1932

Abstract

The Chinese spacecraft Chang'e-5 (CE-5) landed on the northern Ocean Procellarum and returned 1,731 grams of regolith. The CE-5 regolith is composed mostly of fragments of basalt, impact glass, agglutinates, and mineral fragments. The basalts could be classified as of a low-Ti and highly fractionated type based on their TiO content of ∼5.3 wt% and Mg# of ∼28. Independent of petrographic texture, the CE-5 basalts have a uniform eruption age of 2,030 ± 4 Ma, demonstrating that the Moon remained volcanically active until at least ∼2.0 Ga. Although the CE-5 landing site lies within the so-called Procellarum KREEP [potassium (K), rare earth elements (REE), and phosphorus (P)] Terrane, neither the CE-5 basalts nor the mantle source regions of those basalts were enriched in KREEP components, such as incompatible elements, water, sulfur, or chlorine. Therefore, it would be a new and stimulating task in the future to look for the triggering mechanism of the young volcanism on the Moon.

  • ▪  The CE-5 spacecraft returned 1,731 grams of lunar regolith in December 2020. It was the first new lunar sample since the last collection in August 1976.
  • ▪  CE-5 regolith is basaltic in chemical composition, with only ∼1% highland materials of anorthosite, Mg suite, alkali suite, and KREEP.
  • ▪  The CE-5 basalt is low Ti and highly differentiated. It was extruded at ∼2.0 Ga, being the youngest lunar basalt identified so far from the Moon.
  • ▪  The triggering mechanism of the ∼2.0 Ga lunar volcanism is not clearly understood because its mantle source was dry and contained low abundances of KREEP elements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040722-100453
2024-07-23
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040722-100453.html?itemId=/content/journals/10.1146/annurev-earth-040722-100453&mimeType=html&fmt=ahah

Literature Cited

  1. Barker MK, Mazarico E, Neumann GA, Zuber MT, Haruyama J, Smith DE. 2016.. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. . Icarus 273::346355
    [Crossref] [Google Scholar]
  2. Bence A, Papike J. 1972.. Pyroxenes as recorders of lunar basalt petrogenesis: chemical trends due to crystal-liquid interaction. . Proc. Lunar Planet. Sci. Conf. 3::43169
    [Google Scholar]
  3. Borg LE, Gaffney AM, Kruijer TS, Marks NA, Sio CK, Wimpenny J. 2019.. Isotopic evidence for a young lunar magma ocean. . Earth Planet. Sci. Lett. 523::115706
    [Crossref] [Google Scholar]
  4. Borg LE, Gaffney AM, Shearer CK, DePaolo DJ, Hutcheon ID, et al. 2009.. Mechanisms for incompatible element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. . Geochim. Cosmochim. Acta 73::396380
    [Crossref] [Google Scholar]
  5. Borg LE, Shearer CK, Asmenron Y, Papike JJ. 2004.. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. . Nature 432::20911
    [Crossref] [Google Scholar]
  6. Boschi S, Wang XL, Hui HJ, Yin ZJ, Guan Y, . 2023.. Compositional variability of 2.0-Ga lunar basalts at the Chang'e-5 landing site. . J. Geophys. Res. Planets 128::e2022JE007627
    [Crossref] [Google Scholar]
  7. Boyce JW, Liu Y, Rossman GR, Guan YB, Eiler JM, et al. 2010.. Lunar apatite with terrestrial volatile abundances. . Nature 466::46669
    [Crossref] [Google Scholar]
  8. Braden SE, Stopar JD, Robinson MS, Lawrence SJ, van der Bogert CH, Hiesinger H. 2014.. Evidence for basaltic volcanism on the Moon within the past 100 million years. . Nat. Geosci. 7::78791
