1932

Abstract

The canonical water cycle assumes that all water entering the subsurface to form groundwater eventually reenters the surface water cycle by discharge to lakes, streams, and oceans. Recent discoveries in groundwater dating have challenged that understanding. Here we introduce a new conceptual framework that includes the large volume of water that is estimated to account for 30–46% of the planet's groundwater but that is not yet incorporated in the traditional water cycle. This immense hidden hydrogeosphere has been overlooked to date largely because it is stored deeper in the crust, on long timescales ranging from tens of thousands to more than one billion years. Here we demonstrate why understanding of this deep, old groundwater is critical to society's energy, resource, and climate challenges as the deep hydrogeosphere is an important target for exploration for new resources of helium, hydrogen, and other elements critical to the green energy transition; is under investigation for geologic repositories for nuclear waste and for carbon sequestration; and is the biome for a deep subsurface biosphere estimated to account for a significant proportion of Earth's biomass.

  • ▪  We provide a new conceptual framework for the hidden hydrogeosphere, the 30–46% of groundwater previously unrecognized in canonical water cycles.
  • ▪  Geochemico-statistical modeling groundwater age distributions allows deconvolution of timing, rates, and magnitudes of key crustal processes.
  • ▪  Understanding and modeling this deep, old groundwater are critical to addressing society's energy, resource, and climate challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040722-102252
2024-07-23
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040722-102252.html?itemId=/content/journals/10.1146/annurev-earth-040722-102252&mimeType=html&fmt=ahah

Literature Cited

  1. Aaltonen I, Engström J, Front K, Gehör S, Kosunen P, et al., eds. 2016.. Geology of Olkiluoto. Eurajoki, Finl.:: Posiva
    [Google Scholar]
  2. Achtziger-Zupančič P, Loew S, Mariéthoz G. 2017.. A new global database to improve predictions of permeability distribution in crystalline rocks at site scale: permeabilities in crystalline rocks. . J. Geophys. Res. Solid Earth 122:(5):351339
    [Crossref] [Google Scholar]
  3. Andrews JN, Davis SN, Fabryka-Martin J, Fontes J-C, Lehmann BE, et al. 1989.. The in situ production of radioisotopes in rock matrices with particular reference to the Stripa granite. . Geochim. Cosmochim. Acta 53:(8):180315
    [Crossref] [Google Scholar]
  4. Andrews JN, Florkowski T, Lehmann BE, Loosli HH. 1991.. Underground production of radionuclides in the Milk River aquifer, Alberta, Canada. . Appl. Geochem. 6:(4):42534
    [Crossref] [Google Scholar]
  5. Avice G, Marty B. 2020.. Perspectives on atmospheric evolution from noble gas and nitrogen isotopes on Earth, Mars & Venus. . Space Sci. Rev. 216:(3):36
    [Crossref] [Google Scholar]
  6. Ballentine CJ, Burgess R, Marty B. 2002.. Tracing fluid origin, transport and interaction in the crust. . Rev. Mineral. Geochem. 47:(1):539614
    [Crossref] [Google Scholar]
  7. Ballentine CJ, Burnard PG. 2002.. Production, release and transport of noble gases in the continental crust. . Rev. Mineral. Geochem. 47:(1):481538
    [Crossref] [Google Scholar]
  8. Bar-On YM, Phillips R, Milo R. 2018.. The biomass distribution on Earth. . PNAS 115:(25):650611
    [Crossref] [Google Scholar]
  9. Becraft ED, Lau Vetter MCY, Bezuidt OKI, Brown JM, Labonté JM, et al. 2021.. Evolutionary stasis of a deep subsurface microbial lineage. . ISME J. 15:(10):283042
    [Crossref] [Google Scholar]
  10. Bengtson S, Ivarsson M, Astolfo A, Belivanova V, Broman C, et al. 2014.. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. . Geobiology 12:(6):48996
    [Crossref] [Google Scholar]
