1932

Abstract

India's diverse vegetation and landscapes provide an opportunity to understand the responses of vegetation to climate change. By examining pollen and fossil records along with carbon isotopes of organic matter and leaf wax, this review uncovers the rich vegetational history of India. Notably, during the late Miocene (8 to 6 Ma), the transition from C to C plants in lowland regions was a pivotal ecological shift, with fluctuations in their abundance during the late Quaternary (100 ka to the present). In India, the global phenomenon of C expansion was driven by the combined feedback of climate variations, changes in substrate conditions, and habitat disturbances. The Himalayan region has experienced profound transformations, including tree-line migrations, shifts in flowering and fruiting times, species loss, and shifts in plant communities due to changing monsoons and westerlies. Coastal areas, characterized by mangroves, have been dynamically influenced by changing sea extents driven by climate changes. In arid desert regions, the interplay between summer and westerlies rainfall has shaped vegetation composition. This review explores vegetation and climate history since 14 Ma and emphasizes the need for more isotope data from contemporary plants, precise sediment dating, and a better understanding of fire's role in shaping vegetation.

  • ▪  This review highlights diverse vegetation and landscapes of India as a valuable source for understanding the vegetation-climate link during the last 14 Myr.
  • ▪  A significant ecological shift occurred during 8 to 6 Ma in India, marked by the transition from C to C plants in the lowland regions.
  • ▪  The abundance of C and C plants varied in India during the late Quaternary (100 ka to present).
  • ▪  This review emphasizes the importance of more isotope data, precise sediment dating, and a better understanding of fire's role in shaping vegetation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040722-102442
2024-07-23
2025-02-06
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040722-102442.html?itemId=/content/journals/10.1146/annurev-earth-040722-102442&mimeType=html&fmt=ahah

Literature Cited

  1. Acharyya SK. 2007.. Evolution of the Himalayan Paleogene foreland basin, influence of its litho-packet on the formation of thrust-related domes and windows in the Eastern Himalayas—a review. . J. Asian Earth Sci. 31:(1):117
    [Crossref] [Google Scholar]
  2. Achyuthan H, Quade J, Roe L, Placzek C. 2007.. Stable isotopic composition of pedogenic carbonates from the eastern margin of the Thar Desert, Rajasthan, India. . Quat. Int. 162::5060
    [Crossref] [Google Scholar]
  3. Agrawal S, Galy V, Sanyal P, Eglinton T. 2014.. C4 plant expansion in the Ganga Plain during the last glacial cycle: insights from isotopic composition of vascular plant biomarkers. . Org. Geochem. 67::5871
    [Crossref] [Google Scholar]
  4. Agrawal S, Sanyal P, Bera MK, Dash JK, Balakrishnan S. 2013.. Paleoclimatic, paleovegetational and provenance change in the Ganga Plain during the late Quaternary. . J. Earth Syst. Sci. 122::114152
    [Crossref] [Google Scholar]
  5. Agrawal S, Sanyal P, Sarkar A, Jaiswal MK, Dutta K. 2012.. Variability of Indian monsoonal rainfall over the past 100 ka and its implication for C3–C4 vegetational change. . Quat. Res. 77:(1):15970
    [Crossref] [Google Scholar]
  6. Agrawal S, Srivastava P, Sonam, Meena NK, Rai SK, et al. 2015.. Stable (δ13C and δ15N) isotopes and magnetic susceptibility record of late Holocene climate change from a lake profile of the northeast Himalaya. . J. Geol. Soc. India 86::696705
    [Crossref] [Google Scholar]
  7. Ali SN, Agrawal S, Sharma A, Phartiyal B, Morthekai P, et al. 2020.. Holocene hydroclimatic variability in the Zanskar Valley, northwestern Himalaya, India. . Quat. Res. 97::14056
    [Crossref] [Google Scholar]
  8. Ali SN, Dubey J, Ghosh R, Quamar MF, Sharma A, et al. 2018.. High frequency abrupt shifts in the Indian summer monsoon since Younger Dryas in the Himalaya. . Sci. Rep. 8:(1):9287
    [Crossref] [Google Scholar]
