1932

Abstract

We review data and recent research on arc composition, focusing on the relatively complete arc crustal sections in the Jurassic Talkeetna arc (south central Alaska) and the Cretaceous Kohistan arc (northwest Pakistan), together with seismic data on the lower crust and uppermost mantle. Whereas primitive arc lavas are dominantly basaltic, the Kohistan crust is clearly andesitic and the Talkeetna crust could be andesitic. The andesitic compositions of the two arc sections are within the range of estimates for the major element composition of continental crust. Calculated seismic sections for Kohistan and Talkeetna provide a close match for the thicker parts of the active Izu arc, suggesting that it, too, could have an andesitic bulk composition. Because andesitic crust is buoyant with respect to the underlying mantle, much of this material represents a net addition to continental crust. Production of bulk crust from a parental melt in equilibrium with mantle olivine or pyroxene requires processing of igneous crust, probably via density instabilities. Delamination of dense cumulates from the base of arc crust, foundering into less dense, underlying mantle peridotite, is likely, as supported by geochemical evidence from Talkeetna and Kohistan. Relamination of buoyant, subducting material—during sediment subduction, subduction erosion, arc-arc collision, and continental collision—is also likely.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040809-152345
2015-05-30
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-040809-152345.html?itemId=/content/journals/10.1146/annurev-earth-040809-152345&mimeType=html&fmt=ahah

Literature Cited

  1. Alabaster T, Pearce JA, Malpas J. 1982. The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib. Mineral. Petrol. 81:168–83 [Google Scholar]
  2. Albarede F, Michard A. 1986. Transfer of continental Mg, S, O and U to the mantle through hydrothermal alteration of the oceanic crust. Chem. Geol. 57:1–15 [Google Scholar]
  3. Allegre CJ. 1969. Comportement des systèmes U-Th-Pb dans le manteau supérieur et modèle d'évolution de ce dernier au cours des temps géologiques. Earth Planet. Sci. Lett. 5:261–69 [Google Scholar]
  4. Amato JM, Rioux ME, Kelemen PB, Gehrels GE, Clift PD. et al. 2007. U-Pb geochronology of volcanic rocks from the Jurassic Talkeetna formation and detrital zircons from prearc and postarc sequences: implications for the age of magmatism and inheritance in the Talkeetna arc. Geol. Soc. Am. Spec. Pap. 431:253–71 [Google Scholar]
  5. Anderson AT. 1976. Magma mixing: petrological processes and volcanological tool. J. Volcanol. Geotherm. Res. 1:3–33 [Google Scholar]
  6. Arculus RJ. 2003. Use and abuse of the terms calc-alkaline and calcalkalic. J. Petrol. 44:929–35 [Google Scholar]
  7. Arculus RJ, Wills KJA. 1980. The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J. Petrol. 21:743–99 [Google Scholar]
  8. Arndt NT, Goldstein SL. 1989. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 161:201–12 [Google Scholar]
  9. Bard JP. 1983. Metamorphism of an obducted island arc: example of the Kohistan Sequence (Pakistan) in the Himalayan collided range. Earth Planet. Sci. Lett. 65:133–44 [Google Scholar]
  10. Barker F, Aleinikoff JN, Box SE, Evans BW, Gehrels GE. et al. 1994. Some accreted volcanic rocks of Alaska and their elemental abundances. The Geology of North America, Vol. G-1: The Geology of Alaska G Plafker, HC Berg 555–87 Washington, DC: Geol. Soc. Am. [Google Scholar]
  11. Bassett D, Sutherland R, Henrys S, Stern T, Scherwath M. et al. 2010. Three-dimensional velocity structure of the northern Hikurangi margin, Raukumara, New Zealand: implications for the growth of continental crust by subduction erosion and tectonic underplating. Geochem. Geophys. Geosyst. 11:Q10013 [Google Scholar]
  12. Bédard JH. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70:1188–214 [Google Scholar]
  13. Behn MD, Kelemen PB. 2006. Stability of arc lower crust: insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J. Geophys. Res. 111:B11207 [Google Scholar]
  14. Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne HJ. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat. Geosci. 4:641–46 [Google Scholar]
  15. Bernstein S, Kelemen PB, Hanghøj K. 2007. Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology 35:459–62 [Google Scholar]
  16. Bignold SM, Treloar PJ, Petford N. 2006. Changing sources of magma generation beneath intra-oceanic island arcs: an insight from the juvenile Kohistan island arc, Pakistan Himalaya. Chem. Geol. 233:46–74 [Google Scholar]
  17. Blatter DL, Sisson TW, Hankins WB. 2013. Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis. Contrib. Mineral. Petrol. 166:861–86 [Google Scholar]
  18. Bouilhol P, Jagoutz O, Hanchar J, Dudas F. 2013. Dating the India-Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366:163–75 [Google Scholar]
  19. Bucholz CE, Jagoutz O, Schmidt MW, Sambuu O. 2014. Phlogopite- and clinopyroxene-dominated fractional crystallization of an alkaline primitive melt: petrology and mineral chemistry of the Dariv Igneous Complex, Western Mongolia. Contrib. Mineral. Petrol. 167:1–28 [Google Scholar]
  20. Burg JP. 2011. The Asia-Kohistan-India collision: review and discussion. Front. Earth Sci. 2011:279–309 [Google Scholar]