  11. Bethke CM. 1985.. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. . J. Geophys. Res. 90:(B8):681728
    [Crossref] [Google Scholar]
  12. Bethke CM, Johnson TM. 2002a.. Ground water age. . Groundwater 40:(4):33739
    [Crossref] [Google Scholar]
  13. Bethke CM, Johnson TM. 2002b.. Paradox of groundwater age: correction. . Geology 30:(4):38588
    [Crossref] [Google Scholar]
  14. Bethke CM, Johnson TM. 2008.. Groundwater age and groundwater age dating. . Annu. Rev. Earth Planet. Sci. 36::12152
    [Crossref] [Google Scholar]
  15. Bomberg M, Miettinen H, Kietäväinen R, Purkamo L, Ahonen L, Vikman M. 2021.. Microbial metabolic potential in deep crystalline bedrock. . In The Microbiology of Nuclear Waste Disposal, ed. JR Lloyd, A Cherkouk , pp. 4170. Amsterdam:: Elsevier
    [Google Scholar]
  16. Borgonie G, Magnabosco C, García-Moyano A, Linage-Alvarez B, Ojo AO, et al. 2019.. New ecosystems in the deep subsurface follow the flow of water driven by geological activity. . Sci. Rep. 9:(1):3310
    [Crossref] [Google Scholar]
  17. Bottomley DJ, Clark ID. 2004.. Potassium and boron co-depletion in Canadian Shield brines: evidence for diagenetic interactions between marine brines and basin sediments. . Chem. Geol. 203:(3):22536
    [Crossref] [Google Scholar]
  18. Bottomley DJ, Clark ID, Battye N, Kotzer T. 2005.. Geochemical and isotopic evidence for a genetic link between Canadian Shield brines, dolomitization in the Western Canada Sedimentary Basin, and Devonian calcium-chloridic seawater. . Can. J. Earth Sci. 42:(11):205971
    [Crossref] [Google Scholar]
  19. Boyd ES, Amenabar MJ, Poudel S, Templeton AS. 2020.. Bioenergetic constraints on the origin of autotrophic metabolism. . Philos. Trans. R. Soc. A 378:(2165):20190151
    [Crossref] [Google Scholar]
  20. Bradley JA, Arndt S, Amend JP, Burwicz E, Dale AW, et al. 2020.. Widespread energy limitation to life in global subseafloor sediments. . Sci. Adv. 6:(32):eaba0697
    [Crossref] [Google Scholar]
  21. Cheng A, Sherwood Lollar B, Gluyas JG, Ballentine CJ. 2023.. Primary N2-He gas field formation in intracratonic sedimentary basins. . Nature 615:(7950):9499
    [Crossref] [Google Scholar]
  22. Cheng A, Sherwood Lollar B, Warr O, Ferguson G, Idiz E, et al. 2021.. Determining the role of diffusion and basement flux in controlling 4He distribution in sedimentary basin fluids. . Earth Planet. Sci. Lett. 574::117175
    [Crossref] [Google Scholar]
  23. Chester R, Jickells T. 2012.. Marine Geochemistry. Chichester, UK:: Wiley & Sons. , 3rd ed..
    [Google Scholar]
  24. Clark ID, Fritz P. 1997.. Environmental Isotopes in Hydrogeology. Boca Raton, FL:: CRC Press/Lewis
    [Google Scholar]
  25. Craig H. 1961.. Isotopic variations in meteoric waters. . Science 133:(3465):17023
    [Crossref] [Google Scholar]
  26. Dai X, Wang Y, Luo L, Pfiffner SM, Li G, et al. 2021.. Detection of the deep biosphere in metamorphic rocks from the Chinese continental scientific drilling. . Geobiology 19:(3):27891
    [Crossref] [Google Scholar]
  27. Danabalan D, Gluyas JG, Macpherson CG, Abraham-James TH, Bluett JJ, et al. 2022.. The principles of helium exploration. . Pet. Geosci. 28:(2):petgeo2021-29
    [Crossref] [Google Scholar]
  28. DeWitt J, McMahon S, Parnell J. 2022.. The effect of grain size on porewater radiolysis. . Earth Space Sci. 9:(6):e2021EA002024
    [Crossref] [Google Scholar]
  29. Drake H, Roberts NMW, Reinhardt M, Whitehouse M, Ivarsson M, et al. 2021.. Biosignatures of ancient microbial life are present across the igneous crust of the Fennoscandian shield. . Commun. Earth Environ. 2:(1):102
    [Crossref] [Google Scholar]
  30. Drake H, Tillberg M, Reinhardt M, Whitehouse MJ, Kooijman E. 2023.. In situ Rb/Sr geochronology and stable isotope geochemistry evidence for Neoproterozoic and Paleozoic fracture-hosted fluid flow and microbial activity in Paleoproterozoic basement, SW Sweden. . Geochem. Geophys. Geosyst. 24:(5):e2023GC010892
