1932

Abstract

Most terrestrial large mammals went extinct on different continents at the end of the Pleistocene, between 50,000 and 10,000 years ago. Besides the loss in species diversity and the truncation of body mass distributions, those extinctions were even more impactful to interaction diversity. Along with each extinction, dozens of ecological interactions were lost, reorganizing species interaction networks, which attained species-poor configurations with low functional redundancy. Extinctions of most large herbivores impacted energy flow and the rates of nutrient cycling, reconfiguring ecosystem-level networks. Because large mammals have high mobility, their loss also shortened seed-dispersal distance and reduced nutrient diffusivity, disrupting spatial networks. This review examines the recent advances in understanding how different types of ecological networks have been restructured by megafaunal extinctions and how this reorganization affected ecosystem functions.

  • ▪  Megafaunal extinctions resulted in the loss of multiple ecological interactions in terrestrial systems.
  • ▪  Interaction loss reshaped different types of ecological networks including food webs and spatial networks.
  • ▪  The reorganization of ecological networks changed how terrestrial ecosystems are structured and function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040722-104845
2024-07-23
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040722-104845.html?itemId=/content/journals/10.1146/annurev-earth-040722-104845&mimeType=html&fmt=ahah

Literature Cited

  1. Andermann T, Faurby S, Turvey ST, Antonelli A, Silvestro D. 2020.. The past and future human impact on mammalian diversity. . Sci. Adv. 6:(36):eabb2313
    [Crossref] [Google Scholar]
  2. Araújo BBA, Oliveira-Santos LGR, Lima-Ribeiro MS, Diniz-Filho JAF, Fernandez FAS. 2017.. Bigger kill than chill: the uneven roles of humans and climate on late Quaternary megafaunal extinctions. . Quat. Int. 431::21622
    [Crossref] [Google Scholar]
  3. Asner GP, Levick SR, Kennedy-Bowdoin T, Knapp DE, Emerson R, et al. 2009.. Large-scale impacts of herbivores on the structural diversity of African savannas. . PNAS 106:(12):494752
    [Crossref] [Google Scholar]
  4. Asner GP, Vaughn N, Smit IPJ, Levick S. 2016.. Ecosystem-scale effects of megafauna in African savannas. . Ecography 39:(2):24052
    [Crossref] [Google Scholar]
  5. Atwood TB, Valentine SA, Hammill E, McCauley DJ, Madin EMP, et al. 2020.. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. . Sci. Adv. 6:(32):eabb8458
    [Crossref] [Google Scholar]
  6. Baggio R, Overbeck GE, Durigan G, Pillar VD. 2021.. To graze or not to graze: a core question for conservation and sustainable use of grassy ecosystems in Brazil. . Perspect. Ecol. Conserv. 19:(3):25666
    [Google Scholar]
  7. Bakker ES, Gill JL, Johnson CN, Vera FWM, Sandom CJ, et al. 2016.. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. . PNAS 113:(4):84755
    [Crossref] [Google Scholar]
  8. Bampi H, Barberi M, Lima-Ribeiro MS. 2022.. Megafauna kill sites in South America: a critical review. . Quat. Sci. Rev. 298::107851
    [Crossref] [Google Scholar]
  9. Barnosky AD, Lindsey EL, Villavicencio NA, Bostelmann E, Hadly EA, et al. 2016.. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. . PNAS 113:(4):85661
    [Crossref] [Google Scholar]
  10. Bartlett LJ, Williams DR, Prescott GW, Balmford A, Green RE, et al. 2016.. Robustness despite uncertainty: Regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. . Ecography 39:(2):15261
    [Crossref] [Google Scholar]
  11. Bascompte J, Jordano P. 2007.. Plant-animal mutualistic networks: the architecture of biodiversity. . Annu. Rev. Ecol. Evol. Syst. 38::56793
    [Crossref] [Google Scholar]
  12. Baskerville EB, Dobson AP, Bedford T, Allesina S, Anderson TM, Pascual M. 2011.. Spatial guilds in the Serengeti food web revealed by a Bayesian group model. . PLOS Comput. Biol. 7:(12):e1002321
