1932

Abstract

The tectonically complex Indonesian Gateway is part of the global thermohaline circulation and exerts a major control on climate. Waters from the Pacific flow through the Indonesian Archipelago into the Indian Ocean via the Indonesian Throughflow. Much progress has been made toward understanding the near-modern history of the Indonesian Gateway. However, the longer-term climate and ocean consequences of Australia's progressive collision with the Eurasian Plate that created it are less known. The gateway initiated ∼23 Ma, when Australia collided with Southeast Asia. By ∼10 Ma the gateway was sufficiently restricted to create a proto–warm pool. During the Pliocene it alternated between more or less restricted conditions, until modern oceanic conditions were established by 2.7 Ma. Despite its tectonic complexity, climate modeling and Indian and Pacific scientific ocean drilling research continue to yield insights into the gateway's deep history.

  • ▪  The Indonesian Gateway is a key branch of global thermohaline oceanic circulation, exerting a major control on Earth's climate over the last 25 Myr.
  • ▪  We find that a complex interplay of tectonics and sea level has controlled Indonesian Gateway restriction since 12 Myr, resulting in La Niña– and El Niño–like states in the equatorial Pacific.
  • ▪  Long term Indonesian Gateway history is best determined from ocean drilling cores on the Indian and Pacific sides of the Indonesian Gateway, as records from within it are typically disrupted by tectonics.
  • ▪  Model simulations show the global impact of the Indonesian Gateway. Further modeling with ocean drilling/tectonic research will enhance our understanding of Cenozoic Indonesian Gateway history.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040722-111322
2024-07-23
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040722-111322.html?itemId=/content/journals/10.1146/annurev-earth-040722-111322&mimeType=html&fmt=ahah

Literature Cited

  1. Abram NJ, Hargreaves JA, Wright NM, Thirumalai K, Ummenhofer CC, England MH. 2020.. Palaeoclimate perspectives on the Indian Ocean dipole. . Quat. Sci. Rev. 237::106302
    [Crossref] [Google Scholar]
  2. Auer G, De Vleeschouwer D, Smith RA, Bogus K, Groeneveld J, et al. 2019.. Timing and pacing of Indonesian Throughflow restriction and its connection to Late Pliocene climate shifts. . Paleoceanogr. Paleoclimatol. 34:(4):63557
    [Crossref] [Google Scholar]
  3. Bahr A, Kaboth-Bahr S, Karas C. 2023.. The opening and closure of oceanic seaways during the Cenozoic: pacemaker of global climate change?. Geol. Soc. Lond. Spec. Publ. 523:(1):14171
    [Crossref] [Google Scholar]
  4. Beltran C, Rousselle G, de Rafélis M, Sicre MA, Labourdette N, Schouten S. 2019.. Evolution of the zonal gradients across the equatorial Pacific during the Miocene–Pleistocene. . J. Sed. Res. 89:(3):24252
    [Crossref] [Google Scholar]
  5. Brierley CM, Fedorov AV. 2011.. Tidal mixing around Indonesia and the Maritime continent: implications for paleoclimate simulations. . Geophys. Res. Lett. 38:(24):L24703
    [Crossref] [Google Scholar]
  6. Brierley CM, Fedorov AV. 2016.. Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia. . Earth Planet. Sci. Lett. 444::11630
    [Crossref] [Google Scholar]
  7. Brierley CM, Fedorov AV, Liu Z, Herbert TD, Lawrence KT, LaRiviere JP. 2009.. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. . Science 323:(5922):171418
    [Crossref] [Google Scholar]
  8. Cane MA, Molnar P. 2001.. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. . Nature 411:(6834):15762
    [Crossref] [Google Scholar]
  9. Christensen BA, Renema W, Henderiks J, De Vleeschouwer D, Groeneveld J, et al. 2017.. Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene. . Geophys. Res. Lett. 44::691425
    [Crossref] [Google Scholar]
  10. Clift PD, Betzler C, Clemens SC, Christensen B, Eberli GP, et al. 2022.. A synthesis of monsoon exploration in the Asian marginal seas. . Sci. Drill. 31::129
    [Crossref] [Google Scholar]
  11. Cummins PR, Pranantyo IR, Pownall JM, Griffin JD, Meilano I, Zhao S. 2020.. Earthquakes and tsunamis caused by low-angle normal faulting in the Banda Sea, Indonesia. . Nat. Geosci. 13:(4):31218