  9. Andrae JW, McInerney FA, Polissar PJ, Sniderman JMK, Howard S, et al. 2018.. Initial expansion of C4 vegetation in Australia during the late Pliocene. . Geophys. Res. Lett. 45:(10):483140
    [Crossref] [Google Scholar]
  10. Andrews JE, Singhvi AK, Kailath AJ, Kuhn R, Dennis PF, et al. 1998.. Do stable isotope data from calcrete record Late Pleistocene monsoonal climate variation in the Thar Desert of India?. Quat. Res. 50:(3):24051
    [Crossref] [Google Scholar]
  11. Banerji US, Pandey S, Bhushan R, Juyal N. 2015.. Mid-Holocene climate and land-sea interaction along the southern coast of Saurashtra, western India. . J. Asian Earth Sci. 111::42839
    [Crossref] [Google Scholar]
  12. Basu S, Agrawal S, Sanyal P, Mahato P, Kumar S, et al. 2015.. Carbon isotopic ratios of modern C3–C4 plants from the Gangetic Plain, India and its implications to paleovegetational reconstruction. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 440::2232
    [Crossref] [Google Scholar]
  13. Basu S, Anoop A, Sanyal P, Singh P. 2017.. Lipid distribution in the lake Ennamangalam, south India: indicators of organic matter sources and paleoclimatic history. . Quat. Int. 443::23847
    [Crossref] [Google Scholar]
  14. Basu S, Ghosh S, Chattopadhyay D. 2021.. Disentangling the abiotic versus biotic controls on C3 plant leaf carbon isotopes: inferences from a global review. . Earth-Sci. Rev. 222::103839
    [Crossref] [Google Scholar]
  15. Basu S, Ghosh S, Sanyal P. 2019a.. Spatial heterogeneity in the relationship between precipitation and carbon isotopic discrimination in C3 plants: inferences from a global compilation. . Glob. Planet. Change 176::12331
    [Crossref] [Google Scholar]
  16. Basu S, Sanyal P, Pillai AA, Ambili A. 2019b.. Response of grassland ecosystem to monsoonal precipitation variability during the Mid-Late Holocene: inferences based on molecular isotopic records from Banni grassland, western India. . PLOS ONE 14:(4):e0212743
    [Crossref] [Google Scholar]
  17. Basu S, Sanyal P, Sahoo K, Chauhan N, Sarkar A, et al. 2018.. Variation in monsoonal rainfall sources (Arabian Sea and Bay of Bengal) during the late Quaternary: implications for regional vegetation and fluvial systems. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 491::7791
    [Crossref] [Google Scholar]
  18. Behrensmeyer AK, Quade J, Cerling TE, Kappelman J, Khan IA, et al. 2007.. The structure and rate of late Miocene expansion of C4 plants: evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan. . Geol. Soc. Am. Bull. 119:(11–12):1486505
    [Crossref] [Google Scholar]
  19. Berkelhammer M, Sinha A, Stott L, Cheng H, Pausata FS, Yoshimura K. 2012.. An abrupt shift in the Indian monsoon 4000 years ago. . Clim. Landsc. Civiliz. 198::7588
    [Google Scholar]
  20. Bhandari MM. 1995.. Biodiversity of Indian desert. . Taxon. Biodivers. 1995::2943
    [Google Scholar]
  21. Bhattacharyya A, Rao KN, Misra S, Nagakumar KCV, Demudu G, et al. 2013.. Palynological indicators of mangrove habitat in the Kolleru Lake region during the Early to Middle Holocene. . Curr. Sci. 104::12125
    [Google Scholar]
  22. Bookhagen B, Burbank DW. 2006.. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. . Geophys. Res. Lett. 33:(8):L08405
    [Crossref] [Google Scholar]
  23. Bryson RA, Swain AM. 1981.. Holocene variations of monsoon rainfall in Rajasthan. . Quat. Res. 16:(2):13545
    [Crossref] [Google Scholar]
  24. Burbank DW, Beck RA, Mulder T. 1996.. The Himalayan foreland basin. . In The Tectonic Evolution of Asia, ed. A Yin, TM Harrison , pp. 14990. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  25. Caratini C, Bentaleb I, Fontugne M, Morzadec-Kerfourn MT, Pascal JP, et al. 1994.. A less humid climate since ca. 3500 yr BP from marine cores off Karwar, western India. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 109:(2–4):37184
    [Crossref] [Google Scholar]
  26. Chakraborty S, Bhattacharya SK, Ranhotra PS, Bhattacharyya A, Bhushan R. 2006.. Palaeoclimatic scenario during Holocene around Sangla valley, Kinnaur northwest Himalaya based on multi proxy records. . Curr. Sci. 91:(6):77782
    [Google Scholar]
