
Full text loading...
Most natural compounds are composed of diverse isotopologues that differ in the number and/or symmetrically unique atomic locations of isotopic substitutions. Little of this isotopic diversity is observed by conventional methods of stable isotope geochemistry, which generally measure concentrations of rare isotopes without constraining differences in isotopic composition between different atomic sites or nonrandom probabilities of multiple isotopic substitutions in the same molecule. Recent advances in analytical instrumentation and methodology have created a set of geochemical tools—geothermometers, biosynthetic signatures, forensic fingerprints—based on these position-specific isotope effects and multiply substituted isotopologues. This progress suggests we are entering a period in which many new geochemical tools of this type will be created. This review describes the principles, background, analytical methods, existing applied tools, and likely future progress of this emerging field.
Article metrics loading...
Full text loading...
Data & Media loading...