    [Crossref] [Google Scholar]
  13. Berti E, Svenning J. 2020.. Megafauna extinctions have reduced biotic connectivity worldwide. . Glob. Ecol. Biogeogr. 29:(12):213142
    [Crossref] [Google Scholar]
  14. Bocherens H, Cotte M, Bonini R, Scian D, Straccia P, et al. 2016.. Paleobiology of sabretooth cat Smilodon populator in the Pampean region (Buenos Aires Province, Argentina) around the Last Glacial Maximum: insights from carbon and nitrogen stable isotopes in bone collagen. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 449::46374
    [Crossref] [Google Scholar]
  15. Bonavent C, Olsen K, Ejrnæs R, Fløjgaard C, Hansen MDD, et al. 2023.. Grazing by semi-feral cattle and horses supports plant species richness and uniqueness in grasslands. . Appl. Veg. Sci. 26:(1):e12718
    [Crossref] [Google Scholar]
  16. Bond WJ. 2010.. Consumer control by megafauna and fire. . In Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature, ed. J Terborgh, JA Estes , pp. 27585. Washington, DC:: Island
    [Google Scholar]
  17. Bråthen KA, Pugnaire FI, Bardgett RD. 2021.. The paradox of forbs in grasslands and the legacy of the mammoth steppe. . Front. Ecol. Environ. 19:(10):58492
    [Crossref] [Google Scholar]
  18. Brodie JF. 2017.. Evolutionary cascades induced by large frugivores. . PNAS 114:(45):119982002
    [Crossref] [Google Scholar]
  19. Brook BW, Johnson CN. 2006.. Selective hunting of juveniles as a cause of the imperceptible overkill of the Australian Pleistocene megafauna. . Alcheringa 30::3948
    [Crossref] [Google Scholar]
  20. Bunney K, Bond WJ, Henley M. 2017.. Seed dispersal kernel of the largest surviving megaherbivore—the African savanna elephant. . Biotropica 49:(3):395401
    [Crossref] [Google Scholar]
  21. Carbone C, Teacher A, Rowcliffe JM. 2007.. The costs of carnivory. . PLOS Biol. 5:(2):e22
    [Crossref] [Google Scholar]
  22. Caro T. 2007.. The Pleistocene re-wilding gambit. . Trends Ecol. Evol. 22:(6):28183
    [Crossref] [Google Scholar]
  23. Cione A, Tonni E, Soilbenzon L. 2003.. The broken Zig-Zag: Late Cenozoic large mammal and tortoise extinction in South America. . Rev. Mus. Argent. Cienc. Nat. 5::2129
    [Crossref] [Google Scholar]
  24. Coltrain JB, Harris JM, Cerling TE, Ehleringer JR, Dearing M-D, et al. 2004.. Rancho La Brea stable isotope biogeochemistry and its implications for the palaeoecology of late Pleistocene, coastal southern California. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 205:(3–4):199219
    [Crossref] [Google Scholar]
  25. Corlett RT. 2013.. The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. . Biol. Conserv. 163::1321
    [Crossref] [Google Scholar]
  26. Damuth J, Janis CM. 2011.. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. . Biol. Rev. 86:(3):73358
    [Crossref] [Google Scholar]
  27. Dantas MAT, Cherkinsky A, Bocherens H, Drefahl M, Bernardes C, de Melo França L. 2017.. Isotopic paleoecology of the Pleistocene megamammals from the Brazilian Intertropical Region: feeding ecology (δ13C), niche breadth and overlap. . Quat. Sci. Rev. 170::15263
    [Crossref] [Google Scholar]
  28. Dantas VL, Pausas JG. 2022.. The legacy of the extinct Neotropical megafauna on plants and biomes. . Nat. Commun. 13::129
    [Crossref] [Google Scholar]
  29. Daufresne T. 2021.. A consumer-driven recycling theory for the impact of large herbivores on terrestrial ecosystem stoichiometry. . Ecol. Lett. 24:(12):2598610
    [Crossref] [Google Scholar]
  30. de Ruiter PC, Wolters V, Moore JC, Winemiller KO. 2005.. Food web ecology: playing Jenga and beyond. . Science 309:(5731):6871
    [Crossref] [Google Scholar]
  31. DeSantis LRG, Crites JM, Feranec RS, Fox-Dobbs K, Farrell AB, et al. 2019.. Causes and consequences of Pleistocene megafaunal extinctions as revealed from Rancho La Brea mammals. . Curr. Biol. 29:(15):248895.e2