    [Crossref] [Google Scholar]
  31. Dzaugis ME, Spivack AJ, Dunlea AG, Murray RW, D'Hondt S. 2016.. Radiolytic hydrogen production in the subseafloor basaltic aquifer. . Front. Microbiol. 7::76
    [Crossref] [Google Scholar]
  32. Ehrenberg SN, Nadeau PH. 2005.. Sandstone vs. carbonate petroleum reservoirs: a global perspective on porosity-depth and porosity-permeability relationships. . AAPG Bull. 89::43545
    [Crossref] [Google Scholar]
  33. Ferguson G, Cuthbert MO, Befus K, Gleeson T, McIntosh JC. 2020.. Rethinking groundwater age. . Nat. Geosci. 13:(9):59294
    [Crossref] [Google Scholar]
  34. Ferguson G, McIntosh JC, Warr O, Sherwood Lollar B, Ballentine CJ, et al. 2021.. Crustal groundwater volumes greater than previously thought. . Geophys. Res. Lett. 48:(16):e2021GL093549
    [Crossref] [Google Scholar]
  35. Fontes J-C, Garnier J-M. 1979.. Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. . Water Resour. Res. 15:(2):399413
    [Crossref] [Google Scholar]
  36. Fontes JCh, Brissaud I, Michelot JL. 1984.. Hydrological implications of deep production of chlorine-36. . Nucl. Instrum. Methods Phys. Res. B 5:(2):3037
    [Crossref] [Google Scholar]
  37. Frape SK, Blyth A, Blomqvist R, McNutt RH, Gascoyne M. 2003.. Deep fluids in the continents: II. Crystalline rocks. . In Treatise on Geochemistry, ed. HD Holland, KK Turekian , pp. 54180. Oxford, UK:: Pergamon
    [Google Scholar]
  38. Frape SK, Blyth A, Stotler RL, Ruskeeniemi T, Blomqvist R, et al. 2014.. Deep fluids in the continents. . In Treatise on Geochemistry, ed. HD Holland, KK Turekian , pp. 51762. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  39. Frape SK, Fritz P. 1982.. The chemistry and isotopic composition of saline groundwaters from the Sudbury Basin, Ontario. . Can. J. Earth Sci. 19:(4):64561
    [Crossref] [Google Scholar]
  40. Frape SK, Fritz P, McNutt RH. 1984.. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. . Geochim. Cosmochim. Acta 48:(8):161727
    [Crossref] [Google Scholar]
  41. Freeze RA, Cherry JA. 1979.. Groundwater. Englewood Cliffs, NJ:: Prentice-Hall
    [Google Scholar]
  42. Fritz P, Frape SK. 1982.. Saline groundwaters in the Canadian Shield—a first overview. . Chem. Geol. 36:(1):17990
    [Crossref] [Google Scholar]
  43. Gallagher K, Charvin K, Nielsen S, Sambridge M, Stephenson J. 2009.. Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. . Mar. Pet. Geol. 26:(4):52535
    [Crossref] [Google Scholar]
  44. Gilevska T, Passeport E, Shayan M, Seger E, Lutz EJ, et al. 2019.. Determination of in situ biodegradation rates via a novel high resolution isotopic approach in contaminated sediments. . Water Res. 149::63239
    [Crossref] [Google Scholar]
  45. Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB. 2016.. The global volume and distribution of modern groundwater. . Nat. Geosci. 9:(2):16167
    [Crossref] [Google Scholar]
  46. Gleeson T, Cuthbert M, Ferguson G, Perrone D. 2020.. Global groundwater sustainability, resources, and systems in the Anthropocene. . Annu. Rev. Earth Planet. Sci. 48::43163
    [Crossref] [Google Scholar]
  47. Gleeson T, Ingebritsen S, eds. 2017.. Crustal Permeability. Chichester, UK:: Wiley & Sons
    [Google Scholar]
  48. Gleeson T, Smith L, Moosdorf N, Hartmann J, Dürr HH, et al. 2011.. Mapping permeability over the surface of the Earth. . Geophys. Res. Lett. 38:(2):L02401
    [Crossref] [Google Scholar]
  49. Goode DJ. 1996.. Direct simulation of groundwater age. . Water Resour. Res. 32:(2):28996
    [Crossref] [Google Scholar]
  50. Goodwin AM. 1996.. Distribution and tectonic setting of Precambrian crust. . In Principles of Precambrian Geology, ed. AM Goodwin , pp. 150. London:: Academic
    [Google Scholar]
  51. Greene S, Battye N, Clark I, Kotzer T, Bottomley D. 2008.. Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge. . Geochim. Cosmochim. Acta 72:(16):400819