    [Crossref] [Google Scholar]
  12. de Garidel-Thoron T, Rosenthal Y, Bassinot F, Beaufort L. 2005.. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. . Nature 433:(7023):29498
    [Crossref] [Google Scholar]
  13. De Vleeschouwer D, Auer G, Smith R, Bogus K, Christensen B, et al. 2018.. The amplifying effect of Indonesian Throughflow heat transport on Late Pliocene Southern Hemisphere climate cooling. . Earth Planet. Sci. Lett. 500::1527
    [Crossref] [Google Scholar]
  14. DiNezio PN, Puy M, Thirumalai K, Jin FF, Tierney JE. 2020.. Emergence of an equatorial mode of climate variability in the Indian Ocean. . Sci. Adv. 6:(19):eaay7684
    [Crossref] [Google Scholar]
  15. DiNezio PN, Tierney JE. 2013.. The effect of sea level on glacial Indo-Pacific climate. . Nat. Geosci. 6:(6):48591
    [Crossref] [Google Scholar]
  16. DiNezio PN, Timmermann A, Tierney JE, Jin FF, Otto-Bliesner B, et al. 2016.. The climate response of the Indo-Pacific warm pool to glacial sea level. . Paleoceanography 31:(6):86694
    [Crossref] [Google Scholar]
  17. Dowsett H, Dolan A, Rowley D, Moucha R, Forte AM, et al. 2016.. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. . Clim. Past 12:(7):151938
    [Crossref] [Google Scholar]
  18. Evans D, Brierley C, Raymo ME, Erez J, Müller W. 2016.. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. . Earth Planet. Sci. Lett. 438::13948
    [Crossref] [Google Scholar]
  19. Fantle MS, DePaolo DJ. 2006.. Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years. . Geochim. Cosmochim. Acta 70:(15):3883904
    [Crossref] [Google Scholar]
  20. Fedorov AV, Brierley CM, Lawrence KT, Liu Z, Dekens PS, Ravelo AC. 2013.. Patterns and mechanisms of early Pliocene warmth. . Nature 496::4349
    [Crossref] [Google Scholar]
  21. Fedorov AV, Burls NJ, Lawrence KT, Peterson LC. 2015.. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. . Nat. Geosci. 8:(12):97580
    [Crossref] [Google Scholar]
  22. Feng M, Zhang N, Liu Q, Wijffels S. 2018.. The Indonesian throughflow, its variability and centennial change. . Geosci. Lett. 5:(1):3
    [Crossref] [Google Scholar]
  23. Ford HL, Ravelo AC, Dekens PS, LaRiviere JP, Wara MW. 2015.. The evolution of the equatorial thermocline and the early Pliocene El Padre mean state. . Geophys. Res. Lett. 42:(12):487887
    [Crossref] [Google Scholar]
  24. Fox LR, Wade BS, Holbourn A, Leng MJ, Bhatia R. 2021.. Temperature gradients across the Pacific Ocean during the middle Miocene. . Paleoceanogr. Paleoclimatol. 36:(6):e2020PA003924
    [Crossref] [Google Scholar]
  25. Gallagher SJ, Fulthorpe CS, Bogus K, Exped. 356 Sci. 2017.. Proceedings of the International Ocean Discovery Program, Vol. 356: Indonesian Throughflow. College Station, TX:: Int. Ocean Discov. Program
    [Google Scholar]
  26. Gallagher SJ, Wallace MW, Hoiles PW, Southwood JM. 2014.. Seismic and stratigraphic evidence for reef expansion and onset of aridity on the Northwest Shelf of Australia during the Pleistocene. . Mar. Pet. Geol. 57::47081
    [Crossref] [Google Scholar]
  27. Gallagher SJ, Wallace MW, Li CL, Kinna B, Bye JT, et al. 2009.. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents. . Paleoceanography 24:(1):PA1206
    [Crossref] [Google Scholar]
  28. Gordon AL. 2005.. Oceanography of the Indonesian seas and their throughflow. . Oceanography 18:(4):1427
    [Crossref] [Google Scholar]
  29. Gordon AL, Fine RA. 1996.. Pathways of water between the Pacific and Indian oceans in the Indonesian seas. . Nature 379:(6561):14649
    [Crossref] [Google Scholar]
  30. Gordon AL, Susanto RD, Vranes K. 2003.. Cool Indonesian throughflow as a consequence of restricted surface layer flow. . Nature 425:(6960):82428
    [Crossref] [Google Scholar]
  31. Gourlan AT, Meynadier L, Allègre CJ. 2008.. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: neodymium isotope evidence. . Earth Planet. Sci. Lett. 267:(1–2):35364
    [Crossref] [Google Scholar]
  32. Hall R. 2009.. Southeast Asia's changing palaeogeography. . Blumea 54:(1–2):14861
    [Crossref] [Google Scholar]