  27. Champion HG, Seth SK. 1968.. A Revised Survey of the Forest Types of India. Delhi:: Manag. Publ.
    [Google Scholar]
  28. Chauhan MS, Pokharia AK, Srivastava RK. 2015.. Late Quaternary vegetation history, climatic variability and human activity in the Central Ganga Plain, deduced by pollen proxy records from Karela Jheel, India. . Quat. Int. 371::14456
    [Crossref] [Google Scholar]
  29. Chen C, Park T, Wang X, Piao S, Xu B, et al. 2019.. China and India lead in greening of the world through land-use management. . Nat. Sustain. 2:(2):12229
    [Crossref] [Google Scholar]
  30. Coutand I, Barrier L, Govin G, Grujic D, Hoorn C, et al. 2016.. Late Miocene-Pleistocene evolution of India-Eurasia convergence partitioning between the Bhutan Himalaya and the Shillong Plateau: new evidences from foreland basin deposits along the Dungsam Chu section, eastern Bhutan. . Tectonics 35:(12):296394
    [Crossref] [Google Scholar]
  31. Cranwell PA. 1981.. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. . Org. Geochem. 3:(3):7989
    [Crossref] [Google Scholar]
  32. Dasgupta B, Ajay A, Prakash P, Sanyal P. 2022.. Understanding the disparity in n-alkane production among angiosperms and gymnosperms from the higher Himalayas: inferences drawn from a Machine Learning approach. . Org. Geochem. 171::104463
    [Crossref] [Google Scholar]
  33. Devi K, Samant SS, Puri S, Lal M. 2019.. Diversity, structure and regeneration pattern of tree communities in Kanawar Wildlife Sanctuary of Himachal Pradesh, north west Himalaya, India. . Indian J. Ecol. 46:(1):94103
    [Google Scholar]
  34. Dhir RP, Singhvi AK, Andrews JE, Kar A, Sareen BK, et al. 2010.. Multiple episodes of aggradation and calcrete formation in Late Quaternary aeolian sands, Central Thar Desert, Rajasthan, India. . J. Asian Earth Sci. 37:(1):1016
    [Crossref] [Google Scholar]
  35. Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH. 2010.. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. . PNAS 107:(13):573843
    [Crossref] [Google Scholar]
  36. Dixit Y, Hodell DA, Petrie CA. 2014a.. Abrupt weakening of the summer monsoon in northwest India ∼4100 yr ago. . Geology 42:(4):33942
    [Crossref] [Google Scholar]
  37. Dixit Y, Hodell DA, Sinha R, Petrie CA. 2014b.. Abrupt weakening of the Indian summer monsoon at 8.2 kyr BP. . Earth Planet. Sci. Lett. 391::1623
    [Crossref] [Google Scholar]
  38. Duveiller G, Hooker J, Cescatti A. 2018.. The mark of vegetation change on Earth's surface energy balance. . Nat. Commun. 9:(1):679
    [Crossref] [Google Scholar]
  39. Eglinton G, Hamilton RJ. 1967.. Leaf epicuticular waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents. . Science 156:(3780):132235
    [Crossref] [Google Scholar]
  40. Enzel Y, Ely LL, Mishra S, Ramesh R, Amit R, et al. 1999.. High-resolution Holocene environmental changes in the Thar Desert, northwestern India. . Science 284:(5411):12528
    [Crossref] [Google Scholar]
  41. Fairbanks RG. 1989.. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. . Nature 342:(6250):63742
    [Crossref] [Google Scholar]
  42. Farooqui A, Vaz GG. 2000.. Holocene sea-level and climatic fluctuations: Pulicat Lagoon—a case study. . Curr. Sci. 79:(10):148488
    [Google Scholar]
  43. Feakins SJ, Liddy HM, Tauxe L, Galy V, Feng X, et al. 2020.. Miocene C4 grassland expansion as recorded by the Indus Fan. . Paleoceanogr. Paleoclimatol. 35:(6):e2020PA003856
    [Crossref] [Google Scholar]
  44. Freeman KH, Colarusso LA. 2001.. Molecular and isotopic records of C4 grassland expansion in the late Miocene. . Geochim. Cosmochim. Acta 65:(9):143954
    [Crossref] [Google Scholar]
  45. Galy V, François L, France-Lanord C, Faure P, Kudrass H, et al. 2008.. C4 plants decline in the Himalayan basin since the Last Glacial Maximum. . Quat. Sci. Rev. 27:(13–14):1396409
    [Crossref] [Google Scholar]
  46. Ghosh R, Biswas O, Paruya DK, Agrawal S, Sharma A, et al. 2018.. Hydroclimatic variability and corresponding vegetation response in the Darjeeling Himalaya, India over the past ∼2400 years. . Catena 170::8499
    [Crossref] [Google Scholar]