    [Crossref] [Google Scholar]
  32. DeSantis LRG, Feranec RS, Antón M, Lundelius EL. 2021.. Dietary ecology of the scimitar-toothed cat Homotherium serum. . Curr. Biol. 31:(12):267481.e3
    [Crossref] [Google Scholar]
  33. DeSantis LRG, Haupt RJ. 2014.. Cougars’ key to survival through the Late Pleistocene extinction: insights from dental microwear texture analysis. . Biol. Lett. 10:(4):20140203
    [Crossref] [Google Scholar]
  34. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. 2014.. Defaunation in the Anthropocene. . Science 345:(6195):40146
    [Crossref] [Google Scholar]
  35. Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R. 2011.. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. . Ecol. Lett. 14:(8):77381
    [Crossref] [Google Scholar]
  36. Doughty CE, Faurby S, Svenning J. 2016a.. The impact of the megafauna extinctions on savanna woody cover in South America. . Ecography 39:(2):21322
    [Crossref] [Google Scholar]
  37. Doughty CE, Faurby S, Wolf A, Malhi Y, Svenning J-C. 2016b.. Changing NPP consumption patterns in the Holocene: from megafauna-‘liberated’ NPP to ‘ecological bankruptcy. .’ Anthropocene Rev. 3:(3):17487
    [Crossref] [Google Scholar]
  38. Doughty CE, Roman J, Faurby S, Wolf A, Haque A, et al. 2016c.. Global nutrient transport in a world of giants. . PNAS 113:(4):86873
    [Crossref] [Google Scholar]
  39. Doughty CE, Wolf A, Malhi Y. 2013.. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. . Nat. Geosci. 6:(9):76164
    [Crossref] [Google Scholar]
  40. Doughty CE, Wolf A, Morueta-Holme N, Jørgensen PM, Sandel B, et al. 2016d.. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. . Ecography 39:(2):194203
    [Crossref] [Google Scholar]
  41. Drucker DG. 2022.. The isotopic ecology of the mammoth steppe. . Annu. Rev. Earth Planet. Sci. 50::395418
    [Crossref] [Google Scholar]
  42. Enquist BJ, Abraham AJ, Harfoot MBJ, Malhi Y, Doughty CE. 2020.. The megabiota are disproportionately important for biosphere functioning. . Nat. Commun. 11:(1):699
    [Crossref] [Google Scholar]
  43. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, et al. 2011.. Trophic downgrading of planet Earth. . Science 333:(6040):3016
    [Crossref] [Google Scholar]
  44. Figueirido O, Soibelzon LH. 2010.. Inferring palaeoecology in extinct tremarctine bears (Carnivora, Ursidae) using geometric morphometrics. . Lethaia 43:(2):20922
    [Crossref] [Google Scholar]
  45. Fløjgaard C, Pedersen PBM, Sandom CJ, Svenning J, Ejrnæs R. 2022.. Exploring a natural baseline for large-herbivore biomass in ecological restoration. . J. Appl. Ecol. 59:(1):1824
    [Crossref] [Google Scholar]
  46. Fox-Dobbs K, Bump JK, Peterson RO, Fox DL, Koch PL. 2007.. Carnivore-specific stable isotope variables and variation in the foraging ecology of modern and ancient wolf populations: case studies from Isle Royale, Minnesota, and La Brea. . Can. J. Zool. 85:(4):45871
    [Crossref] [Google Scholar]
  47. Fox-Dobbs K, Stidham TA, Bowen GJ, Emslie SD, Koch PL. 2006.. Dietary controls on extinction versus survival among avian megafauna in the late Pleistocene. . Geology 34::68588
    [Crossref] [Google Scholar]
  48. Fraser D, Villaseñor A, Tóth AB, Balk MA, Eronen JT, et al. 2022.. Late Quaternary biotic homogenization of North American mammalian faunas. . Nat. Commun. 13:(1):3940
    [Crossref] [Google Scholar]
  49. Fricke EC, Hsieh C, Middleton O, Gorczynski D, Cappello CD, et al. 2022a.. Collapse of terrestrial mammal food webs since the Late Pleistocene. . Science 377:(6609):100811
    [Crossref] [Google Scholar]
  50. Fricke EC, Ordonez A, Rogers HS, Svenning J-C. 2022b.. The effects of defaunation on plants’ capacity to track climate change. . Science 375:(6577):21014
    [Crossref] [Google Scholar]
  51. Galetti M. 2004.. Parks of the Pleistocene: recreating the Cerrado and the Pantanal with megafauna. . Nat. Conserv. 2::93100
    [Google Scholar]