  33. Hall R. 2012.. Sundaland and Wallacea: geology, plate tectonics and palaeogeography. . In Biotic Evolution and Environmental Change in Southeast Asia, Vol. 82, ed. DJ Gower, KG Johnson, JE Richardson, BR Rosen, L Rüber, ST Williams , pp. 3278. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  34. Hall R. 2013.. The palaeogeography of Sundaland and Wallacea since the Late Jurassic. . J. Limnol. 72:(s2):117
    [Crossref] [Google Scholar]
  35. Hall R, Spakman W. 2015.. Mantle structure and tectonic history of SE Asia. . Tectonophysics 658::1445
    [Crossref] [Google Scholar]
  36. He Y, Wang H, Liu Z. 2021.. Development of the Leeuwin Current on the northwest shelf of Australia through the Pliocene-Pleistocene period. . Earth Planet. Sci. Lett. 559::116767
    [Crossref] [Google Scholar]
  37. Hennig J, Hall R, Forster MA, Kohn BP, Lister GS. 2017.. Rapid cooling and exhumation as a consequence of extension and crustal thinning: inferences from the Late Miocene to Pliocene Palu Metamorphic Complex, Sulawesi, Indonesia. . Tectonophysics 712–713::60022
    [Crossref] [Google Scholar]
  38. Hodell DA, Vayavananda A. 1993.. Middle Miocene paleoceanography of the western equatorial Pacific (DSDP site 289) and the evolution of Globorotalia (Fohsella). . Mar. Micropaleontol. 22:(4):279310
    [Crossref] [Google Scholar]
  39. Holbourn A, Kuhnt W, Xu J. 2011.. Indonesian Throughflow variability during the last 140 ka: the Timor Sea outflow. . Geol. Soc. Lond. Spec. Publ. 355:(1):283303
    [Crossref] [Google Scholar]
  40. Hunter SJ, Haywood AM, Dolan AM, Tindall JC. 2019.. The HadCM3 contribution to PlioMIP phase 2. . Clim. Past 15::1691713
    [Crossref] [Google Scholar]
  41. Jian Z, Yu Y, Li B, Wang J, Zhang X, Zhou Z. 2006.. Phased evolution of the south–north hydrographic gradient in the South China Sea since the middle Miocene. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 230:(3–4):25163
    [Crossref] [Google Scholar]
  42. Jochum M, Fox-Kemper B, Molnar PH, Shields C. 2009.. Differences in the Indonesian seaway in a coupled climate model and their relevance to Pliocene climate and El Niño. . Paleoceanography 24:(1):PA1212
    [Crossref] [Google Scholar]
  43. Kaboth-Bahr S, Mudelsee M. 2022.. The multifaceted history of the Walker Circulation during the Plio-Pleistocene. . Quat. Sci. Rev. 286::107529
    [Crossref] [Google Scholar]
  44. Kageyama M, Harrison SP, Kapsch M-L, Lofverstrom M, Lora JM, et al. 2021.. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. . Clim. Past 17::106589
    [Crossref] [Google Scholar]
  45. Kamikuri SI, Motoyama I, Nishi H, Iwai M. 2009.. Evolution of Eastern Pacific Warm Pool and upwelling processes since the middle Miocene based on analysis of radiolarian assemblages: response to Indonesian and Central American Seaways. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 280:(3–4):46979
    [Crossref] [Google Scholar]
  46. Karas C, Nürnberg D, Bahr A, Groeneveld J, Herrle JO, et al. 2017.. Pliocene oceanic seaways and global climate. . Sci. Rep. 7:(1):39842
    [Crossref] [Google Scholar]
  47. Karas C, Nürnberg D, Gupta AK, Tiedemann R, Mohan K, Bickert T. 2009.. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. . Nat. Geosci. 2:(6):43438
    [Crossref] [Google Scholar]
  48. Karas C, Nürnberg D, Tiedemann R, Garbe-Schönberg D. 2011a.. Pliocene Indonesian Throughflow and Leeuwin Current dynamics: implications for Indian Ocean polar heat flux. . Paleoceanography 26:(2):PA2217
    [Crossref] [Google Scholar]
  49. Karas C, Nürnberg D, Tiedemann R, Garbe-Schönberg D. 2011b.. Pliocene climate change of the Southwest Pacific and the impact of ocean gateways. . Earth Planet. Sci. Lett. 301:(1–2):11724
    [Crossref] [Google Scholar]
  50. Karatsolis BT, De Vleeschouwer D, Groeneveld J, Christensen B, Henderiks J. 2020.. The late Miocene to early Pliocene “Humid Interval” on the NW Australian shelf: disentangling climate forcing from regional basin evolution. . Paleoceanogr. Paleoclimatol. 35:(9):e2019PA003780
    [Crossref] [Google Scholar]
  51. Keller G. 1985.. Depth stratification of planktonic foraminifers in the Miocene ocean. . In The Miocene Ocean: Paleoceanography and Biogeography, ed. JP Kennett , pp. 17796. Boulder, CO:: Geol. Soc. Am.