    [Crossref] [Google Scholar]
  52. Guha J, Kanwar R. 1987.. Vug brines-fluid inclusions: a key to the understanding of secondary gold enrichment processes and the evolution of deep brines in the Canadian Shield. . Geol. Assoc. Can. Spec. Pap. 33::95101
    [Google Scholar]
  53. Han L-F, Plummer LN. 2013.. Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating. . Chem. Geol. 351::10514
    [Crossref] [Google Scholar]
  54. He H, Ji J, Zhang Y, Hu S, Lin Y, et al. 2023.. A solar wind-derived water reservoir on the Moon hosted by impact glass beads. . Nat. Geosci. 16:(4):294300
    [Crossref] [Google Scholar]
  55. Heard AW, Warr O, Borgonie G, Linage B, Kuloyo O, et al. 2018.. South African crustal fracture fluids preserve paleometeoric water signatures for up to tens of millions of years. . Chem. Geol. 493::37995
    [Crossref] [Google Scholar]
  56. Heim C, Lausmaa J, Sjövall P, Toporski J, Dieing T, et al. 2012.. Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden). . Geobiology 10:(4):28097
    [Crossref] [Google Scholar]
  57. Holland G, Sherwood Lollar B, Li L, Lacrampe-Couloume G, Slater GF, Ballentine CJ. 2013.. Deep fracture fluids isolated in the crust since the Precambrian era. . Nature 497:(7449):35760
    [Crossref] [Google Scholar]
  58. Ingebritsen S, Gleeson T. 2017.. Crustal permeability. . Hydrol. J. 25:(8):222124
    [Google Scholar]
  59. Ingebritsen SE, Manning CE. 1999.. Geological implications of a permeability-depth curve for the continental crust. . Geology 27:(12):110710
    [Crossref] [Google Scholar]
  60. Jaakkola ST, Ravantti JJ, Oksanen HM, Bamford DH. 2016.. Buried alive: microbes from ancient halite. . Trends Microbiol. 24:(2):14860
    [Crossref] [Google Scholar]
  61. Jasechko S, Perrone D, Befus KM, Bayani Cardenas M, Ferguson G, et al. 2017.. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. . Nat. Geosci. 10:(6):42529
    [Crossref] [Google Scholar]
  62. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D'Hondt S. 2012.. Global distribution of microbial abundance and biomass in subseafloor sediment. . PNAS 109:(40):1621316
    [Crossref] [Google Scholar]
  63. Karolytė R, Warr O, Van Heerden E, Flude S, De Lange F, et al. 2022.. The role of porosity in H2/He production ratios in fracture fluids from the Witwatersrand Basin, South Africa. . Chem. Geol. 595::120788
    [Crossref] [Google Scholar]
  64. Kendrick MA, Honda M, Walshe J, Petersen K. 2011.. Fluid sources and the role of abiogenic-CH4 in Archean gold mineralization: constraints from noble gases and halogens. . Precambrian Res. 189:(3–4):31327
    [Crossref] [Google Scholar]
  65. Kietäväinen R, Ahonen L, Kukkonen IT, Hendriksson N, Nyyssönen M, Itävaara M. 2013.. Characterisation and isotopic evolution of saline waters of the Outokumpu Deep Drill Hole, Finland—implications for water origin and deep terrestrial biosphere. . Appl. Geochem. 32::3751
    [Crossref] [Google Scholar]
  66. Kietäväinen R, Ahonen L, Kukkonen IT, Niedermann S, Wiersberg T. 2014.. Noble gas residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole, Finland. . Geochim. Cosmochim. Acta 145::15974
    [Crossref] [Google Scholar]
  67. Klein F, Grozeva NG, Seewald JS. 2019.. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. . PNAS 116:(36):1766672
    [Crossref] [Google Scholar]
  68. Kloppmann W, Girard J-P, Négrel P. 2002.. Exotic stable isotope compositions of saline waters and brines from the crystalline basement. . Chem. Geol. 184:(1):4970
    [Crossref] [Google Scholar]
  69. Kuva J, Voutilainen M, Kekäläinen P, Siitari-Kauppi M, Timonen J, Koskinen L. 2015.. Gas phase measurements of porosity, diffusion coefficient, and permeability in rock samples from Olkiluoto Bedrock, Finland. . Transp. Porous Media 107:(1):187204
    [Crossref] [Google Scholar]