  52. Galetti M, Guevara R, Côrtes MC, Fadini R, Von Matter S, et al. 2013.. Functional extinction of birds drives rapid evolutionary changes in seed size. . Science 340:(6136):108690
    [Crossref] [Google Scholar]
  53. Galetti M, Moleón M, Jordano P, Pires MM, Guimarães PR, et al. 2018.. Ecological and evolutionary legacy of megafauna extinctions. . Biol. Rev. 93:(2):84562
    [Crossref] [Google Scholar]
  54. Gaüzère P, O'Connor L, Botella C, Poggiato G, Münkemüller T, et al. 2022.. The diversity of biotic interactions complements functional and phylogenetic facets of biodiversity. . Curr. Biol. 32:(9):2093100.e3
    [Crossref] [Google Scholar]
  55. Gill JL. 2014.. Ecological impacts of the late Quaternary megaherbivore extinctions. . New Phytol. 201:(4):116369
    [Crossref] [Google Scholar]
  56. Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS. 2009.. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. . Science 326:(5956):11003
    [Crossref] [Google Scholar]
  57. Guimarães PR. 2020.. The structure of ecological networks across levels of organization. . Annu. Rev. Ecol. Evol. Syst. 51::43360
    [Crossref] [Google Scholar]
  58. Guimarães PR, Galetti M, Jordano P. 2008.. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. . PLOS ONE 3:(3):e1745
    [Crossref] [Google Scholar]
  59. Guthrie RD. 2001.. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. . Quat. Sci. Rev. 20:(1–3):54974
    [Crossref] [Google Scholar]
  60. Hayward MW, Kamler JF, Montgomery RA, Newlove A, Rostro-García S, et al. 2016.. Prey preferences of the jaguar Panthera onca reflect the post-Pleistocene demise of large prey. . Front. Ecol. Evol. 25::148
    [Google Scholar]
  61. Hedberg CP, Lyons SK, Smith FA. 2022.. The hidden legacy of megafaunal extinction: loss of functional diversity and resilience over the Late Quaternary at Hall's Cave. . Glob. Ecol. Biogeogr. 31:(2):294307
    [Crossref] [Google Scholar]
  62. Hobbs NT. 1996.. Modification of ecosystems by ungulates. . J. Wildl. Manag. 60:(4):695713
    [Crossref] [Google Scholar]
  63. Hubbe A, Auler A. 2012.. A large Cervidae Holocene accumulation in eastern Brazil: an example of extreme taphonomical control in a cave environment. . Int. J. Speleol. 41:(2):297305
    [Crossref] [Google Scholar]
  64. Jansen PA, Hirsch BT, Emsens W-J, Zamora-Gutierrez V, Wikelski M, Kays R. 2012.. Thieving rodents as substitute dispersers of megafaunal seeds. . PNAS 109:(31):1261015
    [Crossref] [Google Scholar]
  65. Janzen DH. 1984.. Dispersal of small seeds by big herbivores: Foliage is the fruit. . Am. Nat. 123:(3):33853
    [Crossref] [Google Scholar]
  66. Janzen DH. 1986.. Chihuahuan desert nopaleras: defaunated big mammal vegetation. . Annu. Rev. Ecol. Syst. 17::595636
    [Crossref] [Google Scholar]
  67. Janzen DH, Martin PS. 1982.. Neotropical anachronisms: the fruits the gomphotheres ate. . Science 215:(4528):1927
    [Crossref] [Google Scholar]
  68. Johnson CN. 2009.. Ecological consequences of Late Quaternary extinctions of megafauna. . Proc. R. Soc. B 276:(1667):250919
    [Crossref] [Google Scholar]
  69. Johnson CN, Prideaux GJ. 2004.. Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. . Austral Ecol. 29:(5):55357
    [Crossref] [Google Scholar]
  70. Karp AT, Faith JT, Marlon JR, Staver AC. 2021.. Global response of fire activity to late Quaternary grazer extinctions. . Science 374:(6571):114548
    [Crossref] [Google Scholar]
  71. Koch PL, Barnosky AD. 2006.. Late Quaternary extinctions: state of the debate. . Annu. Rev. Ecol. Evol. Syst. 37::21550
    [Crossref] [Google Scholar]
  72. Koch PL, Hoppe KA, Webb SD. 1998.. The isotopic ecology of late Pleistocene mammals in North America: part 1. Florida. . Chem. Geol. 26::152(12): 119–38
    [Google Scholar]
  73. Koerner SE, Smith MD, Burkepile DE, Hanan NP, Avolio ML, et al. 2018.. Change in dominance determines herbivore effects on plant biodiversity. . Nat. Ecol. Evol. 2:(12):192532