    [Google Scholar]
  52. Kennett JP, Keller G, Srinivasan MS. 1985.. Miocene planktonic foraminiferal biogeography and pale-oceanographic development of the Indo-Pacific region. . In The Miocene Ocean: Paleoceanography and Biogeography, ed. JP Kennett , pp. 197236. Boulder, CO:: Geol. Soc. Am.
    [Google Scholar]
  53. Kominz MA, Browning JV, Miller KG, Sugarman PJ, Mizintseva S, Scotese CR. 2008.. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. . Basin Res. 20:(2):21126
    [Crossref] [Google Scholar]
  54. Krebs U, Park W, Schneider B. 2011.. Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian throughflow. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 309:(1–2):11117
    [Crossref] [Google Scholar]
  55. Kuhnt W, Holbourn A, Hall R, Zuvela M, Käse R. 2004.. Neogene history of the Indonesian throughflow. . In Continent-Ocean Interactions Within East Asian Marginal Seas, ed. PD Clift, W Kuhnt, P Wang, D Hayes , pp. 299320. Washington, DC:: Am. Geophys. Union
    [Google Scholar]
  56. Lee T, Fukumori I, Menemenlis D, Xing Z, Fu LL. 2002.. Effects of the Indonesian throughflow on the Pacific and Indian Oceans. . J. Phys. Oceanogr. 32:(5):140429
    [Crossref] [Google Scholar]
  57. Li Q, Li B, Zhong G, McGowran B, Zhou Z, et al. 2006.. Late Miocene development of the western Pacific warm pool: planktonic foraminifer and oxygen isotopic evidence. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 237:(2–4):46582
    [Crossref] [Google Scholar]
  58. Linsley BK, Rosenthal Y, Oppo DW. 2010.. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool. . Nat. Geosci. 3:(8):57883
    [Crossref] [Google Scholar]
  59. Lisiecki EL, Raymo ER. 2005.. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. . Paleoceanography 20::PA1003
    [Google Scholar]
  60. Longhurst A. 1998.. Ecological Geography of the Sea. London:: Elsevier
    [Google Scholar]
  61. Lyle M, Barron J, Bralower TJ, Huber M, Olivarez Lyle A, et al. 2008.. Pacific Ocean and Cenozoic evolution of climate. . Rev. Geophys. 46:(2):RG2002
    [Crossref] [Google Scholar]
  62. McPhaden MJ, Zebiak SE, Glantz MH. 2006.. ENSO as an integrating concept in Earth science. . Science 314:(5806):174045
    [Crossref] [Google Scholar]
  63. Medina-Elizalde M, Lea DW, Fantle MS. 2008.. Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction. . Earth Planet. Sci. Lett. 269:(3–4):58595
    [Crossref] [Google Scholar]
  64. Miller KG, Browning JV, Schmelz WJ, Kopp RE, Mountain GS, Wright JD. 2020.. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. . Sci. Adv. 6:(20):eaaz1346
    [Crossref] [Google Scholar]
  65. Molnar P, Cronin TW. 2015.. Growth of the Maritime Continent and its possible contribution to recurring Ice Ages. . Paleoceanography 30:(3):196225
    [Crossref] [Google Scholar]
  66. Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, et al. 2015.. Middle Miocene closure of the Central American seaway. . Science 348:(6231):22629