    [Crossref] [Google Scholar]
  9. Cao HJ, Wang C, Chen J, Che XC, Fu XH, et al. 2022.. A Raman spectroscopic and microimage analysis perspective of the Chang'e-5 lunar samples. . Geophys. Res. Lett. 49::e2022GL099282
    [Crossref] [Google Scholar]
  10. Cao KN, Dong MT, She ZB, Xiao Q, Wang XY, et al. 2022.. A novel method for simultaneous analysis of particle size and mineralogy for Chang'E-5 lunar soil with minimum sample consumption. . Sci. China Earth Sci. 65::170414
    [Crossref] [Google Scholar]
  11. Carlson RW. 2019.. Analysis of lunar samples: implications for planet formation and evolution. . Science 365::24045
    [Crossref] [Google Scholar]
  12. Carlson RW. 2021.. Robotic sample return reveals lunar secrets. . Nature 600::3940
    [Crossref] [Google Scholar]
  13. Carrier WD. 1973.. Lunar soil grain distribution. . Moon 6::25063
    [Crossref] [Google Scholar]
  14. Che XC, Nemchin A, Liu DY, Long T, Wang C, et al. 2021.. Age and composition of young basalts on the Moon, measured from samples returned by Chang'e-5. . Science 374::88790
    [Crossref] [Google Scholar]
  15. Colaprete A, Schultz P, Heldmann J, Wooden D, Shirley M, et al. 2010.. Detection of water in the LCROSS ejecta plume. . Science 330::46368
    [Crossref] [Google Scholar]
  16. Crow CA, McKeegan KD, Moser DE. 2017.. Coordinated U–Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons. . Geochim. Cosmochim. Acta 202::26484
    [Crossref] [Google Scholar]
  17. Culler TS, Becker TA, Muller RA, Rennes PR. 2000.. Lunar impact history from 40Ar/39Ar dating of glass spherules. . Science 287::178588
    [Crossref] [Google Scholar]
  18. Delano JW. 1980.. Chemistry and liquidus phase relations of Apollo 15 red glass: implications for the deep lunar interior. . Proc. Lunar Planet. Sci. Conf. 11::25188
    [Google Scholar]
  19. Delano JW. 1986.. Pristine lunar glasses: criteria, data, and implications. . J. Geophys. Res. 91:(B4):20113
    [Crossref] [Google Scholar]
  20. Delano JW, Zellner NEB, Barra F, Olson E, Swindle TD, et al. 2007.. An integrated approach to understanding Apollo 16 impact glasses: chemistry, isotopes, and shape. . Meteorit. Planet. Sci. 42::9931004
    [Crossref] [Google Scholar]
  21. Du J, Fa WZ, Gong SX, Liu YY, Qiao L, et al. 2022.. Thicknesses of mare basalts in the Chang'E-5 landing region: implications for the late-stage volcanism on the Moon. . J. Geophys. Res. Planets 127::2022JE007314
    [Crossref] [Google Scholar]
  22. Elardo SM, Shearer CK, Fagan AL, Borg LE, Gaffeney AM, et al. 2014.. The origin of young mare basalts inferred from lunar meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205. . Meteorit. Planet. Sci. 49::26191
    [Crossref] [Google Scholar]
  23. Elkins LT, Fernandes V, Delano JW, Grove TL. 2000.. Origin of lunar ultramafic green glasses: constraints from phase equilibrium studies. . Geochim. Cosmochim. Acta 64::233950
    [Crossref] [Google Scholar]
  24. Elkins-Tanton LT, Hager BH. 2005.. Giant meteoroid impacts can cause volcanism. . Earth Planet. Sci. Lett. 239::21932
    [Crossref] [Google Scholar]
  25. Fu XH, Hou XT, Zhang J, Li B, Ling ZC, et al. 2021.. Possible non-mare lithologies in the regolith at the Chang'e-5 landing site: evidence from remote sensing data. . J. Geophys. Res. Planets 126::e2020JE006797