  47. Ghosh R, Paruya DK, Khan MA, Chakraborty S, Sarkar A, et al. 2014.. Late Quaternary climate variability and vegetation response in Ziro Lake Basin, Eastern Himalaya: a multiproxy approach. . Quat. Int. 325::1329
    [Crossref] [Google Scholar]
  48. Ghosh S, Sanyal P, Kumar R. 2017.. Evolution of C4 plants and controlling factors: insight from n-alkane isotopic values of NW Indian Siwalik paleosols. . Org. Geochem. 110::11021
    [Crossref] [Google Scholar]
  49. Ghosh S, Sanyal P, Roy S, Bhushan R, Sati SP, Philippe A, et al. 2020.. Early Holocene Indian summer monsoon and its impact on vegetation in the Central Himalaya: insight from δD and δ13C values of leaf wax lipid. . Holocene 30:(7):106374
    [Crossref] [Google Scholar]
  50. Ghosh S, Sanyal P, Sangode SJ, Nanda AC. 2018.. Substrate control of C4 plant abundance in the Himalayan foreland: a study based on inter-basinal records from Plio-Pleistocene Siwalik Group sediments. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 511::34151
    [Crossref] [Google Scholar]
  51. Hait AK, Behling H. 2009.. Holocene mangrove and coastal environmental changes in the western Ganga-Brahmaputra Delta, India. . Veg. Hist. Archaeobot. 18::15969
    [Crossref] [Google Scholar]
  52. Hoetzel S, Dupont L, Schefuß E, Rommerskirchen F, Wefer G. 2013.. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. . Nat. Geosci. 6:(12):102730
    [Crossref] [Google Scholar]
  53. Jha DK, Hirave P, Ghosh S, Dasgupta B, Sanyal P. 2024.. Does leaf wax isotopic characterisation of gymnosperms and angiosperms capture environmental gradients in Himalayas?. Org. Geochem. 187::104720
    [Crossref] [Google Scholar]
  54. Jha DK, Samrat R, Sanyal P. 2021.. The first evidence of controlled use of fire by prehistoric humans during the Middle Paleolithic phase from the Indian subcontinent. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 562::110151
    [Crossref] [Google Scholar]
  55. Jha DK, Sanyal P, Philippe A. 2020.. Multi-proxy evidence of Late Quaternary climate and vegetational history of north-central India: implication for the Paleolithic to Neolithic phases. . Quat. Sci. Rev. 229::106121
    [Crossref] [Google Scholar]
  56. Joshi P, Phartiyal B, Joshi M, Agrawal S, Kumar P, et al. 2023.. Reconstruction of landscape and climate of the largest drainage basin in the Ladakh Range, NW Trans Himalaya during the last 7000 years. . Catena 223::106907
    [Crossref] [Google Scholar]
  57. Kailath AJ, Rao TKG, Dhir RP, Nambi KSV, Gogte VD, et al. 2000.. Electron spin resonance characterization of calcretes from Thar desert for dating applications. . Radiat. Meas. 32:(4):37183
    [Crossref] [Google Scholar]
  58. Karp AT, Behrensmeyer AK, Freeman KH. 2018.. Grassland fire ecology has roots in the late Miocene. . PNAS 115:(48):1213035
    [Crossref] [Google Scholar]
  59. Kathiresan K. 2010.. Importance of mangrove forests of India. . J. Coast. Environ. 1:(1):1126
    [Google Scholar]
  60. Kelleway JJ, Mazumder D, Baldock JA, Saintilan N. 2018.. Carbon isotope fractionation in the mangrove Avicennia marina has implications for food web and blue carbon research. . Estuar. Coast. Shelf Sci. 205::6874
    [Crossref] [Google Scholar]
  61. Khandelwal A. 2008.. Palynological records of mangrove degradation around Chilka Lake, Orissa, India. . J. Palaeosci. 57:(1–3):5039
    [Crossref] [Google Scholar]
  62. Kirkels FM, De Boer HJ, Concha Hernández P, Martes CR, Van Der Meer MT, et al. 2022.. Carbon isotopic ratios of modern C3 and C4 vegetation on the Indian peninsula and changes along the plant–soil–river continuum—implications for vegetation reconstructions. . Biogeosciences 19:(17):410727
    [Crossref] [Google Scholar]
  63. Kohn MJ. 2010.. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. . PNAS 107:(46):1969195
    [Crossref] [Google Scholar]
  64. Kotla SS, Patnaik R, Sehgal RK, Kharya A. 2018.. Isotopic evidence for ecological and climate change in the richly fossiliferous Plio-Pleistocene Upper Siwalik deposits exposed around Chandigarh, India. . J. Asian Earth Sci. 163::3242
    [Crossref] [Google Scholar]
  65. Kumar K, Agrawal S, Sharma A, Pandey S. 2019.. Indian summer monsoon variability and vegetation changes in the core monsoon zone, India, during the Holocene: a multiproxy study. . Holocene 29:(1):11019