    [Crossref] [Google Scholar]
  67. Nathan SA, Leckie RM. 2009.. Early history of the Western Pacific Warm Pool during the middle to late Miocene (∼13.2–5.8 Ma): role of sea-level change and implications for equatorial circulation. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 274:(3–4):14059
    [Crossref] [Google Scholar]
  68. Nugraha AMS, Hall R. 2018.. Late Cenozoic palaeogeography of Sulawesi, Indonesia. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 490::191209
    [Crossref] [Google Scholar]
  69. O'Brien CL, Foster GL, Martínez-Botí MA, Abell R, Rae JW, Pancost RD. 2014.. High sea surface temperatures in tropical warm pools during the Pliocene. . Nat. Geosci. 7:(8):60611
    [Crossref] [Google Scholar]
  70. Patria A, Tsutsumi H, Natawidjaja DH. 2021.. Active fault mapping in the onshore northern Banda Arc, Indonesia: implications for active tectonics and seismic potential. . J. Asian Earth Sci. 218::104881
    [Crossref] [Google Scholar]
  71. Patrick A, Thunell RC. 1997.. Tropical Pacific sea surface temperatures and upper water column thermal structure during the last glacial maximum. . Paleoceanography 12:(5):64957
    [Crossref] [Google Scholar]
  72. Petrick B, Martínez-García A, Auer G, Reuning L, Auderset A, et al. 2019.. Glacial Indonesian Throughflow weakening across the mid-Pleistocene climatic transition. . Sci. Rep. 9:(1):16995
    [Crossref] [Google Scholar]
  73. Pontes GM, Taschetto AS, Sen Gupta A, Santoso A, Wainer I, et al. 2022.. Mid-Pliocene El Niño/Southern Oscillation suppressed by Pacific intertropical convergence zone shift. . Nat. Geosci. 15:(9):72634
    [Crossref] [Google Scholar]
  74. Pownall JM, Hall R, Lister GS. 2016.. Rolling open Earth's deepest forearc basin. . Geology 44:(11):94750
    [Crossref] [Google Scholar]
  75. Rahmstorf S. 2006.. Thermohaline ocean circulation. . In Encyclopedia of Quaternary Science, ed. SA Elias , pp. 110. Amsterdam:: Elsevier
    [Google Scholar]
  76. Ravelo AC, Hillaire-Marcel C. 2007.. The use of oxygen and carbon isotopes of foraminifera in paleoceanography. . In Proxies in Late Cenozoic Paleoceanography, ed. C Hillaire-Marcel, A De Vernal , pp. 73564. New York:: Elsevier
    [Google Scholar]
  77. Rickaby REM, Halloran P. 2005.. Cool La Niña during the warmth of the Pliocene?. Science 307:(5717):194852
    [Crossref] [Google Scholar]
  78. Rodgers KB, Latif M, Legutke S. 2000.. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian throughflow. . Geophys. Res. Lett. 27::294145
    [Crossref] [Google Scholar]
  79. Rohling EJ, Yu J, Heslop D, Foster GL, Opdyke B, Roberts AP. 2021.. Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years. . Sci. Adv. 7:(26):eabf5326
    [Crossref] [Google Scholar]
  80. Romine K, Lombari G. 1985.. Evolution of Pacific circulation in the Miocene: radiolarian evidence from DSDP Site 289. . The Miocene Ocean: Paleoceanography and Biogeography, ed. JP Kennett , pp. 27390. Boulder, CO:: Geol. Soc. Am.