    [Crossref] [Google Scholar]
  26. Gargano A, Sharp Z, Shearer C, Simon JI, Halliday A, Buckley W. 2020.. The Cl isotope composition and halogen contents of Apollo-return samples. . PNAS 117::2341825
    [Crossref] [Google Scholar]
  27. Glotch TD, Lucey PG, Bandfield JL, Greenhagen BT, Thomas IR, et al. 2010.. Highly silicic compositions on the Moon. . Science 329::151013
    [Crossref] [Google Scholar]
  28. Grove TL, Krawczynski MJ. 2009.. Lunar mare volcanism: Where did the magmas come from?. Elements 5::2934
    [Crossref] [Google Scholar]
  29. Haupt CP, Renggli CJ, Klaver M, Steenstra ES, Berndt J, et al. 2023.. Experimental and petrological investigations into the origin of the lunar Chang'e 5 basalts. . Icarus 402::115625
    [Crossref] [Google Scholar]
  30. Hauri EH, Saal AE, Nakajima M, Anand M, Rutherford MJ, et al. 2017.. Origin and evolution of water in the Moon's interior. . Annu. Rev. Earth Planet. Sci. 45::89111
    [Crossref] [Google Scholar]
  31. He HC, Ji JL, Zhang Y, Hu S, Lin YT, et al. 2023.. A solar wind-derived water reservoir on the Moon hosted by impact glass beads. . Nat. Geosci. 16::294300
    [Crossref] [Google Scholar]
  32. He Q, Cao Z, Qian YQ, Hui HJ, Baziotis I, . 2024.. Petrogenesis of magnesian troctolitic granulite clasts from Chang'e-5 drilling sample: implications for the origin of ejecta material from lunar highlands. . Icarus 408::115853
    [Crossref] [Google Scholar]
  33. He Q, Li YH, Baziotis I, Qian YQ, Xiao L, et al. 2022.. Detailed petrogenesis of the unsampled Oceanus Procellarum: the case of the Chang'e-5 mare basalts. . Icarus 383::115082
    [Crossref] [Google Scholar]
  34. Heiken GH, Vaniman DT, French BM, eds. 1991.. Lunar Sourcebook-A User's Guide to the Moon. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  35. Hess PC, Parmentier EM. 1995.. A model for the thermal and chemical evolution of the Moon's interior: implications for the onset of mare volcanism. . Earth Planet. Sci. Lett. 134::50114
    [Crossref] [Google Scholar]
  36. Hiesinger H, Head JW, Wolf U, Jaumann R, Neukum G. 2003.. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. . J. Geophys. Res. 108:(E7):2002JE001985
    [Crossref] [Google Scholar]
  37. Hiesinger H, Head JW, Wolf U, Jaumann R, Neukum G. 2011.. Ages and stratigraphy of lunar mare basalts: a synthesis. . Geol. Soc. Am. Spec. Pap. 477::151
    [Google Scholar]
  38. Hu S, He HC, Ji JL, Lin YT, Hui HJ, et al. 2021.. A dry lunar mantle reservoir for young mare basalts of Chang'e-5. . Nature 600::4953
    [Crossref] [Google Scholar]
  39. Hubbard NJ, Meyer C, Gast PW, Wiesmann H. 1971.. The composition and derivation of Apollo 12 soils. . Earth Planet. Sci. Lett. 10::34150
    [Crossref] [Google Scholar]
  40. Hui HJ, Peslier AH, Zhang YX, Neal CR. 2013.. Water in lunar anorthosites and evidence for a wet early Moon. . Nat. Geosci. 6::17780
    [Crossref] [Google Scholar]
  41. Ivanov BA, Melosh HJ. 2003.. Impacts do not initiate volcanic eruptions: eruptions close to the crater. . Geology 31::86972
    [Crossref] [Google Scholar]
  42. Ji JL, He HC, Hu S, Lin YT, Hui HJ, et al. 2022.. Magmatic chlorine isotope fractionation recorded in apatite from Chang'e 5 basalts. . Earth Planet. Sci. Lett. 591::117636
    [Crossref] [Google Scholar]