  70. Lefticariu L, Pratt LA, LaVerne JA, Schimmelmann A. 2010.. Anoxic pyrite oxidation by water radiolysis products—a potential source of biosustaining energy. . Earth Planet. Sci. Lett. 292:(1–2):5767
    [Crossref] [Google Scholar]
  71. Lehmann BE, Davis SN, Fabryka-Martin JT. 1993.. Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. . Water Resour. Res. 29:(7):202740
    [Crossref] [Google Scholar]
  72. Lehmann BE, Purtschert R. 1997.. Radioisotope dynamics—the origin and fate of nuclides in groundwater. . Appl. Geochem. 12:(6):72738
    [Crossref] [Google Scholar]
  73. Leung DYC, Caramanna G, Maroto-Valer MM. 2014.. An overview of current status of carbon dioxide capture and storage technologies. . Renew. Sustain. Energy Rev. 39::42643
    [Crossref] [Google Scholar]
  74. Li L, Wing BA, Bui TH, McDermott JM, Slater GF, et al. 2016.. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks. . Nat. Commun. 7:(1):13252
    [Crossref] [Google Scholar]
  75. Lin L-H, Hall J, Lippmann-Pipke J, Ward JA, Sherwood Lollar B, et al. 2005a.. Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. . Geochem. Geophys. Geosyst. 6:(7):Q07003
    [Crossref] [Google Scholar]
  76. Lin L-H, Slater GF, Sherwood Lollar B, Lacrampe-Couloume G, Onstott TC. 2005b.. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. . Geochim. Cosmochim. Acta 69:(4):893903
    [Crossref] [Google Scholar]
  77. Lin L-H, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, et al. 2006.. Long-term sustainability of a high-energy, low-diversity crustal biome. . Science 314:(5798):47982
    [Crossref] [Google Scholar]
  78. Lippmann J, Stute M, Torgersen T, Moser DP, Hall JA, et al. 2003.. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. . Geochim. Cosmochim. Acta 67:(23):4597619
    [Crossref] [Google Scholar]
  79. Lippmann-Pipke J, Sherwood Lollar B, Niedermann S, Stroncik NA, Naumann R, et al. 2011.. Neon identifies two billion year old fluid component in Kaapvaal Craton. . Chem. Geol. 283:(3):28796
    [Crossref] [Google Scholar]
  80. Liu B, Liang Y. 2017.. An introduction of Markov chain Monte Carlo method to geochemical inverse problems: reading melting parameters from REE abundances in abyssal peridotites. . Geochim. Cosmochim. Acta 203::21634
    [Crossref] [Google Scholar]
  81. Lollar GS, Warr O, Telling J, Osburn MR, Sherwood Lollar B. 2019.. ‘ Follow the water’: hydrogeochemical constraints on microbial investigations 2.4 km below surface at the Kidd Creek Deep Fluid and Deep Life Observatory. . Geomicrobiol. J. 36:(10):85972
    [Crossref] [Google Scholar]
  82. Lu Z-T, Schlosser P, Smethie WM, Sturchio NC, Fischer TP, et al. 2014.. Tracer applications of noble gas radionuclides in the geosciences. . Earth Sci. Rev. 138::196214
    [Crossref] [Google Scholar]
  83. Magnabosco C, Lin L-H, Dong H, Bomberg M, Ghiorse W, et al. 2018.. The biomass and biodiversity of the continental subsurface. . Nat. Geosci. 11:(10):70717
    [Crossref] [Google Scholar]
  84. Maloszewski P, Zuber A. 1991.. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers. . Water Resour. Res. 27:(8):193745
    [Crossref] [Google Scholar]
  85. McIntosh JC, Ferguson G. 2021.. Deep meteoric water circulation in Earth's crust. . Geophys. Res. Lett. 48:(5):e2020GL090461
    [Crossref] [Google Scholar]
  86. McMahon S, Parnell J. 2014.. Weighing the deep continental biosphere. . FEMS Microbiol. Ecol. 87:(1):11320
    [Crossref] [Google Scholar]
  87. Morono Y, Ito M, Hoshino T, Terada T, Hori T, et al. 2020.. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. . Nat. Commun. 11:(1):3626
    [Crossref] [Google Scholar]
  88. Murdoch LC, Germanovich LN, Wang H, Onstott TC, Elsworth D, et al. 2012.. Hydrogeology of the vicinity of Homestake mine, South Dakota, USA. . Hydrol. J. 20:(1):2743
    [Google Scholar]
  89. NASEM (Natl. Acad. Sci. Eng. Med.). 2019.. An Astrobiology Strategy for the Search for Life in the Universe. Washington, DC:: Natl. Acad.
