier's ice tongue between 1932 and 1933 in East Greenland. . Geophys. Res. Lett. 47::e2019GL085954
    [Crossref] [Google Scholar]
  172. Vieli A, Nick FM. 2011.. Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. . Surveys Geophys. 32::43758
    [Crossref] [Google Scholar]
  173. Vincent WF, Gibson JAE, Jeffries MO. 2001.. Ice-shelf collapse, climate change, and habitat loss in the Canadian high Arctic. . Polar Record 37::13342
    [Crossref] [Google Scholar]
  174. Vincent WF, Mueller D. 2020.. Witnessing ice habitat collapse in the Arctic. . Science 370::103132
    [Crossref] [Google Scholar]
  175. Walker CC, Bassis JN, Fricker HA, Czerwinski RJ. 2013.. Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring. . J. Geophys. Res. Earth Surf. 118::235464
    [Crossref] [Google Scholar]
  176. Walker CC, Bassis JN, Fricker HA, Czerwinski RJ. 2015.. Observations of interannual and spatial variability in rift propagation in the Amery Ice Shelf, Antarctica, 2002–14. . J. Glaciol. 61::24352
    [Crossref] [Google Scholar]
  177. Walker CC, Becker MK, Fricker HA. 2021.. A high resolution, three-dimensional view of the D-28 calving event from Amery Ice Shelf with ICESat-2 and satellite imagery. . Geophys. Res. Lett. 48::e2020GL091200
    [Crossref] [Google Scholar]
  178. Walter F, O'Neel S, McNamara D, Pfeffer WT, Bassis JN, Fricker HA. 2010.. Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. . Geophys. Res. Lett. 37::L15501
    [Crossref] [Google Scholar]
  179. Watkins RH, Bassis JN, Thouless MD. 2021.. Roughness of ice shelves is correlated with basal melt rates. . Geophys. Res. Lett. 48::e2021GL094743
    [Crossref] [Google Scholar]
  180. Weertman J. 1974.. Stability of the junction of an ice sheet and an ice shelf. . J. Glaciol. 13::311
    [Crossref] [Google Scholar]
  181. Weertman J. 1976.. Penetration depth of closely spaced crevasses. . Trans.-Am. Geophys. Union 57::32425
    [Google Scholar]
  182. Weertman J. 1980.. Bottom crevasses. . J. Glaciol. 25::18588
    [Crossref] [Google Scholar]
  183. White A, Copland L, Mueller D, Van Wychen W. 2015.. Assessment of historical changes (1959–2012) and the causes of recent break-ups of the Petersen ice shelf, Nunavut. , Canada. Ann. Glaciol. 56:(69):6576
    [Crossref] [Google Scholar]
  184. Wille JD, Favier V, Jourdain NC, Kittel C, Turton JV, et al. 2022.. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. . Commun. Earth Environ. 3::90
    [Crossref] [Google Scholar]
  185. Williams M, Dowdeswell JA. 2001.. Historical fluctuations of the Matusevich Ice Shelf, Severnaya Zemlya, Russian High Arctic. . Arctic Antarct. Alp. Res. 33::21122
    [Crossref] [Google Scholar]
  186. Wise MG, Dowdeswell JA, Jakobsson M, Larter RD. 2017.. Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks. . Nature 550::50610
    [Crossref] [Google Scholar]
  187. Yu HJ, Rignot E, Seroussi H, Morlighem M, Choi YM. 2019.. Impact of iceberg calving on the retreat of Thwaites Glacier, West Antarctica over the next century with different calving laws and ocean thermal forcing. . Geophys. Res. Lett. 46::1453947
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040522-122817
Loading
/content/journals/10.1146/annurev-earth-040522-122817
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error