  21. Burg JP, Arbaret L, Chaudhry NM, Dawood H, Hussain S, Zeilinger G. 2005. Shear strain localization from the upper mantle to the middle crust of the Kohistan Arc (Pakistan). Geol. Soc. Lond. Spec. Publ. 245:25–38 [Google Scholar]
  22. Burg JP, Jagoutz O, Dawood H, Hussain SS. 2006. Precollision tilt of crustal blocks in rifted island arcs: structural evidence from the Kohistan Arc. Tectonics 25:TC5005 [Google Scholar]
  23. Burns LE. 1983. The Border Ranges ultramafic and mafic complex: plutonic core of an intraoceanic island arc PhD Thesis, Stanford Univ., Palo Alto, CA [Google Scholar]
  24. Burns LE. 1985. The Border Ranges ultramafic and mafic complex, south-central Alaska: cumulate fractionates of island-arc volcanics. Can. J. Earth Sci. 22:1020–38 [Google Scholar]
  25. Burns LE, Pessel GH, Little TA, Pavlis TL, Newberry RJ. et al. 1991. Geology of the northern Chugach Mountains, southcentral Alaska Prof. Rep. 94, Div. Geol. Geophys. Surv., Dep. Nat. Resour., Fairbanks, AK [Google Scholar]
  26. Cai Y, Rioux ME, Kelemen PB, Goldstein SL, Bolge L. 2015. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc. Earth Planet. Sci. Lett. Submitted [Google Scholar]
  27. Calvert AJ. 2011. The seismic structure of island arc crust. Front. Earth Sci. 2011:87–119 [Google Scholar]
  28. Calvert AJ, Klemperer SL, Takahashi N, Kerr BC. 2008. Three-dimensional crustal structure of the Mariana island arc from seismic tomography. J. Geophys. Res. 113:B01406 [Google Scholar]
  29. Chatterjee N, Jagoutz O. 2015. Exhumation of the UHP Tso Morari eclogite as a diapir rising through the mantle wedge. Contrib. Mineral. Petrol. 169:3 [Google Scholar]
  30. Christensen NI, Mooney WD. 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100:B69761–88 [Google Scholar]
  31. Clift PD, Draut AE, Kelemen PB, Blusztajn J, Greene A, Trop J. 2005a. Stratigraphic and geochemical evolution of the Jurassic Talkeetna Volcanic Formation, south central Alaska. Geol. Soc. Am. Bull. 117:902–25 [Google Scholar]
  32. Clift PD, Hannigan R, Blusztajn J, Draut AE. 2002. Geochemical evolution of the Dras-Kohistan Arc during collision with Eurasia: evidence from the Ladakh Himalaya, India. Island Arc 11:255–73 [Google Scholar]
  33. Clift PD, Pavlis T, DeBari SM, Draut AE, Rioux M, Kelemen PB. 2005b. Subduction erosion of the Jurassic Talkeetna-Bonanza arc and the Mesozoic accretionary tectonics of western North America. Geology 33:881–84 [Google Scholar]
  34. Clift PD, Vannucchi P. 2004. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42:RG000127 [Google Scholar]
  35. Clift PD, Vannucchi P, Morgan JP. 2009. Crustal redistribution, crust–mantle recycling and Phanerozoic evolution of the continental crust. Earth Sci. Rev. 97:80–104 [Google Scholar]
  36. Cloos M, Shreve RL. 1988. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins. 1. Background and description. Pure Appl. Geophys. 128:455–500 [Google Scholar]
  37. Compagnoni R, Maffeo B. 1973. Jadeite-bearing metagranites l.s. and related rocks in the Mount Mucrone area (Sesia-Lanzo Zone, western Italian Alps). Schweiz. Mineral. Petrol. Mitt. 53:355–77 [Google Scholar]
  38. Connolly JAD. 1990. Multivariable phase diagrams: an algorithm based on generalized thermodynamics. Am. J. Sci. 290:666–718 [Google Scholar]
  39. Connolly JAD. 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236:524–41 [Google Scholar]
  40. Conrad WK, Kay RW. 1984. Ultramafic and mafic inclusions from Adak Island: crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian Arc. J. Petrol. 25:88–125 [Google Scholar]
  41. Conrad WK, Kay SM, Kay RW. 1983. Magma mixing in the Aleutian arc: evidence from cognate inclusions and composite xenoliths. J. Volcanol. Geotherm. Res. 18:279–95 [Google Scholar]
  42. Coward MP, Jan MQ, Rex D, Tarney J, Thirlwall MF, Windley BF. 1982. Structural evolution of a crustal section in the western Himalaya. Nature 295:22–24 [Google Scholar]
  43. Coward MP, Windley BF, Broughton RD, Luff IW, Petterson MG. et al. 1986. Collision tectonics in the NW Himalayas. Geol. Soc. Lond. Spec. Publ. 19:203–19 [Google Scholar]
  44. Crisp JA. 1984. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20:177–211 [Google Scholar]
  45. Chroston PN, Simmons G. 1989. Seismic velocities from the Kohistan volcanic arc, northern Pakistan. J. Geol. Soc. Lond. 146:971–79 [Google Scholar]
  46. DeBari SM. 1994. Petrogenesis of the Fiambala gabbroic intrusion, northwestern Argentina, a deep crustal syntectonic pluton in a continental magmatic arc. J. Petrol. 35:679–713 [Google Scholar]
  47. DeBari SM, Coleman RG. 1989. Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J. Geophys. Res. 94:B44373–91 [Google Scholar]
  48. DeBari SM, Greene A. 2011. Vertical stratification of composition, density, and inferred magmatic processes in exposed arc crustal sections. Front. Earth Sci. 2011:121–44 [Google Scholar]
  49. DeBari SM, Kay SM, Kay RW. 1987. Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian islands, Alaska: deformed igneous cumulates from the Moho of an island arc. J. Geol. 95:329–41 [Google Scholar]
  50. DeBari SM, Sleep NH. 1991. High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol. Soc. Am. Bull. 103:37–47 [Google Scholar]
  51. Dhuime B, Bosch D, Bodinier JL, Garrido CJ, Bruguier O. et al. 2007. Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth Planet. Sci. Lett. 261:179–200 [Google Scholar]