    [Crossref] [Google Scholar]
  74. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW. 2003.. Compartments revealed in food-web structure. . Nature 426:(6964):28285
    [Crossref] [Google Scholar]
  75. Landry Z, Kim S, Trayler RB, Gilbert M, Zazula G, et al. 2021.. Dietary reconstruction and evidence of prey shifting in Pleistocene and recent gray wolves (Canis lupus) from Yukon Territory. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 571::110368
    [Crossref] [Google Scholar]
  76. Lim JY, Svenning J-C, Göldel B, Faurby S, Kissling WD. 2020.. Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts. . Nat. Commun. 11:(1):4904
    [Crossref] [Google Scholar]
  77. Llamas B, Fehren-Schmitz L, Valverde G, Soubrier J, Mallick S, et al. 2016.. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. . Sci. Adv. 2:(4):e1501385
    [Crossref] [Google Scholar]
  78. Llewelyn J, Strona G, McDowell MC, Johnson CN, Peters KJ, et al. 2022.. Sahul's megafauna were vulnerable to plant-community changes due to their position in the trophic network. . Ecography 2022:(1). https://doi.org/10.1111/ecog.06089
    [Crossref] [Google Scholar]
  79. Lozano S, Mateos A, Rodriguez J. 2016.. Exploring paleo food-webs in the European Early and Middle Pleistocene: a network analysis. . Quat. Int. 413::4454
    [Crossref] [Google Scholar]
  80. Lundberg J, Moberg F. 2003.. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. . Ecosystems 6:(1):8798
    [Crossref] [Google Scholar]
  81. Lundgren EJ, Ramp D, Rowan J, Middleton O, Schowanek SD, et al. 2020.. Introduced herbivores restore Late Pleistocene ecological functions. . PNAS 117:(14):787178
    [Crossref] [Google Scholar]
  82. MacFadden BJ, Shockey BJ. 1997.. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. . Paleobiology 23::77100
    [Crossref] [Google Scholar]
  83. Magioli M, Moreira MZ, Ferraz KMB, Miotto RA, de Camargo PB, et al. 2014.. Stable isotope evidence of Puma concolor (Felidae) feeding patterns in agricultural landscapes in southeastern Brazil. . Biotropica 46:(4):45160
    [Crossref] [Google Scholar]
  84. Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning J-C, Terborgh JW. 2016.. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. . PNAS 113:(4):83846
    [Crossref] [Google Scholar]
  85. Martin PS. 1967.. Prehistoric overkill. . In Pleistocene Extinctions; The Search for a Cause, ed. PS Martin, HE Wright Jr. , pp. 75120. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  86. Martin PS, Klein RG. 1984.. Quaternary Extinctions: A Prehistoric Revolution. Tucson:: Univ. Arizona Press
    [Google Scholar]
  87. McNaughton SJ. 1984.. Grazing lawns: animals in herds, plant form, and coevolution. . Am. Nat. 124:(6):86386
    [Crossref] [Google Scholar]
  88. McNaughton SJ. 1992.. The propagation of disturbance in savannas through food webs. . J. Veg. Sci. 3:(3):30114
    [Crossref] [Google Scholar]
  89. McNaughton SJ, Ruess RW, Seagle SW. 1988.. Large mammals and process dynamics in African ecosystems. . Bioscience 38:(11):794800
    [Crossref] [Google Scholar]
  90. Meachen JA, Janowicz AC, Avery JE, Sadleir RW. 2014.. Ecological changes in coyotes (Canis latrans) in response to the Ice Age megafaunal extinctions. . PLOS ONE 9:(12):e116041
    [Crossref] [Google Scholar]
  91. Meltzer DJ. 2015.. Pleistocene overkill and North American mammalian extinctions. . Annu. Rev. Anthropol. 44::3353
    [Crossref] [Google Scholar]
  92. Miller GH, Fogel ML, Magee JW, Gagan MK, Clarke SJ, Johnson BJ. 2005.. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. . Science 309:(5732):28790
    [Crossref] [Google Scholar]
  93. Moleón M, Sánchez-Zapata JA, Sebastián-González E, Owen-Smith N. 2015.. Carcass size shapes the structure and functioning of an African scavenging assemblage. . Oikos 124::1391403
    [Crossref] [Google Scholar]