    [Crossref] [Google Scholar]
  66. Kumar R, Ghosh SK, Sangode SJ. 2011.. Sedimentary architecture of late Cenozoic Himalayan foreland basin fill: an overview. . Mem. Geol. Soc. India 78::24580
    [Google Scholar]
  67. Kumaran KPN, Nair KM, Shindikar M, Limaye RB, Padmalal D. 2005.. Stratigraphical and palynological appraisal of the Late Quaternary mangrove deposits of the west coast of India. . Quat. Res. 64:(3):41831
    [Crossref] [Google Scholar]
  68. Lal M, Samant SS. 2019.. Compositional and structural diversity of forest vegetation in Kai Wildlife Sanctuary, North Western Himalaya: conservation implications. . J. Biodivers. 10:(1–2):114
    [Google Scholar]
  69. Laskar AH, Yadava MG, Sharma N, Ramesh R. 2013.. Late-Holocene climate in the Lower Narmada valley, Gujarat, western India, inferred using sedimentary carbon and oxygen isotope ratios. . Holocene 23:(8):111522
    [Crossref] [Google Scholar]
  70. Leipe C, Demske D, Tarasov PE, Members HP. 2014.. A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research. . Quat. Int. 348::93112
    [Crossref] [Google Scholar]
  71. Li ZX, Bogdanova S, Collins AS, Davidson A, De Waele B, et al. 2008.. Assembly, configuration, and break-up history of Rodinia: a synthesis. . Precambrian Res. 160:(1–2):179210
    [Crossref] [Google Scholar]
  72. Limaye RB, Kumaran KPN. 2012.. Mangrove vegetation responses to Holocene climate change along Konkan coast of south-western India. . Quat. Int. 263::11428
    [Crossref] [Google Scholar]
  73. Loughney KM, Harkness A, Badgley C. 2023.. Middle Miocene fire activity and C4 vegetation expansion in the Barstow Formation, California, USA. . Geology 51::76367
    [Crossref] [Google Scholar]
  74. Lu J, Algeo TJ, Zhuang G, Yang J, Xiao G, et al. 2020.. The Early Pliocene global expansion of C4 grasslands: a new organic carbon-isotopic dataset from the north China plain. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 538::109454
    [Crossref] [Google Scholar]
  75. Managave S, Huang Y, Sutra JP, Anupama K, Prasad S. 2023.. Holocene precipitation hydrogen isotopic values on Nilgiri Plateau (southern India) suggest a combined effect of precipitation amount and transport paths. . Holocene 33:(10):118695
    [Crossref] [Google Scholar]
  76. Maurya S, Rai SK, Sharma CP, Rawat S, Chandana KR, et al. 2022.. Paleo-vegetation and climate variability during the last three millennia in the Ladakh, Himalaya. . Catena 217::106500
    [Crossref] [Google Scholar]
  77. McMenamin MA, McMenamin DLS. 1990.. The Emergence of Animals the Cambrian Breakthrough. New York:: Columbia Univ. Press
    [Google Scholar]
  78. Mishra PK, Anoop A, Schettler G, Prasad S, Jehangir A, et al. 2015.. Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. . Quat. Int. 371::7686
    [Crossref] [Google Scholar]
  79. Misra P, Tandon SK, Sinha R. 2019.. Holocene climate records from lake sediments in India: assessment of coherence across climate zones. . Earth-Sci. Rev. 190::37097
    [Crossref] [Google Scholar]
  80. Naidu PD, Malmgren BA. 1996.. A high-resolution record of late Quaternary upwelling along the Oman Margin, Arabian Sea based on planktonic foraminifera. . Paleoceanography 11:(1):12940
    [Crossref] [Google Scholar]
  81. Najman Y, Johnson K, White N, Oliver G. 2004.. Evolution of the Himalayan foreland basin, NW India. . Basin Res. 16:(1):124
    [Crossref] [Google Scholar]
  82. Pagani M, Freeman KH, Arthur MA. 1999.. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. . Science 285:(5429):87679
    [Crossref] [Google Scholar]
  83. Pandey S, Scharf BW, Mohanti M. 2014.. Palynological studies on mangrove ecosystem of the Chilka Lagoon, east coast of India during the last 4165 yrs BP. . Quat. Int. 325::12635
    [Crossref] [Google Scholar]
  84. Parkash B, Sharma RP, Roy AK. 1980.. The Siwalik Group (molasse)—sediments shed by collision of continental plates. . Sediment. Geol. 25:(1–2):12759
    [Crossref] [Google Scholar]