  43. Jia BJ, Fa WZ, Xie MG, Tai YS, Liu XF. 2021.. Regolith properties in the Chang'E-5 landing region of the Moon: results from multi-source remote sensing observations. . J. Geophys. Res. Planets 126::e2021JE006934
    [Crossref] [Google Scholar]
  44. Jia BJ, Fa WZ, Zhang MW, Di KC, Xie MG, et al. 2022.. On the provenance of the Chang'E-5 lunar samples. . Earth Planet. Sci. Lett. 596::117791
    [Crossref] [Google Scholar]
  45. Jia MN, Yue ZY, Di KC, Liu B, Liu JZ, Michael G. 2020.. A catalogue of impact craters larger than 200 m and surface age analysis in the Chang'e-5 landing area. . Earth Planet. Sci. Lett. 541::116272
    [Crossref] [Google Scholar]
  46. Jiang Y, Kang JT, Liao SY, Elardo SM, Zong KQ, et al. 2023.. Fe and Mg isotope compositions indicate a hybrid mantle source for young Chang'E 5 mare basalts. . Astrophys. J. Lett. 945::L26
    [Crossref] [Google Scholar]
  47. Jiang Y, Li Y, Liao SY, Yin ZJ, Hsu WB. 2022.. Mineral chemistry and 3D tomography of a Chang'E 5 high-Ti basalt: implication for the lunar thermal evolution history. . Sci. Bull. 67::75561
    [Crossref] [Google Scholar]
  48. Jolliff BL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA. 2000.. Major lunar crustal terranes: surface expressions and crust-mantle origins. . J. Geophys. Res. 105:(E2):4197216
    [Crossref] [Google Scholar]
  49. Jolliff BL, Wieczorek MA, Shearer CK, Neal CR, eds. 2006.. New Views of the Moon. Chantilly, VA:: Mineralog. Soc. Am.
    [Google Scholar]
  50. Jones AP. 2005.. Meteorite impacts as triggers to large igneous provinces. . Elements 1::27781
    [Crossref] [Google Scholar]
  51. Kamo SL, Reimold WU, Krogh TE, Colliston WP. 1996.. A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons from pseudotachylitic breccia and granophyre. . Earth Planet. Sci. Lett. 144::36987
    [Crossref] [Google Scholar]
  52. Korotev RL. 2005.. Lunar geochemistry as told by lunar meteorites. . Chem. Ed. 65::29746
    [Google Scholar]
  53. Lawrence DJ, Puetter RC, Elphic RC, Feldman WC, Hagerty JJ, et al. 2007.. Global spatial deconvolution of Lunar Prospector Th abundances. . Geophys. Res. Lett. 34::2006GL028530
    [Crossref] [Google Scholar]
  54. Li CL, Hu H, Yang MF, Pei ZY, Zhou Q, et al. 2022.. Characteristics of the lunar samples returned by the Chang'E-5 mission. . Natl. Sci. Rev. 9::nwab188
    [Crossref] [Google Scholar]
  55. Li JH, Li QL, Zhao L, Zhang JH, Tang X, et al. 2022.. Rapid screening of Zr-containing particles from Chang'e-5 lunar soil samples for isotope geochronology: technical roadmap for future study. . Geosci. Front. 13::101367
    [Crossref] [Google Scholar]
  56. Li LX, Hui HJ, Hu S, Wang H, Yang W, et al. 2023.. Petrogenesis of Chang'E-5 young mare low-Ti basalts. . Meteorit. Planet. Sci. 58:(10):142948
    [Crossref] [Google Scholar]
  57. Li QL, Zhou Q, Liu Y, Xiao ZY, Lin YT, et al. 2021.. Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts. . Nature 600::5458
    [Crossref] [Google Scholar]
  58. Li T, Li ZY, Huang ZX, Zhong J, Fan G, et al. 2022.. Changesite-(Y), IMA 2022-023 in: CNMNC Newsletter 69. . Eur. J. Mineral. 34::46364
    [Crossref] [Google Scholar]
  59. Li YH, Wang ZC, Zhang W, Zhou L, Zong KQ, et al. 2023.. Rb-Sr isotopes record complex thermal modification of Chang'e-5 lunar soils. . Sci. Bull. 68::272428
    [Crossref] [Google Scholar]
  60. Lin HL, Li S, Xu H, Liu Y, Wu X, et al. 2022.. In situ detection of water on the Moon by the Chang'E-5 lander. . Sci. Adv. 8::eabl9174