  94. Moscardi B, Rindel DD, Perez SI. 2020.. Human diet evolution in Patagonia was driven by the expansion of Lama guanicoe after megafaunal extinctions. . J. Archaeol. Sci. 115::105098
    [Crossref] [Google Scholar]
  95. Nascimento LFD, Guimarães PR, Onstein RE, Kissling WD, Pires MM. 2020.. Associated evolution of fruit size, fruit colour and spines in Neotropical palms. . J. Evol. Biol. 33::85868
    [Crossref] [Google Scholar]
  96. Nenzén HK, Montoya D, Varela S. 2014.. The impact of 850,000 years of climate changes on the structure and dynamics of mammal food webs. . PLOS ONE 9:(9):e106651
    [Crossref] [Google Scholar]
  97. O'Keefe FR, Dunn RE, Weitzel EM, Waters MR, Martinez LN, et al. 2023.. Pre–Younger Dryas megafaunal extirpation at Rancho La Brea linked to fire-driven state shift. . Science 381:(6659):eabo3594
    [Crossref] [Google Scholar]
  98. Onstein RE, Baker WJ, Couvreur TLP, Faurby S, Herrera-Alsina L, et al. 2018.. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. . Proc. R. Soc. B 285:(1880):20180882
    [Crossref] [Google Scholar]
  99. Owen-Smith N. 1987.. Pleistocene extinctions: the pivotal role of megaherbivores. . Paleobiology 13:(3):35162
    [Crossref] [Google Scholar]
  100. Owen-Smith N. 2013.. Contrasts in the large herbivore faunas of the southern continents in the late Pleistocene and the ecological implications for human origins. . J. Biogeogr. 40:(7):121524
    [Crossref] [Google Scholar]
  101. Palmqvist P, Gröcke DR, Arribas A, Fariña RA. 2003.. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr:Zn) and ecomorphological approaches. . Paleobiology 29:(2):20529
    [Crossref] [Google Scholar]
  102. Pansu J, Hutchinson MC, Anderson TM, te Beest M, Begg CM, et al. 2022.. The generality of cryptic dietary niche differences in diverse large-herbivore assemblages. . PNAS 119:(35):e2204400119
    [Crossref] [Google Scholar]
  103. Pedersen , Faurby S, Svenning J. 2023.. Late-Quaternary megafauna extinctions have strongly reduced mammalian vegetation consumption. . Glob. Ecol. Biogeogr. 32::181426
    [Crossref] [Google Scholar]
  104. Pedrosa F, Bercê W, Levi T, Pires M, Galetti M. 2019.. Seed dispersal effectiveness by a large-bodied invasive species in defaunated landscapes. . Biotropica 51:(6):86273
    [Crossref] [Google Scholar]
  105. Pérez-Méndez N, Jordano P, Valido A. 2018.. Persisting in defaunated landscapes: reduced plant population connectivity after seed dispersal collapse. . J. Ecol. 106::93647
    [Crossref] [Google Scholar]
  106. Pires MM. 2017.. Rewilding ecological communities and rewiring ecological networks. . Perspect. Ecol. Conserv. 15::25765
    [Google Scholar]
  107. Pires MM, Galetti M, Donatti CI, Pizo MA, Dirzo R, Guimarães PR. 2014.. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. . Oecologia 175:(4):124756
    [Crossref] [Google Scholar]
  108. Pires MM, Guimarães PR, Galetti M, Jordano P. 2018.. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. . Ecography 41::15363
    [Crossref] [Google Scholar]
  109. Pires MM, Koch PL, Fariña RA, de Aguiar MAM, dos Reis SF, Guimarães PR. 2015.. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. . Proc. R. Soc. B 282:(1814):20151367
    [Crossref] [Google Scholar]
  110. Pires MM, Rindel D, Moscardi B, Cruz LR, Guimarães PR, et al. 2020.. Before, during and after megafaunal extinctions: human impact on Pleistocene-Holocene trophic networks in South Patagonia. . Quat. Sci. Rev. 250::106696
    [Crossref] [Google Scholar]
  111. Prates L, Perez SI. 2021.. Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population. . Nat. Commun. 12:(1):2175
    [Crossref] [Google Scholar]
  112. Prevosti FJ, Martin FM. 2013.. Paleoecology of the mammalian predator guild of Southern Patagonia during the latest Pleistocene: ecomorphology, stable isotopes, and taphonomy. . Quat. Int. 305::7484
    [Crossref] [Google Scholar]