  52. Dhuime B, Bosch D, Garrido CJ, Bodinier JL, Bruguier O. et al. 2009. Geochemical architecture of the lower- to middle-crustal section of a paleo-island arc (Kohistan complex, Jijal-Kamila area, northern Pakistan): implications for the evolution of an oceanic subduction zone. J. Petrol. 50:531–69 [Google Scholar]
  53. Dick HJ, Ozawa K, Meyer PS, Niu Y, Robinson PT. et al. 2002. Primary silicate mineral chemistry of a 1.5-km section of very slow spreading lower ocean crust: ODP hole 735B, Southwest Indian Ridge. Proc. Ocean Drill. Program Sci. Results 176:1–61 http://www-odp.tamu.edu/publications/176_SR/chap_10/chap_10.htm [Google Scholar]
  54. Dimalanta C, Taira A, Yumul GP Jr, Tokuyama H, Mochizuki K. 2002. New rates of western Pacific island arc magmatism from seismic and gravity data. Earth Planet. Sci. Lett. 202:105–15 [Google Scholar]
  55. Dodge FCW, Lockwood JP, Calk LC. 1988. Fragments of the mantle and crust beneath the Sierra Nevada batholith: xenoliths in a volcanic pipe near Big Creek, California. Geol. Soc. Am. Bull. 100:938–47 [Google Scholar]
  56. Domenick MA, Kistler RW, Dodge FCW, Tatsumoto M. 1983. Nd and Sr isotopic study of crustal and mantle inclusions from beneath the Sierra Nevada and implications for batholith petrogenesis. Geol. Soc. Am. Bull. 94:713–19 [Google Scholar]
  57. Draut AE, Clift PD. 2013. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes. Earth Sci. Rev. 116:57–84 [Google Scholar]
  58. Drummond MS, Defant MJ. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res. 95:B1321503–21 [Google Scholar]
  59. Ducea MN, Kidder S, Chesley JT, Saleeby JB. 2009. Tectonic underplating of trench sediments beneath magmatic arcs: the central California example. Int. Geol. Rev. 51:1–26 [Google Scholar]
  60. Ducea MN, Otamendi JE, Bergantz G, Stair KM, Valencia VA, Gehrels GE. 2010. Timing constraints on building an intermediate plutonic arc crustal section: U-Pb zircon geochronology of the Sierra Valle Fértil–La Huerta, Famatinian arc, Argentina. Tectonics 29:TC4002 [Google Scholar]
  61. Ducea MN, Saleeby JB. 1996. Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. J. Geophys. Res. 101:B48229–44 [Google Scholar]
  62. Eakins BW, Sharman GF. 2012. Hypsographic Curve of the Earth's Surface from ETOPO1 Boulder, CO: NOAA Nat. Geophys. Data Cent. [Google Scholar]
  63. Fliedner MM, Klemperer SL. 1999. Structure of an island arc: wide-angle seismic studies in the eastern Aleutian Islands, Alaska. J. Geophys. Res. 104:B510667–94 [Google Scholar]
  64. Fliedner MM, Klemperer SL, Christensen NI. 2000. Three-dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition. J. Geophys. Res. 105:B510899–921 [Google Scholar]
  65. Frost BR, Lindsley DH. 1992. Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz. Part II: Application. Am. Mineral. 77:1004–20 [Google Scholar]
  66. Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14:489–518 [Google Scholar]
  67. Garrido CJ, Bodinier JL, Burg JP, Zeilinger G, Hussain SS. et al. 2006. Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (northern Pakistan): implications for intra-crustal differentiation of island arcs and generation of continental crust. J. Petrol. 47:1873–914 [Google Scholar]
  68. Garrido CJ, Bodinier JL, Dhuime B, Bosch D, Chanefo I. et al. 2007. Origin of the island arc Moho transition zone via melt-rock reaction and its implications for intracrustal differentiation of island arcs: evidence from the Jijal complex (Kohistan complex, northern Pakistan). Geology 35:683–86 [Google Scholar]
  69. Garrido CJ, Kelemen PB, Hirth G. 2001. Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: plagioclase crystal size distributions in gabbros from the Oman ophiolite. Geochem. Geophys. Geosyst. 2:1041 [Google Scholar]
  70. Gastil RG. 1975. Plutonic zones of the Peninsular Ranges of southern California and northern Baja California. Geology 3:361–63 [Google Scholar]
  71. Gazel E, Hayes J, Hoernle K, Everson E, Holbrooke WS. et al. 2015. Continental crust generated in oceanic arcs. Nat. Geosci. 8321–27 [Google Scholar]
  72. Gerya TV, Stöckert B, Perchuk AL. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics 21:1056 [Google Scholar]
  73. Gerya TV, Yuen DA. 2003. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett. 212:47–62 [Google Scholar]
  74. Gill JB. 1981. Orogenic Andesites and Plate Tectonics Berlin: Springer-Verlag [Google Scholar]
  75. Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D. et al. 2009. Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth Planet. Sci. Lett. 279:110–22 [Google Scholar]
  76. Greene A, DeBari SM, Kelemen PB, Blusztajn J, Clift PD. 2006. A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J. Petrol. 47:1051–93 [Google Scholar]
  77. Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL. et al. 2007. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–46 [Google Scholar]
  78. Gromet LP, Silver LT. 1987. REE variations across the Peninsular Ranges batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs. J. Petrol. 28:75–125 [Google Scholar]
  79. Grove M, Jacobson CE, Barth AP, Vucic A. 2003a. Temporal and spatial trends of Late Cretaceous–early Tertiary underplating of Pelona and related schist beneath southern California and southwestern Arizona. Geol. Soc. Am. Spec. Pap. 374:381–406 [Google Scholar]