  85. Phadtare NR. 2000.. Sharp decrease in summer monsoon strength 4000–3500 cal yr B.P. in the Central Higher Himalaya of India based on pollen evidence from alpine peat. . Quat. Res. 53:(1):12229
    [Crossref] [Google Scholar]
  86. Polissar PJ, Uno KT, Phelps SR, Karp AT, Freeman KH, et al. 2021.. Hydrologic changes drove the late Miocene expansion of C4 grasslands on the Northern Indian subcontinent. . Paleoceanogr. Paleoclimatol. 36:(4):e2020PA004108
    [Crossref] [Google Scholar]
  87. Polunin O, Stainton A. 1984.. Flowers of the Himalaya. Delhi:: Oxford Univ. Press
    [Google Scholar]
  88. Pradhan UK, Wu Y, Shirodkar PV, Zhang J, Zhang G. 2014.. Sources and distribution of organic matter in thirty five tropical estuaries along the west coast of India—a preliminary assessment. . Estuar. Coast. Shelf Sci. 151::2133
    [Crossref] [Google Scholar]
  89. Prasad S, Anoop A, Riedel N, Sarkar S, Menzel P, et al. 2014.. Prolonged monsoon droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar Lake, central India. . Earth Planet. Sci. Lett. 391::17182
    [Crossref] [Google Scholar]
  90. Prell WL, Marvil RE, Luther ME. 1990.. Variability in upwelling fields in the northwestern Indian Ocean 2. Data-model comparison at 9000 years BP. . Paleoceanography 5:(3):44757
    [Crossref] [Google Scholar]
  91. Quade J, Cater JM, Ojha TP, Adam J, Harrison TM. 1995.. Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols. . Geol. Soc. Am. Bull. 107:(12):138197
    [Crossref] [Google Scholar]
  92. Quade J, Cerling TE. 1995.. Expansion of C4 grasses in the late Miocene of northern Pakistan: evidence from stable isotopes in paleosols. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 115:(1–4):91116
    [Crossref] [Google Scholar]
  93. Quade J, Cerling TE, Bowman JR. 1989.. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. . Nature 342:(6246):16366
    [Crossref] [Google Scholar]
  94. Rahaman W, Singh SK, Sinha R, Tandon SK. 2011.. Sr, C and O isotopes in carbonate nodules from the Ganga Plain: evidence for recent abrupt rise in dissolved 87Sr/86Sr ratios of the Ganga. . Chem. Geol. 285:(1–4):18493
    [Crossref] [Google Scholar]
  95. Rajagopalan G, Ramesh R, Sukumar R. 1999.. Climatic implications of δ13C and δ18O ratios from C3 and C4 plants growing in a tropical montane habitat in southern India. . J. Biosci. 24::49198
    [Crossref] [Google Scholar]
  96. Ramesh R, Jani RA, Bhushan R. 1993.. Stable isotopic evidence for the origin of salt lakes in the Thar Desert. . J. Arid Environ. 25:(1):11723
    [Crossref] [Google Scholar]
  97. Rawat S, Gupta AK, Sangode SJ, Srivastava P, Nainwal HC. 2015.. Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, northwest Himalaya, India. . Quat. Sci. Rev. 114::16781
    [Crossref] [Google Scholar]
  98. Ray R, Baum A, Rixen T, Gleixner G, Jana TK. 2018.. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. . Sci. Total Environ. 621::53547
    [Crossref] [Google Scholar]
  99. Roy B, Ghosh S, Sanyal P. 2020.. Morpho-tectonic control on the distribution of C3-C4 plants in the central Himalayan Siwaliks during Late Plio-Pleistocene. . Earth Planet. Sci. Lett. 535::116119
    [Crossref] [Google Scholar]
  100. Roy B, Roy S, Goyal K, Ghosh S, Sanyal P. 2021.. Biomarker and carbon isotopic evidence of marine incursions in the Himalayan foreland basin during its overfilled stage. . Paleoceanogr. Paleoclimatol. 36:(5):e2020PA004083
    [Crossref] [Google Scholar]
  101. Saha K, Sanyal P, Saha S. 2022.. Source assessment of tropical-marshland sediment for evaluating seawater intrusion in Chandipur, India: an integrated granulometric and stable isotope approach. . Estuar. Coast. Shelf Sci. 278::108096
    [Crossref] [Google Scholar]
  102. Samal P, Singarasubramanian SR, Srivastava J, Jena PS, Shivam A, et al. 2023.. Coastal vegetation dynamics in response to climatic and relative sea level changes in Mahanadi River delta, NE coast of India. . Palynology 47::2134937
    [Crossref] [Google Scholar]
  103. Samant SS, Dhar U, Rawal RS. 1998.. Biodiversity status of a protected area in West Himalaya: Askot Wildlife Sanctuary. . Int. J. Sustain. Dev. World Ecol. 5:(3):194203
    [Crossref] [Google Scholar]