  113. Prevosti FJ, Vizcaíno SF. 2006.. Paleoecology of the large carnivore guild from the late Pleistocene of Argentina. . Acta Palaeontol. Pol. 51::40722
    [Google Scholar]
  114. Pringle RM, Abraham JO, Anderson TM, Coverdale TC, Davies AB, et al. 2023.. Impacts of large herbivores on terrestrial ecosystems. . Curr. Biol. 33:(11):R584610
    [Crossref] [Google Scholar]
  115. Ratajczak Z, Collins SL, Blair JM, Koerner SE, Louthan AM, et al. 2022.. Reintroducing bison results in long-running and resilient increases in grassland diversity. . PNAS 119:(36):e2210433119
    [Crossref] [Google Scholar]
  116. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, et al. 2014.. Status and ecological effects of the world's largest carnivores. . Science 343:(6167):1241484
    [Crossref] [Google Scholar]
  117. Ripple WJ, van Valkenburgh B. 2010.. Linking top-down forces to the Pleistocene megafaunal extinctions. . Bioscience 60:(7):51626
    [Crossref] [Google Scholar]
  118. Rodríguez J, Rodríguez-Gómez G, Martín-González JA, Goikoetxea I, Mateos A. 2012.. Predator–prey relationships and the role of Homo in Early Pleistocene food webs in Southern Europe. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 365–366::99114
    [Crossref] [Google Scholar]
  119. Rozas-Davila A, Valencia BG, Bush MB. 2016.. The functional extinction of Andean megafauna. . Ecology 97:(10):253339
    [Crossref] [Google Scholar]
  120. Rule S, Brook BW, Haberle SG, Turney CSM, Kershaw AP, Johnson CN. 2012.. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. . Science 335:(6075):148386
    [Crossref] [Google Scholar]
  121. Saltré F, Chadoeuf J, Peters KJ, McDowell MC, Friedrich T, et al. 2019.. Climate-human interaction associated with southeast Australian megafauna extinction patterns. . Nat. Commun. 10:(1):5311
    [Crossref] [Google Scholar]
  122. Sandom CJ, Faurby S, Svenning J-C, Burnham D, Dickman A, et al. 2018.. Learning from the past to prepare for the future: Felids face continued threat from declining prey. . Ecography 41:(1):14052
    [Crossref] [Google Scholar]
  123. Sankaran M, Augustine DJ, Ratnam J. 2013.. Native ungulates of diverse body sizes collectively regulate long-term woody plant demography and structure of a semi-arid savanna. . J. Ecol. 101:(6):138999
    [Crossref] [Google Scholar]
  124. Schmitz OJ, Hawlena D, Trussell GC. 2010.. Predator control of ecosystem nutrient dynamics. . Ecol. Lett. 13:(10):1199209
    [Crossref] [Google Scholar]
  125. Schowanek SD, Davis M, Lundgren EJ, Middleton O, Rowan J, et al. 2021.. Reintroducing extirpated herbivores could partially reverse the late Quaternary decline of large and grazing species. . Glob. Ecol. Biogeogr. 30:(4):896908
    [Crossref] [Google Scholar]
  126. Sebastián-González E, Morales-Reyes Z, Botella F, Naves-Alegre L, Pérez-García JM, et al. 2021.. Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. . Ecology 102::e03519
    [Crossref] [Google Scholar]
  127. Sinclair ARE, Mduma S, Brashares JS. 2003.. Patterns of predation in a diverse predator–prey system. . Nature 425:(6955):28890
    [Crossref] [Google Scholar]
  128. Smith FA, Elliott Smith EA, Hedberg CP, Lyons SK, Pardi MI, Tomé CP. 2023.. After the mammoths: the ecological legacy of late Pleistocene megafauna extinctions. . Camb. Prisms Extinction 1::E9
    [Crossref] [Google Scholar]
  129. Smith FA, Elliott Smith RE, Lyons SK, Payne JL. 2018.. Body size downgrading of mammals over the late Quaternary. . Science 360:(6386):31013
    [Crossref] [Google Scholar]
  130. Smith FA, Elliott Smith EA, Villaseñor A, Tomé CP, Lyons SK, Newsome SD. 2022.. Late Pleistocene megafauna extinction leads to missing pieces of ecological space in a North American mammal community. . PNAS 119:(39):e2115015119
    [Crossref] [Google Scholar]
  131. Smith FA, Tomé CP, Elliott Smith EA, Lyons SK, Newsome SD, Stafford TW. 2016.. Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly. . Ecography 39:(2):22339