  80. Grove TL, Baker MB. 1984. Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J. Geophys. Res. 89:B53253–74 [Google Scholar]
  81. Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA. 2003b. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Mineral. Petrol. 145:515–33 [Google Scholar]
  82. Hacker BR, Kelemen PB, Behn MD. 2011. Differentiation of the continental crust by relamination. Earth Planet. Sci. Lett. 307:501–16 [Google Scholar]
  83. Hacker BR, Kelemen PB, Behn MD. 2015. Continental lower crust. Annu. Rev. Earth Planet. Sci. 43:167–205 [Google Scholar]
  84. Hacker BR, Mehl L, Kelemen PB, Rioux M, Behn MD, Luffi P. 2008. Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. J. Geophys. Res. 113:B03204 [Google Scholar]
  85. Haraguchi S, Ishii T, Kimura JI, Ohara Y. 2003. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana crust. Contrib. Mineral. Petrol. 145:151–68 [Google Scholar]
  86. Hart SR, Blusztajn J, Dick HJB, Meyer PS, Muehlenbachs K. 1999. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim. Cosmochim. Acta 63:4059–80 [Google Scholar]
  87. Hayes JL, Holbrook WS, Lizarralde D, Avendonk HJA, Bullock AD. et al. 2013. Crustal structure across the Costa Rican volcanic arc. Geochem. Geophys. Geosyst. 14:1087–103 [Google Scholar]
  88. Herzberg CT, Fyfe WS, Carr MJ. 1983. Density constraints on the formation of the continental Moho and crust. Contrib. Mineral. Petrol. 84:1–5 [Google Scholar]
  89. Holbrook SW, Lizarralde D, McGeary S, Bangs N, Diebold J. 1999. Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27:31–34 [Google Scholar]
  90. Hopkins MD, Harrison TM, Manning CE. 2008. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interaction. Nature 456:493–96 [Google Scholar]
  91. Hopkins MD, Harrison TM, Manning CE. 2010. Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth Planet. Sci. Lett. 298:367–76 [Google Scholar]
  92. Huang Y, Chunakov V, Mantovani F, Rudnick RL, McDonough WF. 2013. A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem. Geophys. Geosyst. 14:2003–29 [Google Scholar]
  93. Ingebritsen SE, Sherrod DR, Mariner RH. 1989. Heat-flow and hydrothermal circulation in the Cascade Range, north-central Oregon. Science 243:1458–62 [Google Scholar]
  94. Irvine TN, Baragar WR. 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8:523–48 [Google Scholar]
  95. Iwasaki T, Hirata N, Kanazawa T, Melles J, Suyehiro K. et al. 1990. Crustal and upper mantle structure in the Ryukyu Island Arc deduced from deep seismic sounding. Geophys. J. Int. 102:631–51 [Google Scholar]
  96. Iwasaki T, Yoshii T, Moriya T, Kobayashi A, Nishiwaki M. et al. 1994. Precise P and S wave velocity structures in the Kitakami massif, Northern Honshu, Japan, from a seismic refraction experiment. J. Geophys. Res. 99:B1122187–204 [Google Scholar]
  97. Jagoutz O. 2013. Were ancient granitoid compositions influenced by contemporaneous atmospheric and hydrosphere oxidation states?. Terra Nova 25:95–101 [Google Scholar]
  98. Jagoutz O. 2014. Arc crustal differentiation mechanisms. Earth Planet. Sci. Lett. 396:267–77 [Google Scholar]
  99. Jagoutz O, Behn MD. 2013. Foundering of lower arc crust as an explanation for the origin of the continental Moho. Nature 504:131–34 [Google Scholar]
  100. Jagoutz O, Müntener O, Burg JP, Ulmer P, Jagoutz E. 2006. Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet. Sci. Lett. 242:320–42 [Google Scholar]
  101. Jagoutz O, Müntener O, Schmidt MW, Burg JP. 2011. The respective roles of flux and decompression melting and their relevant liquid lines of descent for continental crust formation: evidence from the Kohistan arc. Earth Planet. Sci. Lett. 303:25–36 [Google Scholar]
  102. Jagoutz O, Müntener O, Ulmer P, Pettke T, Burg JP. et al. 2007. Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex, Kohistan (NW Pakistan). J. Petrol. 48:1895–953 [Google Scholar]
  103. Jagoutz O, Schmidt MW. 2012. The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem. Geol 298–99:79–96 [Google Scholar]
  104. Jagoutz O, Schmidt MW. 2013. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet. Sci. Lett. 371–72:177–90 [Google Scholar]
  105. Jagoutz O, Schmidt MW, Enggist A, Burg JP, Hamid D, Hussain S. 2013. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust. Contrib. Mineral. Petrol. 166:1099–118 [Google Scholar]
  106. Jan MQ, Khan MA, Windley BF. 1989. Mineral chemistry of the Chilas mafic-ultramafic complex, Kohistan island arc, N. Pakistan: oxide phases. Tectonic Evolution of Collision Zones Between Gondwanic and Eurasian Blocks MQ Jan, MJ Khan, S Hamidullah 217–39 Peshawar, Pak.: Dep. Geol., Univ. Peshawar [Google Scholar]
  107. Jan MQ, Khan MA, Windley BF. 1992. Exsolution in Al-Cr-Fe3+-rich spinels from the Chilas mafic-ultramafic complex, Pakistan. Am. Mineral. 77:1074–79 [Google Scholar]
  108. Janiszewski HA, Abers GA, Shillington DJ, Calkins JA. 2013. Crustal structure along the Aleutian island arc: new insights from receiver functions constrained by active-source data. Geochem. Geophys. Geosyst. 14:2977–92 [Google Scholar]
  109. Jicha BR, Jagoutz O. 2015. Magma production rates for intraoceanic arcs. Elements 11:105–11 [Google Scholar]
  110. Jicha BR, Scholl DW, Singer BS, Yogodzinski GM, Kay SM. 2006. Revised age of Aleutian Island Arc formation implies high rate of magma production. Geology 34:661–64 [Google Scholar]