    [Google Scholar]
  90. NASEM (Natl. Acad. Sci. Eng. Med.). 2022.. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032. Washington, DC:: Natl. Acad.
    [Google Scholar]
  91. Nordstrom DK, Lindblom S, Donahoe RJ, Barton CC. 1989.. Fluid inclusions in the Stripa granite and their possible influence on the groundwater chemistry. . Geochim. Cosmochim. Acta 53:(8):174155
    [Crossref] [Google Scholar]
  92. Onstott TC, Ehlmann BL, Sapers H, Coleman M, Ivarsson M, et al. 2019.. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. . Astrobiology 19:(10):123062
    [Crossref] [Google Scholar]
  93. Onstott TC, Lin L-H, Davidson M, Mislowack B, Borcsik M, et al. 2006.. The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa. . Geomicrobiol. J. 23:(6):369414
    [Crossref] [Google Scholar]
  94. Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. 2014.. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions. . Mar. Geol. 352::40925
    [Crossref] [Google Scholar]
  95. Phillips E, Bergquist BA, Chartrand MMG, Chen W, Edwards EA, et al. 2022.. Compound specific isotope analysis in hydrogeology. . J. Hydrol. 615::128588
    [Crossref] [Google Scholar]
  96. Phillips FM, Castro MC. 2003.. Groundwater dating and residence-time measurements. . In Treatise on Geochemistry, ed. HD Holland, KK Turekian , pp. 45197. Oxford, UK:: Pergamon
    [Google Scholar]
  97. Piribauer C, Sindern S, Meyer F, Vennemann T, Prochaska W. 2011.. Fluid inclusions in the Outokumpu Deep Drill Core: implications for palaeofluid evolution and the composition of modern deep saline fluids. . Bull. Geol. Surv. Finl. 2011::16980
    [Google Scholar]
  98. Purtschert R, Yokochi R, Jiang W, Lu Z-T, Mueller P, et al. 2021.. Underground production of 81Kr detected in subsurface fluids. . Geochim. Cosmochim. Acta 295::6579
    [Crossref] [Google Scholar]
  99. Ruff SE, Humez P, de Angelis IH, Diao M, Nightingale M, et al. 2023.. Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. . Nat. Commun. 14:(1):3194
    [Crossref] [Google Scholar]
  100. Sahoo S, Russo TA, Elliott J, Foster I. 2017.. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. . Water Resour. Res. 53:(5):387895
    [Crossref] [Google Scholar]
  101. Sakan S, Sakan N, Popović A, Škrivanj S, Đorđević D. 2019.. Geochemical fractionation and assessment of probabilistic ecological risk of potential toxic elements in sediments using Monte Carlo simulations. . Molecules 24:(11):2145
    [Crossref] [Google Scholar]
  102. Sambridge M, Mosegaard K. 2002.. Monte Carlo methods in geophysical inverse problems. . Rev. Geophys. 40:(3):313-29
    [Crossref] [Google Scholar]
  103. Sauvage JF, Flinders A, Spivack AJ, Pockalny R, Dunlea AG, et al. 2021.. The contribution of water radiolysis to marine sedimentary life. . Nat. Commun. 12:(1):1297
    [Crossref] [Google Scholar]
  104. Scanlon BR, Fakhreddine S, Rateb A, de Graaf I, Famiglietti J, et al. 2023.. Global water resources and the role of groundwater in a resilient water future. . Nat. Rev. Earth Environ. 4:(2):87101
    [Crossref] [Google Scholar]
  105. Schilling OS, Gerber C, Partington DJ, Purtschert R, Brennwald MS, et al. 2017.. Advancing physically-based flow simulations of alluvial systems through atmospheric noble gases and the novel 37Ar tracer method. . Water Resour. Res. 53:(12):1046590
    [Crossref] [Google Scholar]
  106. Schmandt B, Jacobsen SD, Becker TW, Liu Z, Dueker KG. 2014.. Dehydration melting at the top of the lower mantle. . Science 344:(6189):126568
    [Crossref] [Google Scholar]