    [Crossref] [Google Scholar]
  61. Liu DW, Wang X, Liu JJ, Liu B, Ren X, et al. 2022.. Spectral interpretation of late-stage mare basalt mineralogy unveiled by Chang'E-5 samples. . Nat. Comm. 13::5965
    [Crossref] [Google Scholar]
  62. Liu JJ, Liu B, Ren X, Li CL, Shu R, et al. 2022.. Evidence of water on the lunar surface from Chang'E-5 in-situ spectra and returned samples. . Nat. Comm. 13::3119
    [Crossref] [Google Scholar]
  63. Liu TT, Michael G, Zhu MH, Wünnermann K. 2021.. Predicted sources of samples from the Chang'e-5 landing region. . Geophys. Res. Lett. 48::e2021GL092434
    [Crossref] [Google Scholar]
  64. Liu XY, Hao JL, Li RY, He YY, Tian HC, et al. 2022.. Sulfur isotopic fractionation of the youngest Chang'e-5 basalts: constraints on the magma degassing and geochemical features of the mantle source. . Geophys. Res. Lett. 49::e2022GL099922
    [Crossref] [Google Scholar]
  65. Long T, Qian YQ, Norman MD, Miljkovic K, Crow C, et al. 2022.. Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang'e-5 glass beads. . Sci. Adv. 8::eabq2542
    [Crossref] [Google Scholar]
  66. Longhi J. 1987.. On the connection between mare basalts and picritic volcanic glasses. . J. Geophys. Res. 92:(B4):E34960
    [Google Scholar]
  67. Lucey P, Korotev RL, Gillis JJ, Taylor LA, Lawrence D, et al. 2006.. Understanding the lunar surface and space–Moon interactions. . Rev. Mineral. Geochem. 60::83219
    [Crossref] [Google Scholar]
  68. Luo BJ, Wang ZC, Song JL, Qian YQ, He Q, et al. 2023.. The magmatic architecture and evolution of the Chang'e-5 lunar basalts. . Nat. Geosci. 16::3018
    [Crossref] [Google Scholar]
  69. Mallapaty S. 2020.. China set to retrieve first Moon rocks in 40 years. . Nature 587::18586
    [Crossref] [Google Scholar]
  70. McCubbin FM, Kaaden KEV, Tartese R, Klima RL, Liu Y, et al. 2015.. Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: abundances, distributions, processes, and reservoirs. . Am. Mineral. 100::1668707
    [Crossref] [Google Scholar]
  71. Mei A, Jiang Y, Liao S, Kang J, Huang F, et al. 2023.. KREEP-rich breccia in Chang'E-5 regolith and its implications. . Sci. China Earth Sci. 66::247386
    [Crossref] [Google Scholar]
  72. Melosh HJ. 1989.. Impact Cratering: A Geologic Process. Cambridge, UK:: Oxford Univ. Press
    [Google Scholar]
  73. Michael G, Neukum G. 2010.. Planetary surface dating from crater size–frequency distribution measurements: partial resurfacing events and statistical age uncertainty. . Earth Planet. Sci. Lett. 294::22329
    [Crossref] [Google Scholar]
  74. Morgan C, Wilson L, Head JW. 2021.. Formation and dispersal of pyroclasts on the Moon: indicators of lunar magma volatile contents. . J. Volcanol. Geotherm. Res. 413::107217
    [Crossref] [Google Scholar]
  75. Moser DE. 1997.. Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa. . Geology 25::710
    [Crossref] [Google Scholar]
  76. Nakajima M, Stevenson DJ. 2018.. Inefficient volatile loss from the Moon-forming disk: reconciling the giant impact hypothesis and a wet Moon. . Earth Planet. Sci. Lett. 487::11726
    [Crossref] [Google Scholar]
  77. Naney MT, Crowl DM, Papike JJ. 1976.. The Apollo 16 drill core: statistical analysis of glass chemistry and the characterization of a high alumina-silica poor (HASP) glass. . Proc. Lunar Sci. Conf. 7::15584