    [Crossref] [Google Scholar]
  132. Soulé M, Noss R. 1998.. Rewilding and biodiversity: complementary goals for continental conservation. . Wild Earth 8::1928
    [Google Scholar]
  133. Staver AC, Abraham JO, Hempson GP, Karp AT, Faith JT. 2021.. The past, present, and future of herbivore impacts on savanna vegetation. . J. Ecol. 109:(8):280422
    [Crossref] [Google Scholar]
  134. Strydom T, Bouskila S, Banville F, Barros C, Caron D, et al. 2022.. Food web reconstruction through phylogenetic transfer of low-rank network representation. . Methods Ecol. Evol. 13:(12):283849
    [Crossref] [Google Scholar]
  135. Stuart AJ, Lister AM. 2007.. Patterns of Late Quaternary megafaunal extinctions in Europe and northern Asia. . Cour. Forsch.-Inst. Senckenberg 259::28797
    [Google Scholar]
  136. Surovell TA, Waguespack NM. 2008.. How many elephant kills are 14?. Quat. Int. 191:(1):8297
    [Crossref] [Google Scholar]
  137. Svenning J-C, Pedersen PBM, Donlan CJ, Ejrnæs R, Faurby S, et al. 2016.. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. . PNAS 113:(4):898906
    [Crossref] [Google Scholar]
  138. Terborgh J. 2001.. Ecological meltdown in predator-free forest fragments. . Science 294:(5548):192326
    [Crossref] [Google Scholar]
  139. Terborgh J, Estes JA, eds. 2010.. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature. Washington, DC:: Island
    [Google Scholar]
  140. Tóth AB, Lyons SK, Barr WA, Behrensmeyer AK, Blois JL, et al. 2019.. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. . Science 365:(6459):13058
    [Crossref] [Google Scholar]
  141. Towne EG. 2000.. Prairie vegetation and soil nutrient responses to ungulate carcasses. . Oecologia 122:(2):23239
    [Crossref] [Google Scholar]
  142. van Valkenburgh B, Hayward MW, Ripple WJ, Meloro C, Roth VL. 2016.. The impact of large terrestrial carnivores on Pleistocene ecosystems. . PNAS 113:(4):86267
    [Crossref] [Google Scholar]
  143. van Valkenburgh B, Hertel F. 1993.. Tough times at La Brea: tooth breakage in large carnivores of the Late Pleistocene. . Science 261:(5120):45659
    [Crossref] [Google Scholar]
  144. van Valkenburgh B, Hertel F. 1998.. The decline of North American predators during the Late Pleistocene. . Quat. Paleozool. North. Hemisph. 27::35774
    [Google Scholar]
  145. Wallace AR. 1876.. The Geographical Distribution of Animals. New York:: Harper & Brothers
    [Google Scholar]
  146. Wheelwright NT. 1985.. Fruit-size, gape width, and the diets of fruit-eating birds. . Ecology 66:(3):80818
    [Crossref] [Google Scholar]
  147. Wißing C, Rougier H, Crevecoeur I, Germonpré M, Naito YI, et al. 2016.. Isotopic evidence for dietary ecology of late Neandertals in North-Western Europe. . Quat. Int. 411::32745
    [Crossref] [Google Scholar]
  148. Wroe S, Myers T, Seebacher F, Kear B, Gillespie A, et al. 2003.. An alternative method for predicting body mass: the case of the Pleistocene marsupial lion. . Paleobiology 29:(3):40311
    [Crossref] [Google Scholar]
  149. Yeakel JD, Guimarães PR, Bocherens H, Koch PL. 2013.. The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. . Proc. R. Soc. B 280:(1762):20130239
    [Crossref] [Google Scholar]
  150. Yeakel JD, Pires MM, Rudolf L, Dominy NJ, Koch PL, et al. 2014.. Collapse of an ecological network in Ancient Egypt. . PNAS 111:(40):1447277
    [Crossref] [Google Scholar]
  151. Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS, Reynolds JF, Chapin MC. 1995.. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. . Am. Nat. 146:(5):76594
    [Crossref] [Google Scholar]
  152. Zimov SA, Zimov NS, Tikhonov AN, Chapin FS. 2012.. Mammoth steppe: a high-productivity phenomenon. . Quat. Sci. Rev. 57::2645
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040722-104845
Loading
/content/journals/10.1146/annurev-earth-040722-104845
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error