  104. Samantaray S, Sanyal P. 2022.. Sources and fate of organic matter in a hypersaline lagoon: a study based on stable isotopes from the Pulicat lagoon, India. . Sci. Total Environ. 807::150617
    [Crossref] [Google Scholar]
  105. Sanyal P, Bhattacharya SK, Kumar R, Ghosh SK, Sangode SJ. 2004.. Mio–Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 205:(1–2):2341
    [Crossref] [Google Scholar]
  106. Sanyal P, Bhattacharya SK, Kumar R, Ghosh SK, Sangode SJ. 2005a.. Palaeovegetational reconstruction in late Miocene: a case study based on early diagenetic carbonate cement from the Indian Siwalik. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 228:(3–4):24559
    [Crossref] [Google Scholar]
  107. Sanyal P, Bhattacharya SK, Prasad M. 2005b.. Chemical diagenesis of Siwalik sandstone: isotopic and mineralogical proxies from Surai Khola section, Nepal. . Sediment. Geol. 180:(1–2):5774
    [Crossref] [Google Scholar]
  108. Sanyal P, Sarkar A, Bhattacharya SK, Kumar R, Ghosh SK, et al. 2010.. Intensification of monsoon, microclimate and asynchronous C4 appearance: isotopic evidence from the Indian Siwalik sediments. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 296:(1–2):16573
    [Crossref] [Google Scholar]
  109. Sarangi V, Agrawal S, Sanyal P. 2021.. The disparity in the abundance of C4 plants estimated using the carbon isotopic composition of paleosol components. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 561::110068
    [Crossref] [Google Scholar]
  110. Sarangi V, Kumar A, Sanyal P. 2019.. Effect of pedogenesis on the stable isotopic composition of calcretes and n-alkanes: implications for palaeoenvironmental reconstruction. . Sedimentology 66:(5):156079
    [Crossref] [Google Scholar]
  111. Sarangi V, Roy S, Sanyal P. 2022.. Effect of burning on the distribution pattern and isotopic composition of plant biomolecules: implications for paleoecological studies. . Geochim. Cosmochim. Acta 318::30527
    [Crossref] [Google Scholar]
  112. Sarkar A, Filley TR, Bera S. 2015.. Carbon isotopic composition of lignin biomarkers: evidence of grassland over the Gangetic plain during LGM. . Quat. Int. 355::194201
    [Crossref] [Google Scholar]
  113. Sarkar A, Sengupta S, McArthur JM, Ravenscroft P, Bera MK, et al. 2009.. Evolution of Ganges–Brahmaputra western delta plain: clues from sedimentology and carbon isotopes. . Quat. Sci. Rev. 28:(25–26):256481
    [Crossref] [Google Scholar]
  114. Sarkar S, Prasad S, Wilkes H, Riedel N, Stebich M, et al. 2015.. Monsoon source shifts during the drying mid-Holocene: biomarker isotope based evidence from the core ‘monsoon zone’ (CMZ) of India. . Quat. Sci. Rev. 123::14457
    [Crossref] [Google Scholar]
  115. Sengupta T, Deshpande Mukherjee A, Bhushan R, Ram F, Bera MK, et al. 2020.. Did the Harappan settlement of Dholavira (India) collapse during the onset of Meghalayan stage drought?. J. Quat. Sci. 35:(3):38295
    [Crossref] [Google Scholar]
  116. Sharma CP, Rawat SL, Srivastava P, Meena NK, Agnihotri R, et al. 2020.. High-resolution climatic (monsoonal) variability reconstructed from a continuous ∼2700-year sediment record from Northwest Himalaya (Ladakh). . Holocene 30:(3):44157
    [Crossref] [Google Scholar]
  117. Sharma S, Joachimski M, Sharma M, Tobschall HJ, Singh IB, et al. 2004.. Late glacial and Holocene environmental changes in Ganga plain, Northern India. . Quat. Sci. Rev. 23:(1–2):14559
    [Crossref] [Google Scholar]
  118. Singh A, Paul D, Sinha R, Thomsen KJ, Gupta S. 2016.. Geochemistry of buried river sediments from Ghaggar Plains, NW India: multi-proxy records of variations in provenance, paleoclimate, and paleovegetation patterns in the Late Quaternary. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 449::85100
    [Crossref] [Google Scholar]
  119. Singh A, Samant SS. 2020.. Population and community structure pattern of Juniperous polycarpos K. Koch with climate change effect in the cold desert Trans Himalayan region, India. . Arid Ecosyst. 10::1726
    [Crossref] [Google Scholar]
  120. Singh DK, Hajra PK. 1996.. Floristic diversity. . In Changing Perspectives of Biodiversity Status in the Himalaya, ed. GS Gujral, V Sharma , pp. 2338. New Delhi:: Br. Counc.