  111. Johnsen M. 2007. Geochemical composition of the western Talkeetna island arc crustal section, lower Cook Inlet region, Alaska: implications for crustal growth along continental margins MS Thesis, Western Wash. Univ., Bellingham [Google Scholar]
  112. Jull M, Kelemen PB. 2001. On the conditions for lower crustal convective instability. J. Geophys. Res. 106:B46423–46 [Google Scholar]
  113. Karig DE. 1971. Structural history of the Mariana island arc system. Geol. Soc. Am. Bull. 82:323–44 [Google Scholar]
  114. Kawate S. 1996. Geochemical models of the oceanic island arc system: an example of the Tanzawa Mountainland, central Japan PhD Thesis, Tohoku Univ., Tohoku, Jpn. [Google Scholar]
  115. Kawate S, Arima M. 1998. Petrogenesis of the Tanzawa plutonic complex, central Japan: exposed felsic middle crust of the Izu-Bonin-Mariana arc. Island Arc 7:342–58 [Google Scholar]
  116. Kay RW. 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J. Volcanol. Geotherm. Res. 4:117–32 [Google Scholar]
  117. Kay RW, Kay SM. 1991. Creation and destruction of lower continental crust. Geol. Rundsch. 80:259–78 [Google Scholar]
  118. Kay SM, Kay RW, Perfit MR. 1990. Calc-alkaline plutonism in the intra-oceanic Aleutian arc, Alaska. Geol. Soc. Am. Spec. Pap. 241:233–55 [Google Scholar]
  119. Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120:1–19 [Google Scholar]
  120. Kelemen PB, Behn MD. 2015. Genesis of continental crust via density sorting in subducted arcs. Nat. Geosci. In revision [Google Scholar]
  121. Kelemen PB, Ghiorso MS. 1986. Assimilation of peridotite in zoned calc-alkaline plutonic complexes: evidence from the Big Jim complex, Washington Cascades. Contrib. Mineral. Petrol. 94:12–28 [Google Scholar]
  122. Kelemen PB, Hacker BR, Behn MD, Greene A, Rioux M. et al. 2015. Possible bulk compositions for the Talkeetna arc: 50 to 62 wt% SiO2. Geology In preparation [Google Scholar]
  123. Kelemen PB, Hanghøj K, Greene A. 2004. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry 3 The Crust RL Rudnick 593–659 Oxford, UK: Pergamon, 1st ed.. [Google Scholar]
  124. Kelemen PB, Hanghøj K, Greene A. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry 4 The Crust RL Rudnick 746–805 Oxford, UK: Pergamon, 2nd ed.. [Google Scholar]
  125. Kelemen PB, Hart SR, Bernstein S. 1998. Silica enrichment in the continental upper mantle lithosphere via melt/rock reaction. Earth Planet. Sci. Lett. 164:387–406 [Google Scholar]
  126. Kelemen PB, Kikawa E, Miller DJ. Shipboard Sci. Party 2007. Leg 209 summary: processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°–16°N. Proc. Ocean Drill. Program Sci. Results 209:1–33 http://www-odp.tamu.edu/publications/209_SR/summary/summary.htm [Google Scholar]
  127. Kelemen PB, Rilling JL, Parmentier EM, Mehl L, Hacker BR. 2003a. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. AGU Monogr. 138:293–311 [Google Scholar]
  128. Kelemen PB, Yogodzinski GM, Scholl DW. 2003b. Along-strike variation in lavas of the Aleutian island arc: implications for the genesis of high Mg# andesite and the continental crust. AGU Monogr. 138:223–76 [Google Scholar]
  129. Khan MA, Jan MQ, Weaver BL. 1993. Evolution of the lower arc crust in Kohistan, N. Pakistan: temporal arc magmatism through early, mature and intra-arc rift stages. Geol. Soc. Lond. Spec. Publ. 74:123–38 [Google Scholar]
  130. Khan MA, Jan MQ, Windley BF, Tarney J, Thirlwall MF. 1989. The Chilas mafic-ultramafic igneous complex: the root of the Kohistan island arc in the Himalaya of northern Pakistan. Geol. Soc. Am. Spec. Pap. 232:75–94 [Google Scholar]
  131. Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT, Stockli L. 2009. Did the Kohistan-Ladakh island arc collide first with India?. Geol. Soc. Am. Bull. 121:366–84 [Google Scholar]
  132. Kiddle EJ, Edwards BR, Loughlin SC, Petterson M, Sparks RSJ, Voight B. 2010. Crustal structure beneath Montserrat, Lesser Antilles, constrained by xenoliths, seismic velocity structure and petrology. Geophys. Res. Lett. 37:L00E11 [Google Scholar]
  133. Kodaira S, Sato T, Takahashi N, Ito A, Tamura Y. et al. 2007a. Seismological evidence for variable growth of crust along the Izu intraoceanic arc. J. Geophys. Res. 112:B05104 [Google Scholar]
  134. Kodaira S, Sato T, Takahashi N, Miura S, Tamura Y. et al. 2007b. New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35:1031–34 [Google Scholar]
  135. Kopp H, Weinzierl W, Becel A, Charvis P, Evain M. et al. 2011. Deep structure of the central Lesser Antilles Island Arc: relevance for the formation of continental crust. Earth Planet. Sci. Lett. 304:121–34 [Google Scholar]
  136. Lee CT, Cheng X, Horodyskyj U. 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib. Mineral. Petrol. 151:222–42 [Google Scholar]
  137. Lee CT, Morton DM, Kistler RW, Baird AK. 2007. Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet. Sci. Lett. 263:370–87 [Google Scholar]
  138. Lee CT, Morton DM, Little MG, Kistler R, Horodyskyj UN. et al. 2008. Regulating continent growth and composition by chemical weathering. PNAS 105:4981–86 [Google Scholar]
  139. Little T, Hacker B, Gordon S, Baldwin S, Fitzgerald P. et al. 2011. Diapiric exhumation of Earth's youngest (UHP) eclogites in the gneiss domes of the D'Entrecasteaux Islands, Papua New Guinea. Tectonophysics 510:39–68 [Google Scholar]