    [Google Scholar]
  78. Neal CR. 2009.. The Moon 35 years after Apollo: What's left to learn?. Geochemistry 69::343
    [Crossref] [Google Scholar]
  79. Neal CR, Taylor LA. 1992.. Petrogenesis of mare basalts: a record of lunar volcanism. . Geochim. Cosmochim. Acta 56::2177211
    [Crossref] [Google Scholar]
  80. Nemchin AA, Norman MD, Grange ML, Zeigler RA, Whitehouse MJ, et al. 2022.. U-Pb isotope systematics and impact ages recorded by a chemically diverse population of glasses from an Apollo 14 lunar soil. . Geochim. Cosmochim. Acta 321::20643
    [Crossref] [Google Scholar]
  81. Neukum G. 1983.. Meteoriten bombardement und Datierung planetarer Oberflachen. Habilitation Thesis , Univ. Munich
    [Google Scholar]
  82. Neukum G, Ivanov BA, Hartmann WK. 2001.. Cratering records in the inner solar system in relation to the lunar reference. . Space Sci. Rev. 96::5586
    [Crossref] [Google Scholar]
  83. Pang RL, Yang J, Du W, Zhang AC, Liu SR, Li R. 2022.. New occurrence of seifertite and stishovite in Chang'E-5 regolith. . Geophys. Res. Lett. 49::e2022GL098722
    [Crossref] [Google Scholar]
  84. Qian YQ, She ZB, He Q, Xiao L, Wang ZC, et al. 2023.. Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane. . Nat. Astron. 7::28797
    [Crossref] [Google Scholar]
  85. Qian YQ, Xiao L, Head JW, van der Bogert CH, Hiesinger H, Wilson L. 2021a.. Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum. . Earth Planet. Sci. Lett. 555::116702
    [Crossref] [Google Scholar]
  86. Qian YQ, Xiao L, Wang Q, Head JW, Yang RH, et al. 2021b.. China's Chang'e-5 landing site: geology, stratigraphy, and provenance of materials. . Earth Planet. Sci. Lett. 561::116855
    [Crossref] [Google Scholar]
  87. Qian YQ, Xiao L, Yin S, Zhang M, Zhao SY, et al. 2020.. The regolith properties of the Chang'e-5 landing region and the ground drilling experiments using lunar regolith simulants. . Icarus 337::113508
    [Crossref] [Google Scholar]
  88. Qian YQ, Xiao L, Zhao SY, Zhao JN, Huang J, et al. 2018.. Geology and scientific significance of the Rümker region in northern Oceanus Procellarum: China's Chang'E-5 landing region. . J. Geophys. Res. Planets 123::140730
    [Crossref] [Google Scholar]
  89. Qiao L, Xu LY, Yang YZ, Xie MG, Chen J, et al. 2021.. Cratering records in the Chang'e-5 mare unit: filling the “age gap” of the lunar crater chronology and preparation for its recalibration. . Geophys. Res. Lett. 48::e2021GL095132
    [Crossref] [Google Scholar]
  90. Rampino MR. 1987.. Impact cratering and flood basalt volcanism. . Nature 327::468
    [Crossref] [Google Scholar]
  91. Saal AE, Hauri EH, Cascio ML, Van Orman JA, Rutherford MJ, Cooper RF. 2008.. Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior. . Nature 454::19296
    [Crossref] [Google Scholar]
  92. Schultz PH, Staid MI, Pieters CM. 2006.. Lunar activity from recent gas release. . Nature 449::18487
    [Crossref] [Google Scholar]
  93. Sharp ZD, Shearer CK, McKeegan KD, Barnes JD, Wang YQ. 2010.. The chlorine isotope composition of the moon and implications for an anhydrous mantle. . Science 329::105053
    [Crossref] [Google Scholar]
  94. Shearer CK, Elardo SM, Petro NE, Borg LE, McCubbin FM. 2019.. Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. . Am. Mineral. 100::294325
    [Crossref] [Google Scholar]