    [Google Scholar]
  121. Singh DK, Pusalkar PK. 2020.. Floristic diversity of the Indian Himalaya. . In Biodiversity of the Himalaya: Jammu and Kashmir State, ed. GH Dar, AA Khuroo , pp. 93126. Singapore:: Springer
    [Google Scholar]
  122. Singh G, Joshi RD, Chopra SK, Singh AB. 1974.. Late Quaternary history of vegetation and climate of the Rajasthan Desert, India. . Philos. Trans. R. Soc. B 267:(889):467501
    [Google Scholar]
  123. Singh G, Joshi RD, Singh AB. 1972.. Stratigraphic and radiocarbon evidence for the age and development of three salt lake deposits in Rajasthan, India. . Quat. Res. 2:(4):496505
    [Crossref] [Google Scholar]
  124. Singh G, Wasson RJ, Agrawal DP. 1990.. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. . Rev. Palaeobot. Palynol. 64:(1–4):35158
    [Crossref] [Google Scholar]
  125. Singh HP. 1991.. Tertiary palynology in India—a perspective. . Curr. Sci. 61::69296
    [Google Scholar]
  126. Sinha R, Smykatz-Kloss W, Stüben D, Harrison SP, Berner Z, et al. 2006.. Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 233:(3–4):25270
    [Crossref] [Google Scholar]
  127. Sreemany A, Bera MK. 2020.. Does a large delta-fan sedimentary archive faithfully record floodplain vegetation composition?. Quat. Sci. Rev. 228::106108
    [Crossref] [Google Scholar]
  128. Sridhar A, Laskar A, Prasad V, Sharma A, Tripathi JK, et al. 2015.. Late Holocene flooding history of a tropical river in western India in response to southwest monsoon fluctuations: a multi proxy study from lower Narmada valley. . Quat. Int. 371::18190
    [Crossref] [Google Scholar]
  129. Srivastava J, Farooqui A. 2013.. Late Holocene mangrove dynamics and coastal environmental changes in the Northeastern Cauvery River Delta, India. . Quat. Int. 298::4556
    [Crossref] [Google Scholar]
  130. Srivastava J, Farooqui A, Hussain SM. 2012.. Vegetation history and salinity gradient during the last 3700 years in Pichavaram estuary, India. . J. Earth Syst. Sci. 121::122937
    [Crossref] [Google Scholar]
  131. Stephen A, Suresh R, Livingstone C. 2015.. Indian biodiversity: past, present and future. . Int. J. Environ. Nat. Sci. 7::1328
    [Google Scholar]
  132. Subrahmanyam VP. 1956.. Climatic types of India according to the rational classification of Thornthwaite. . MAUSAM 7:(3):25364
    [Crossref] [Google Scholar]
  133. Sukumar R, Ramesh R, Pant RK, Rajagopalan G. 1993.. A δ13C record of late Quaternary climate change from tropical peats in southern India. . Nature 364:(6439):7036
    [Crossref] [Google Scholar]
  134. Trivedi A, Chauhan MS, Sharma A, Nautiyal CM, Tiwari DP. 2013.. Record of vegetation and climate during late Pleistocene–Holocene in Central Ganga Plain, based on multiproxy data from Jalesar Lake, Uttar Pradesh, India. . Quat. Int. 306::97106
    [Crossref] [Google Scholar]
  135. Vögeli N, Najman Y, van Der Beek P, Huyghe P, Wynn PM, et al. 2017.. Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution. . Earth Planet. Sci. Lett. 471::19
    [Crossref] [Google Scholar]
  136. Wambulwa MC, Milne R, Wu ZY, Spicer RA, Provan J, et al. 2021.. Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot: current knowledge and future perspectives. . Ecol. Evol. 11:(16):10794812
    [Crossref] [Google Scholar]
  137. Yadava MG, Ramesh R. 2005.. Monsoon reconstruction from radiocarbon dated tropical Indian speleothems. . Holocene 15:(1):4859
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040722-102442
Loading
/content/journals/10.1146/annurev-earth-040722-102442
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error