    [Google Scholar]
  81. Rosell-Melé A, McClymont EL. 2007.. Chapter eleven biomarkers as paleoceanographic proxies. . Dev. Mar. Geol. 1::44190
    [Google Scholar]
  82. Rosenthal Y. 2007.. Elemental proxies for reconstructing Cenozoic seawater paleotemperatures from calcareous fossils. . In Proxies in Late Cenozoic Paleoceanography, ed. C Hillaire-Marcel, A De Vernal , pp. 76597. New York:: Elsevier
    [Google Scholar]
  83. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T. 1999.. A dipole mode in the tropical Indian Ocean. . Nature 401:(6751):36063
    [Google Scholar]
  84. Sato K, Oda M, Chiyonobu S, Kimoto K, Domitsu H, Ingle JC Jr. 2008.. Establishment of the western Pacific warm pool during the Pliocene: evidence from planktic foraminifera, oxygen isotopes, and Mg/Ca ratios. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 265:(1–2):14047
    [Crossref] [Google Scholar]
  85. Schouten S, Hopmans EC, Schefuß E, Damste JSS. 2002.. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?. Earth Planet. Sci. Lett. 204:(1–2):26574
    [Crossref] [Google Scholar]
  86. Song Z, Latif M, Park W, Krebs-Kanzow U, Schneider B. 2017.. Influence of seaway changes during the Pliocene on tropical Pacific climate in the Kiel climate model: mean state, annual cycle, ENSO, and their interactions. . Clim. Dyn. 48::372540
    [Crossref] [Google Scholar]
  87. Song Z, Zhang Y. 2022.. Impact of oceanic gateway and CO2 changes on the East Asian Summer Monsoon during the mid-Pliocene in a coupled general circulation model. . Front. Environ. Sci. 10::2472
    [Google Scholar]
  88. Sosdian SM, Lear CH. 2020.. Initiation of the western Pacific warm pool at the middle Miocene climate transition?. Paleoceanogr. Paleoclimatol. 35:(12):e2020PA003920
    [Crossref] [Google Scholar]
  89. Spakman W, Hall R. 2010.. Surface deformation and slab-mantle interaction during Banda Arc subduction rollback. . Nat. Geosci. 3::56266
    [Crossref] [Google Scholar]
  90. Spratt RM, Lisiecki LE. 2016.. A Late Pleistocene sea level stack. . Clim. Past 12:(4):107992
    [Crossref] [Google Scholar]
  91. Sprintall J, Gordon AL, Koch-Larrouy A, Lee T, Potemra JT, et al. 2014.. The Indonesian seas and their role in the coupled ocean-climate system. . Nat. Geosci. 7:(7):48792
    [Crossref] [Google Scholar]
  92. Sprintall J, Wijffels SE, Molcard R, Jaya I. 2009.. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. . J. Geophys. Res. 114:(C7):C07001
    [Crossref] [Google Scholar]
  93. Srinivasan MS, Sinha DK. 1998.. Early Pliocene closing of the Indonesian Seaway: evidence from north-east Indian Ocean and Tropical Pacific deep sea cores. . J. Asian Earth Sci. 16:(1):2944
    [Crossref] [Google Scholar]
  94. Susanto RD, Waworuntu JM, Prayogo W, Setianto A. 2021.. Moored observations of current and temperature in the Alas Strait. . Oceanography 34:(1):24048
    [Crossref] [Google Scholar]
  95. Susanto RD, Wei Z, Adi TR, Zheng Q, Fang G, et al. 2016.. Oceanography surrounding Krakatau volcano in the Sunda Strait, Indonesia. . Oceanography 29:(2):26472
    [Crossref] [Google Scholar]
  96. Tan N, Zhang ZS, Guo ZT, Guo CC, Zhang ZJ, et al. 2022.. Recognizing the role of tropical seaways in modulating the Pacific circulation. . Geophys. Res. Lett. 49:(19):e2022GL099674
    [Crossref] [Google Scholar]
  97. Tate GW, McQuarrie N, Tiranda H, van Hinsbergen DJ, Harris R, et al. 2017.. Reconciling regional continuity with local variability in structure, uplift and exhumation of the Timor orogen. . Gondwana Res. 49::36486
    [Crossref] [Google Scholar]
  98. Thirumalai K, DiNezio PN, Okumura Y, Deser C. 2017.. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. . Nat. Commun. 8:(1):15531
    [Crossref] [Google Scholar]
  99. Tierney JE, Haywood AM, Feng R, Bhattacharya T, Otto-Bliesner BL. 2019.. Pliocene warmth consistent with greenhouse gas forcing. . Geophys. Res. Lett. 46:(15):913644
    [Crossref] [Google Scholar]
  100. Timmermann A, An SI, Kug JS, Jin FF, Cai W, et al. 2018.. El Niño–southern oscillation complexity. . Nature 559:(7715):53545
    [Crossref] [Google Scholar]
  101. Wara MW, Ravelo AC, Delaney ML. 2005.. Permanent El Niño-like conditions during the Pliocene warm period. . Science 309:(5735):75861
    [Crossref] [Google Scholar]
  102. Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, et al. 2020.. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. . Science 369:(6509):138387
    [Crossref] [Google Scholar]
  103. Wyrtki K. 1987.. Indonesian through flow and the associated pressure gradient. . J. Geophys. Res. 92:(C12):1294146
    [Crossref] [Google Scholar]
  104. Zuraida R, Holbourn A, Nürnberg D, Kuhnt W, Dürkop A, Erichsen A. 2009.. Evidence for Indonesian Throughflow slowdown during Heinrich events 3–5. . Paleoceanography 24:(2):PA2205
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040722-111322
Loading
/content/journals/10.1146/annurev-earth-040722-111322
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error