  140. MacLeod CJ, Lissenberg CJ, Bibby LE. 2013. ‘Moist MORB’ axial magmatism in the Oman ophiolite: the evidence against a mid-ocean ridge origin. Geology 41:459–62 [Google Scholar]
  141. MacLeod CJ, Yaouancq G. 2000. A fossil melt lens in the Oman ophiolite: implications for magma chamber processes at fast spreading ridges. Earth Planet. Sci. Lett. 176:357–73 [Google Scholar]
  142. Malaviarachchi SPK, Makishima A, Tanimoto M, Kuritani T, Nakamura E. 2008. Highly unradiogenic lead isotope ratios from the Horoman peridotite in Japan. Nat. Geosci. 1:859–63 [Google Scholar]
  143. Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–56 [Google Scholar]
  144. McDonough WF, Sun SS. 1995. The composition of the Earth. Chem. Geol. 120:223–53 [Google Scholar]
  145. McLennan SM, Taylor SR, McCullough MT, Maynard JB. 1990. Geochemical and Nd-Sr isotopic composition of deep sea turbidites: crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta 54:2015–50 [Google Scholar]
  146. Mehl L, Hacker BR, Hirth G, Kelemen PB. 2003. Arc-parallel flow within the mantle wedge: evidence from the accreted Talkeetna arc, south central Alaska. J. Geophys. Res. 108:B82375 [Google Scholar]
  147. Miller DJ, Christensen NI. 1994. Seismic signature and geochemistry of an island arc: a multidisciplinary study of the Kohistan accreted terrane, northern Pakistan. J. Geophys. Res. 99:B611623–42 [Google Scholar]
  148. Miller DJ, Loucks RR, Ashraf M. 1991. Platinum-group element mineralization in the Jijal layered ultramafic-mafic complex, Pakistani Himalayas. Econ. Geol. 86:1093–102 [Google Scholar]
  149. Miller NC, Behn MD. 2012. Timescales for the growth of sediment diapirs in subduction zones. Geophys. J. Int. 190:1361–77 [Google Scholar]
  150. Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. Am. J. Sci. 274:321–55 [Google Scholar]
  151. Müntener O, Kelemen PB, Grove TL. 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Mineral. Petrol. 141:643–58 [Google Scholar]
  152. Nakanishi A, Kurashimo E, Tatsumi Y, Yamaguchi H, Miura S. et al. 2009. Crustal evolution of the southwestern Kuril Arc, Hokkaido Japan, deduced from seismic velocity and geochemical structure. Tectonophysics 472:105–23 [Google Scholar]
  153. Newberry R, Burns L, Pessel P. 1986. Volcanogenic massive sulfide deposits and the missing complement to the calc-alkaline trend: evidence from the Jurassic Talkeetna island arc of southern Alaska. Econ. Geol. 81:951–60 [Google Scholar]
  154. Otamendi JE, Ducea MN, Bergantz GW. 2012. Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian Arc, Argentina. J. Petrol. 52:761–800 [Google Scholar]
  155. Otamendi JE, Ducea MN, Tibaldi AM, Bergantz GW, de la Rosa J, Vujovich GI. 2009. Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. J. Petrol. 50:841–73 [Google Scholar]
  156. Parkinson IJ, Arculus RJ, Eggins SM. 2003. Peridotite xenoliths from Grenada, Lesser Antilles island arc. Contrib. Mineral. Petrol. 146:241–62 [Google Scholar]
  157. Pearce JA, Alabaster T, Shelton AW, Searle MP. 1981. The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Philos. Trans. R. Soc. A 300:299–317 [Google Scholar]
  158. Petterson MG, Treloar PJ. 2004. Volcanostratigraphy of arc volcanic sequences in the Kohistan arc, North Pakistan: volcanism within island arc, back-arc-basin, and intra-continental tectonic settings. J. Volcanol. Geotherm. Res. 130:147–78 [Google Scholar]
  159. Petterson MG, Windley BF. 1985. Rb-Sr dating of the Kohistan arc-batholith in the Trans-Himalaya of North Pakistan, and tectonic implications. Earth Planet. Sci. Lett. 74:45–57 [Google Scholar]
  160. Petterson MG, Windley BF. 1991. Changing source regions of magmas and crustal growth in the Trans-Himalayas: evidence from the Chalt Volcanics and Kohistan Batholith, Kohistan, northern Pakistan. Earth Planet. Sci. Lett. 102:326–41 [Google Scholar]
  161. Petterson MG, Windley BF, Luff IW. 1991. The Chalt Volcanics, Kohistan, N Pakistan; high-Mg tholeiitic and low-Mg calc-alkaline volcanism in a Cretaceous island arc. Phys. Chem. Earth 17:19–30 [Google Scholar]
  162. Peucker-Ehrenbrink B, Hanghøj K, Atwood T, Kelemen PB. 2012. Rhenium-osmium isotope systematics and platinum group element concentrations in oceanic crust. Geology 40:199–202 [Google Scholar]
  163. Plafker G, Nokleberg WJ, Lull JS. 1989. Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach terranes along the trans-Alaska crustal transect in the Chugach Mountains and Southern Copper River Basin, Alaska. J. Geophys. Res. 94:B44255–95 [Google Scholar]
  164. Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46:921–44 [Google Scholar]
  165. Rapp RP, Watson EB. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J. Petrol. 36:891–931 [Google Scholar]
  166. Rapp RP, Watson EB, Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 51:1–25 [Google Scholar]
  167. Reymer A, Schubert G. 1984. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3:63–77 [Google Scholar]
  168. Ringuette L, Martignole J, Windley BF. 1999. Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal Sequence (Kohistan Terrane, western Himalayas). Geology 27:139–42 [Google Scholar]
  169. Ringwood AE, Green DH. 1966. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics 3:383–427 [Google Scholar]
  170. Rioux M. 2006. The growth and differentiation of arc crust: temporal and geochemical evolution of the accreted Talkeetna arc, south-central Alaska PhD Thesis, Univ. Calif., Santa Barbara [Google Scholar]