  107. Sherwood Lollar B. 2016.. Exploration of the hidden hydrogeosphere and deep biosphere. Invited workshop on “The origin, history and role of water in the evolution of the inner Solar System ,” The Royal Society, Chicheley Hall, UK:
    [Google Scholar]
  108. Sherwood Lollar B, Frape SK, Weise SM, Fritz P, Macko SA, Welhan JA. 1993.. Abiogenic methanogenesis in crystalline rocks. . Geochim. Cosmochim. Acta 57:(23):508797
    [Crossref] [Google Scholar]
  109. Sherwood Lollar B, Heuer VB, McDermott J, Tille S, Warr O, et al. 2021.. A window into the abiotic carbon cycle—acetate and formate in fracture waters in 2.7 billion year-old host rocks of the Canadian Shield. . Geochim. Cosmochim. Acta 294::295314
    [Crossref] [Google Scholar]
  110. Sherwood Lollar B, Lacrampe-Couloume G, Slater GF, Ward J, Moser DP, et al. 2006.. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. . Chem. Geol. 226:(3–4):32839
    [Crossref] [Google Scholar]
  111. Sherwood Lollar B, Onstott TC, Lacrampe-Couloume G, Ballentine CJ. 2014.. The contribution of the Precambrian continental lithosphere to global H2 production. . Nature 516:(7531):37982
    [Crossref] [Google Scholar]
  112. Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G. 2002.. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs. . Nature 416::52224
    [Crossref] [Google Scholar]
  113. Simkus DN, Slater GF, Sherwood Lollar B, Wilkie K, Kieft TL, et al. 2016.. Variations in microbial carbon sources and cycling in the deep continental subsurface. . Geochim. Cosmochim. Acta 173::26483
    [Crossref] [Google Scholar]
  114. Sleep NH, Zoback MD. 2007.. Did earthquakes keep the early crust habitable?. Astrobiology 7:(6):102332
    [Crossref] [Google Scholar]
  115. Snowdon AP, Normani SD, Sykes JF. 2021.. Analysis of crystalline rock permeability versus depth in a Canadian Precambrian rock setting. . J. Geophys. Res. Solid Earth 126:(5):e2020JB020998
    [Crossref] [Google Scholar]
  116. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, et al. 2015.. Complex archaea that bridge the gap between prokaryotes and eukaryotes. . Nature 521:(7551):17379
    [Crossref] [Google Scholar]
  117. Sprenger M, Stumpp C, Weiler M, Aeschbach W, Allen ST, et al. 2019.. The demographics of water: a review of water ages in the critical zone. . Rev. Geophys. 57:(3):80034
    [Crossref] [Google Scholar]
  118. Sudicky EA, Frind EO. 1981.. Carbon 14 dating of groundwater in confined aquifers: implications of aquitard diffusion. . Water Resour. Res. 17:(4):106064
    [Crossref] [Google Scholar]
  119. Tarnas JD, Mustard JF, Sherwood Lollar B, Bramble MS, Cannon KM, et al. 2018.. Radiolytic production of H2 on Noachian Mars: implications for habitability and atmospheric warming. . Earth Planet. Sci. Lett. 502::13345
    [Crossref] [Google Scholar]
  120. Tarnas JD, Mustard JF, Sherwood Lollar B, Stamenkovic V, Cannon KM, et al. 2021.. Earth-like habitable environments in the subsurface of Mars. . Astrobiology 21:(6):74156
    [Crossref] [Google Scholar]
  121. Taylor R, Aureli A, Allen D, Banks D, Villholth K, Stigter T. 2022.. Groundwater, aquifers, and climate change. . In Groundwater: Making the Invisible Visible, ed. R Connor , pp. 10114. Paris:: UNESCO
    [Google Scholar]
  122. Templeton AS, Caro TA. 2023.. The rock-hosted biosphere. . Annu. Rev. Earth Planet. Sci. 51::493519
    [Crossref] [Google Scholar]
  123. Tillberg M, Ivarsson M, Drake H, Whitehouse MJ, Kooijman E, Schmitt M. 2019.. Re-evaluating the age of deep biosphere fossils in the Lockne impact structure. . Geosciences 9:(5):202
    [Crossref] [Google Scholar]
  124. Trembath-Reichert E, Shah Walter SR, Ortiz MAF, Carter PD, Girguis PR, Huber JA. 2021.. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. . Sci. Adv. 7:(18):eabg0153