  95. Shearer CK, Papike JJ, Simon SB, Shimizu N. 1989.. An ion microprobe study of the intra-crystalline behavior of REE and selected trace elements in pyroxene from mare basalts with different cooling and crystallization histories. . Geochim. Cosmochim. Acta 53::104154
    [Crossref] [Google Scholar]
  96. Snape JF, Nemchin AA, Bellucci JJ, Whitehouse MJ, Tartèse R, et al. 2016.. Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. . Earth Planet. Sci. Lett. 451::14958
    [Crossref] [Google Scholar]
  97. Snape JF, Nemchin AA, Whitehouse MJ, Merle RE, Hopkinson T, Anand M. 2019.. The timing of basaltic volcanism at the Apollo landing sites. . Geochim. Cosmochim. Acta 266::2953
    [Crossref] [Google Scholar]
  98. Srivastava Y, Sarbadhikari AB, Day JMD, Yamaguchi A, Takenouchi A. 2022.. A changing thermal regime revealed from shallow to deep basalt source melting in the Moon. . Nat. Commun. 13::7594
    [Crossref] [Google Scholar]
  99. Su B, Yuan JY, Chen Y, Yang W, Mitchell RN, et al. 2022.. Fusible mantle cumulates trigger young mare volcanism on the cooling Moon. . Sci. Adv. 8::eabn2103
    [Crossref] [Google Scholar]
  100. Su B, Zhang D, Chen Y, Yang W, Mao Q, et al. 2023.. Low Ni and Co olivine in Chang'E-5 basalts reveals the origin of the young volcanism on the Moon. . Sci. Bull. 68::191827
    [Crossref] [Google Scholar]
  101. Taylor SR, Pieters CM, MacPherson GJ. 2006.. Earth-Moon system, planetary science, and lessons learned. . Rev. Mineral. Geochem. 60::657704
    [Crossref] [Google Scholar]
  102. Tian HC, Wang H, Chen Y, Yang W, Zhou Q, et al. 2021.. Non-KREEP origin for Chang'e-5 basalts in the Procellarum KREEP Terrane. . Nature 600::5963
    [Crossref] [Google Scholar]
  103. Tian HC, Yang W, Gao YB, Zhou Q, Lin YT, et al. 2023a.. Reassessing the classification of Chang'E-5 basalts using pyroxene composition. . Lithos 456::107309
    [Crossref] [Google Scholar]
  104. Tian HC, Yang W, Zhang D, Zhang H, Jia L, et al. 2023b.. Petrogenesis of Chang'E-5 mare basalts: clues from the trace elements in plagioclase. . Am. Mineral. 108::166977
    [Crossref] [Google Scholar]
  105. Wang ZL, Wang W, Tian W, Li HJ, Qian YQ, et al. 2023.. Cooling rate of clinopyroxene reveals the thickness and effusion volume of Chang'E-5 basaltic flow units. . Icarus 394::115406
    [Crossref] [Google Scholar]
  106. Warren PH. 1985.. The magma ocean concept and lunar evolution. . Annu. Rev. Earth Planet. Sci. 13::20140
    [Crossref] [Google Scholar]
  107. Warren PH, Taylor GJ. 2014.. The Moon. . Treatise Geochem. 2::21350
    [Crossref] [Google Scholar]
  108. Warren PH, Wasson JT. 1979.. The origin of KREEP. . Rev. Geophys. 7::7388
    [Crossref] [Google Scholar]
  109. Wieczorek MA, Jolliff BL, Khan A, Pritchard ME, Weiss BP, et al. 2006.. The constitution and structure of the lunar interior. . Rev. Mineral. Geochem. 60::221364
    [Crossref] [Google Scholar]
  110. Wilson L, Head JW. 2017.. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (part 1: theory). . Icarus 283::14675
    [Crossref] [Google Scholar]
  111. Wu B, Huang J, Li Y, Wang YR, Peng J. 2018.. Rock abundance and crater density in the candidate Chang'E-5 landing region on the Moon. . J. Geophys. Res. Planets 123::325672
    [Crossref] [Google Scholar]
  112. Xie MG, Xiao ZY, Zhang XY, Xu AA. 2020.. The provenance of regolith at the Chang'e-5 candidate landing region. . J. Geophys. Res. Planets 125::e2019JE006112