  171. Rioux M, Hacker B, Mattinson J, Kelemen P, Blusztajn J, Gehrels G. 2007. Magmatic development of an intra-oceanic arc: high-precision U-Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska. Geol. Soc. Am. Bull. 119:1168–84 [Google Scholar]
  172. Rioux M, Mattinson J, Hacker B, Kelemen P, Blusztajn J. et al. 2010. Intermediate to felsic middle crust in the accreted Talkeetna arc, the Alaska Peninsula and Kodiak island, Alaska: an analogue for low-velocity middle crust in modern arcs. Tectonics 29:TC3001 [Google Scholar]
  173. Rosing MT, Bird DK, Sleep NH, Glassley W, Albarede F. 2006. The rise of continents: an essay on the geologic consequences of photosynthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232:99–113 [Google Scholar]
  174. Rudnick RL, Gao S. 2004. Composition of the continental crust. In Treatise on Geochemistry 3 The Crust RL Rudnick 1–64 Oxford, UK: Pergamon, 1st ed.. [Google Scholar]
  175. Rudnick RL, Gao S. 2014. Composition of the continental crust. Treatise on Geochemistry 4 The Crust RL Rudnick 1–51 Oxford, UK: Pergamon, 2nd ed.. [Google Scholar]
  176. Rudnick RL, Presper T. 1990. Geochemistry of intermediate- to high-pressure granulites. NATO Sci. Ser. C 311:523–50 [Google Scholar]
  177. Saito S, Arima M, Nakajima T, Misawa K, Kimura JI. 2007. Formation of distinct granitic magma batches by partial melting of hybrid lower crust in the Izu arc collision zone, Central Japan. J. Petrol. 48:1761–91 [Google Scholar]
  178. Saleeby J, Ducea M, Clemens-Knott D. 2003. Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics 22:1064 [Google Scholar]
  179. Schaltegger U, Zeilinger G, Frank M, Burg JP. 2002. Multiple mantle sources during island arc magmatism: U-Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova 14:461–68 [Google Scholar]
  180. Scherwath M, Kopp H, Flueh ER, Henrys SA, Sutherland R. et al. 2010. Fore-arc deformation and underplating at the northern Hikurangi margin, New Zealand. J. Geophys. Res. 115:B06408 [Google Scholar]
  181. Searle MP, Khan MA, Fraser JE, Gough SJ, Qasim JM. 1999. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, North Pakistan. Tectonics 18:929–49 [Google Scholar]
  182. Sharp ZD, Essene EJ, Smyth JR. 1992. Ultra-high temperatures from oxygen isotope thermometry of a coesite-sanidine grospydite. Contrib. Mineral. Petrol. 112:358–70 [Google Scholar]
  183. Shillington DJ, Van Avendonk HJA, Behn MD, Kelemen PB, Jagoutz O. 2013. Constraints on the composition of the Aleutian arc lower crust from VP/VS. Geophys. Res. Lett. 40:2579–84 [Google Scholar]
  184. Shillington DJ, Van Avendonk HJA, Holbrook WS, Kelemen PB, Hornbach MJ. 2004. Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data. Geochem. Geophys. Geosyst. 5:Q10006 [Google Scholar]
  185. Shipboard Sci. Party 2004. Leg 209 summary. Proc. Ocean Drill. Program Initial Rep. 209:1–139 http://www-odp.tamu.edu/publications/209_IR/chap_01/chap_01.htm [Google Scholar]
  186. Silver LT, Chappell BW. 1988. The Peninsular Ranges batholith: an insight into the evolution of the Cordilleran batholiths of southwestern North America. Trans. R. Soc. Edinb. Earth Sci. 79:105–21 [Google Scholar]
  187. Sisson TW, Grove TL, Coleman DS. 1996. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib. Mineral. Petrol. 126:81–108 [Google Scholar]
  188. Stern RJ. 1979. On the origin of andesite in the northern Mariana Island Arc: implications from Agrigan. Contrib. Mineral. Petrol. 68:207–19 [Google Scholar]
  189. Suyehiro K, Takahashi N, Ariie Y, Yokoi Y, Hino R. et al. 1996. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science 272:390–92 [Google Scholar]
  190. Tahirkheli RAK. 1979. Geology of Kohistan and adjoining Eurasia and Indio-Pakistan continents, Pakistan. Geol. Bull. Univ. Peshawar 11:1–30 [Google Scholar]
  191. Takahashi N, Kodaira S, Klemperer S, Tatsumi Y, Kaneda Y, Suyehiro K. 2007. Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology 35:203–6 [Google Scholar]
  192. Takahashi N, Kodaira S, Tatsumi Y, Kaneda Y, Suyehiro K. 2008. Structure and growth of the Izu-Bonin-Mariana arc crust. 1: Seismic constraint on crust and mantle structure of the Mariana arc-back-arc system. J. Geophys. Res. 113:B01104 [Google Scholar]
  193. Takahashi N, Kodaira S, Tatsumi Y, Yamashita M, Sato T. et al. 2009. Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc–back arc system. Geochem. Geophys. Geosyst. 10:Q09X08 [Google Scholar]
  194. Tamura Y, Ishizuka O, Aoike K, Kawate S, Kawabata H. et al. 2010. Missing Oligocene crust of the Izu-Bonin arc: consumed or rejuvenated during collision?. J. Petrol. 51:823–46 [Google Scholar]
  195. Tani K, Fiske RS, Dunkley DJ, Ishizuka O, Oikawa T. et al. 2011. The Izu Peninsula, Japan: zircon geochronology reveals a record of intra-oceanic rear-arc magmatism in an accreted block of Izu-Bonin upper crust. Earth Planet. Sci. Lett. 303:225–39 [Google Scholar]
  196. Tatsumi Y. 2000. Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle. Geochem. Geophys. Geosyst. 1:1053 [Google Scholar]
  197. Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T. 2008. Structure and growth of the Izu-Bonin-Mariana arc crust. 2: Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J. Geophys. Res. 113:B02203 [Google Scholar]
  198. Taylor SR, McLennan SM. 1985. The Continental Crust: Its Composition and Evolution Oxford, UK: Blackwell [Google Scholar]