    [Crossref] [Google Scholar]
  125. Tsang C-F, Neretnieks I, Tsang Y. 2015.. Hydrologic issues associated with nuclear waste repositories. . Water Resour. Res. 51:(9):692372
    [Crossref] [Google Scholar]
  126. United Nations. 2022.. The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible. Paris:: UNESCO
    [Google Scholar]
  127. Wang Z, Yin Z, Caers J, Zuo R. 2020.. A Monte Carlo-based framework for risk-return analysis in mineral prospectivity mapping. . Geosci. Front. 11:(6):2297308
    [Crossref] [Google Scholar]
  128. Ward JA, Slater GF, Moser DP, Lin L-H, Lacrampe-Couloume G, et al. 2004.. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: implications for the deep biosphere. . Geochim. Cosmochim. Acta 68:(15):323950
    [Crossref] [Google Scholar]
  129. Warr O, Ballentine CJ, Mu J, Masters A. 2015.. Optimizing noble gas–water interactions via Monte Carlo simulations. . J. Phys. Chem. B 119:(45):1448695
    [Crossref] [Google Scholar]
  130. Warr O, Ballentine CJ, Onstott TC, Nisson DM, Kieft TL, et al. 2022.. 86Kr excess and other noble gases identify a billion-year-old radiogenically-enriched groundwater system. . Nat. Commun. 13:(1): 3768.
    [Crossref] [Google Scholar]
  131. Warr O, Giunta T, Ballentine CJ, Sherwood Lollar B. 2019.. Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. . Chem. Geol. 530::119322
    [Crossref] [Google Scholar]
  132. Warr O, Giunta T, Onstott TC, Kieft TL, Harris RL, et al. 2021.. The role of low-temperature 18O exchange in the isotopic evolution of deep subsurface fluids. . Chem. Geol. 561::120027
    [Crossref] [Google Scholar]
  133. Warr O, Sherwood Lollar B, Fellowes J, Sutcliffe CN, McDermott JM, et al. 2018.. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases. . Geochim. Cosmochim. Acta 222::34062
    [Crossref] [Google Scholar]
  134. Warr O, Smith NJT, Sherwood Lollar B. 2023a.. Hydrogeochronology: resetting the timestamp for subsurface groundwaters. . Geochim. Cosmochim. Acta 348::22138
    [Crossref] [Google Scholar]
  135. Warr O, Song M, Sherwood Lollar B. 2023b.. The application of Monte Carlo modelling to quantify in situ hydrogen and associated element production in the deep subsurface. . Front. Earth Sci. 11::1150740
    [Crossref] [Google Scholar]
  136. Warren-Rhodes K, Cabrol NA, Phillips M, Tebes-Cayo C, Kalaitzis F, et al. 2023.. Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues. . Nat. Astron. 7:(4):40622
    [Crossref] [Google Scholar]
  137. Wassenaar L, Aravena R, Hendry J, Fritz P. 1991.. Radiocarbon in dissolved organic carbon, a possible groundwater dating method: case studies from western Canada. . Water Resour. Res. 27:(8):197586
    [Crossref] [Google Scholar]
  138. Whitman WB, Coleman DC, Wiebe WJ. 1998.. Prokaryotes: the unseen majority. . PNAS 95:(12):657883
    [Crossref] [Google Scholar]
  139. Wigley TML, Plummer LN, Pearson FJ. 1978.. Mass transfer and carbon isotope evolution in natural water systems. . Geochim. Cosmochim. Acta 42:(8):111739
    [Crossref] [Google Scholar]
  140. Zito R, Donahue DJ, Davis SN, Bentley HW, Fritz P. 1980.. Possible subsurface production of carbon-14. . Geophys. Res. Lett. 7:(4):23538
    [Crossref] [Google Scholar]
  141. Zounemat-Kermani M, Batelaan O, Fadaee M, Hinkelmann R. 2021.. Ensemble machine learning paradigms in hydrology: a review. . J. Hydrol. 598::126266
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040722-102252
Loading
/content/journals/10.1146/annurev-earth-040722-102252
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error