    [Crossref] [Google Scholar]
  113. Xie SM, Joy KH, Nemchin A, Jolliff B, Che XC, et al. 2022.. Petrology and chemistry of agglutinates in the Chang'e-5 soil. . Lunar Planet Sci. Conf. 53::1800
    [Google Scholar]
  114. Xu YC, Tian HC, Zhang C, Chaussidon M, Lin YT, et al. 2022.. High abundance of solar wind-derived water in lunar soils from middle latitude. . PNAS 119::2214395119
    [Crossref] [Google Scholar]
  115. Yan P, Xiao ZY, Wu YH, Yang W, Li JH, et al. 2022.. Intricate regolith reworking processes revealed by microstructures on lunar impact glasses. . J. Geophys. Res. Planets 127::e2022JE007260
    [Crossref] [Google Scholar]
  116. Yang J, Ju DY, Pang RL, Li R, Liu JZ, Du W. 2023.. Significance of silicate liquid immiscibility for the origin of young highly evolved lithic clasts in Chang'E-5 regolith. . Geochim. Cosmochim. Acta 340::189205
    [Crossref] [Google Scholar]
  117. Yang W, Chen Y, Wang H, Tian HC, Hui HJ, et al. 2022.. High thorium on the lunar surface not associated with KREEP: single provenance of the Chang'e-5 regolith indicated by impact glasses. . Geochim. Cosmochim. Acta 335::18396
    [Crossref] [Google Scholar]
  118. Yue ZY, Di KC, Michael G, Gou S, Lin YT, Liu JZ. 2022a.. Martian surface dating model refinement based on Chang'E-5 updated lunar chronology function. . Earth Planet. Sci. Lett. 595::117765
    [Crossref] [Google Scholar]
  119. Yue ZY, Di KC, Wan WH, Liu ZQ, Gou S, et al. 2022b.. Updated lunar cratering chronology model with the radiometric age of Chang'e-5 samples. . Nat. Astron. 6::54145
    [Crossref] [Google Scholar]
  120. Zeng XJ, Li XY, Liu JZ. 2023.. Exotic clasts in Chang'e-5 regolith indicative of unexplored terrane on the Moon. . Nat. Astron. 7::15259
    [Crossref] [Google Scholar]
  121. Zhang D, Su B, Chen Y, Yang W, Mao Q, Jia LH. 2022.. Titanium in olivine reveals low-Ti origin of the Chang'E-5 lunar basalts. . Lithos 414::106639
    [Crossref] [Google Scholar]
  122. Zhang H, Zhang X, Zhang G, Dong KQ, Deng XJ, et al. 2022.. Size, morphology, and composition of lunar samples returned by Chang'E-5 mission. . Sci. China Phys. Mech. Astron. 65::229511
    [Crossref] [Google Scholar]
  123. Zhang YX. 2020.. H2O and other volatiles in the Moon, 50 years and on. . ACS Earth Space Chem. 4::148099
    [Crossref] [Google Scholar]
  124. Zhao JN, Xiao L, Qiao L, Glotch TD, Huang Q. 2017.. The Mons Rümker volcanic complex of the Moon: a candidate landing site for the Chang'E-5 mission. . J. Geophys. Res. Planets 122::141942
    [Crossref] [Google Scholar]
  125. Zhou CJ, Tang H, Li XY, Zeng XJ, Mo B, et al. 2022.. Chang'E-5 samples reveal high water content in lunar minerals. . Nat. Comm. 13::5336
    [Crossref] [Google Scholar]
  126. Zhou Q, Liu Y, Yang SH, Li QL, Chen Y, . 2023.. The youngest lunar zircon reveals an extremely fractionated nature of Chang'e-5 basalt. . Geochim. Cosmochim. Acta 358::12633
    [Crossref] [Google Scholar]
  127. Zong KQ, Wang ZC, Li JW, He Q, Li YH, et al. 2022.. Bulk compositions of the Chang'E-5 lunar soil: insights into chemical homogeneity, exotic addition, and origin of landing site basalts. . Geochim. Cosmochim. Acta 335::28496
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040722-100453
Loading
/content/journals/10.1146/annurev-earth-040722-100453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error