  199. Taylor SR, McLennan SM. 1995. The geochemical evolution of the continental crust. Rev. Geophys. 33:241–65 [Google Scholar]
  200. Tollan PME, Bindeman I, Blundy JD. 2012. Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts. Contrib. Mineral. Petrol. 163:189–208 [Google Scholar]
  201. Treloar PJ, Brodie KH, Coward MP, Jan MQ, Khan MA. et al. 1990. The evolution of the Kamila shear zone, Kohistan, Pakistan. NATO Sci. Ser. C 317:175–214 [Google Scholar]
  202. Treloar PJ, Petterson MG, Jan MQ, Sullivan MA. 1996. A re-evaluation of the stratigraphy and evolution of the Kohistan Arc sequence, Pakistan Himalaya: implications for magmatic and tectonic arc-building processes. J. Geol. Soc. Lond. 153:681–93 [Google Scholar]
  203. Trop JM, Szuch DA, Rioux M, Blodgett RB. 2005. Sedimentology and provenance of the Upper Jurassic Naknek Formation, Talkeetna Mountains, Alaska: bearings on the accretionary tectonic history of the Wrangellia composite terrane. Geol. Soc. Am. Bull. 117:570–88 [Google Scholar]
  204. Vera E, Mutter J, Buhl P, Orcutt J, Harding A. et al. 1990. The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles. J. Geophys. Res. 95:B1015529–56 [Google Scholar]
  205. von Huene R, Scholl DW. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29:279–316 [Google Scholar]
  206. Walsh EO, Hacker BR. 2004. The fate of subducted continental margins: two-stage exhumation of the high-pressure to ultrahigh-pressure Western Gneiss complex, Norway. J. Metamorph. Geol. 22:671–89 [Google Scholar]
  207. Warren CJ, Beaumont C, Jamieson RA. 2008. Modelling tectonic styles and ultrahigh pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet. Sci. Lett. 267:129–45 [Google Scholar]
  208. Warren JM, Shirey SB. 2012. Pb and Os isotopic constraints on the oceanic mantle from single abyssal peridotite sulfides. Earth Planet. Sci. Lett. 359–60:279–93 [Google Scholar]
  209. Weaver BL, Tarney J. 1984. Empirical approach to estimating the composition of the continental crust. Nature 310:575–77 [Google Scholar]
  210. Wedepohl KH. 1995. The composition of the continental crust. Geochim. Cosmochim. Acta 59:1217–32 [Google Scholar]
  211. Wernicke B, Clayton R, Ducea M, Jones CH, Park S. et al. 1996. Origin of high mountains in the continents: the southern Sierra Nevada. Science 271:190–93 [Google Scholar]
  212. Whitney DL, Teyssier C, Rey PF. 2009. The consequences of crustal melting in continental subduction. Lithosphere 1:323–27 [Google Scholar]
  213. Yamamoto H, Kobayashi K, Nakamura E, Kaneko Y, Kausar AB. 2005. U-Pb zircon dating of regional deformation in the lower crust of the Kohistan arc. Int. Geol. Rev. 47:1035–47 [Google Scholar]
  214. Yamamoto H, Yoshino T. 1998. Superposition of replacements in the mafic granulites of the Jijal Complex of the Kohistan Arc, northern Pakistan; dehydration and rehydration within deep arc crust. Lithos 43:219–34 [Google Scholar]
  215. Yaouancq G, MacLeod CJ. 2000. Petrofabric investigation of gabbros from the Oman ophiolite: comparison between AMS and rock fabric. Mar. Geophys. Res. 21:289–305 [Google Scholar]
  216. Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM. 1995. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull. 107:505–19 [Google Scholar]
  217. Yogodzinski GM, Kelemen PB. 2000. Geochemical diversity in primitive Aleutian magmas: evidence from an ion probe study of clinopyroxene in mafic and ultramafic xenoliths. Eos Trans. AGU 81:Fall Meet. Suppl.F1281 (Abstr.) [Google Scholar]
  218. Yogodzinski GM, Kelemen PB. 2007. Trace elements in clinopyroxenes from Aleutian xenoliths: implications for primitive subduction magmatism in an island arc. Earth Planet. Sci. Lett. 256:617–32 [Google Scholar]
  219. Yogodzinski GM, Volynets ON, Koloskov AV, Seliverstov NI, Matvenkov VV. 1994. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far Western Aleutians. J. Petrol. 35:163–204 [Google Scholar]
  220. Yoshino T, Okudaira T. 2004. Crustal growth by magmatic accretion constrained by metamorphic PT paths and thermal models of the Kohistan arc, NW Himalayas. J. Petrol. 45:2287–302 [Google Scholar]
  221. Yoshino T, Yamamoto H, Okudaira T, Toriumi M. 1998. Crustal thickening of the lower crust of the Kohistan Arc (N. Pakistan) deduced from Al zoning in clinopyroxene and plagioclase. J. Metamorph. Geol. 16:729–48 [Google Scholar]
  222. Zaman H, Torii M. 1999. Palaeomagnetic study of Cretaceous red beds from the eastern Hindukush ranges, northern Pakistan: palaeoreconstruction of the Kohistan-Karakoram composite unit before the India-Asia collision. Geophys. J. Int. 136:719–38 [Google Scholar]
  223. Zeitler PK. 1985. Cooling history of the NW Himalaya, Pakistan. Tectonics 4:127–51 [Google Scholar]
  224. Zhang SQ, Mahoney JJ, Mo XX, Ghazi AM, Milani L. et al. 2005. Evidence for a widespread Tethyan upper mantle with Indian-Ocean-type isotopic characteristics. J. Petrol. 46:829–58 [Google Scholar]
  225. Zonenshain L, Kuzmin M. 1978. The Khan-Taishir ophiolitic complex of western Mongolia, its petrology, origin and comparison with other ophiolitic complexes. Contrib. Mineral. Petrol. 67:95–109 [Google Scholar]
/content/journals/10.1146/annurev-earth-040809-152345
Loading
/content/journals/10.1146/annurev-earth-040809-152345
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error