1932

Abstract

Virtually all biotic, dark abiotic, and photochemical transformations of mercury (Hg) produce Hg isotope fractionation, which can be either mass dependent (MDF) or mass independent (MIF). The largest range in MDF is observed among geological materials and rainfall impacted by anthropogenic sources. The largest positive MIF of Hg isotopes (odd-mass excess) is caused by photochemical degradation of methylmercury in water. This signature is retained through the food web and measured in all freshwater and marine fish. The largest negative MIF of Hg isotopes (odd-mass deficit) is caused by photochemical reduction of inorganic Hg and has been observed in Arctic snow and plant foliage. Ratios of MDF to MIF and ratios of 199Hg MIF to 201Hg MIF are often diagnostic of biogeochemical reaction pathways. More than a decade of research demonstrates that Hg isotopes can be used to trace sources, biogeochemical cycling, and reactions involving Hg in the environment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-050212-124107
2014-05-30
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-050212-124107.html?itemId=/content/journals/10.1146/annurev-earth-050212-124107&mimeType=html&fmt=ahah

Literature Cited

  1. Bartov G, Deonarine A, Johnson TM, Ruhl L, Vengosh A, Hsu-Kim H. 2013. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 1. Source apportionment using mercury stable isotopes. Environ. Sci. Technol. 47:2092–99 [Google Scholar]
  2. Bergquist BA, Blum JD. 2007. Mass-dependent and mass-independent fractionation of Hg isotopes by photo-reduction in aquatic systems. Science 318:417–20 [Google Scholar]
  3. Bergquist BA, Blum JD. 2009. The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation. Elements 5:353–57 [Google Scholar]
  4. Biswas A, Blum JD, Bergquist BA, Keeler GJ, Zhouqing X. 2008. Natural mercury isotope variation in coal deposits and organic soils. Environ. Sci. Technol. 42:8303–9 [Google Scholar]
  5. Blum JD. 2011. Applications of stable mercury isotopes to biogeochemistry. Handbook of Environmental Isotope Geochemistry M Baskaran 229–45 Berlin: Springer [Google Scholar]
  6. Blum JD, Anbar AD. 2010. Mercury isotopes in the late Archean Mount McRae Shale. Geochim. Cosmochim. Acta 74:A98 [Google Scholar]
  7. Blum JD, Bergquist BA. 2007. Reporting the variations in the natural isotopic composition of mercury. Anal. Bioanal. Chem. 388:353–59 [Google Scholar]
  8. Blum JD, Johnson MW, Gleason JD, Demers JD, Landis MS, Krupa S. 2012. Mercury concentration and isotopic composition of epiphytic tree lichens in the Athabasca oil sands region. Alberta Oil Sands: Energy, Industry, and the Environment KE Percy 373–90 Dev. Environ. Sci. 11 Amsterdam, Neth.: Elsevier [Google Scholar]
  9. Blum JD, Popp BN, Drazen JC, Choy CA, Johnson MW. 2013. Evidence for methylmercury production below the mixed layer in the central North Pacific Ocean. Nat. Geosci. 6:879–84 [Google Scholar]
  10. Brigham ME, Wentz DA, Aiken GR, Krabbenhoft DP. 2009. Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environ. Sci. Technol. 43:2720–25 [Google Scholar]
  11. Carignan J, Estrade N, Sonke JE, Donard OFX. 2009. Odd isotope deficits in atmospheric Hg measured in lichens. Environ. Sci. Technol. 43:5660–64 [Google Scholar]
  12. Chen J, Hintelmann H, Feng X, Dimock B. 2012. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim. Cosmochim. Acta 90:33–46 [Google Scholar]
  13. Cooke CA, Hintelmann H, Ague JJ, Burger R, Biester H. et al. 2013. Use and legacy of mercury in the Andes. Environ. Sci. Technol. 47:4181–88 [Google Scholar]
  14. Coplen TB. 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25:2538–60 [Google Scholar]
  15. Das R, Bizimis M, Wilson AM. 2012. Tracing mercury seawater vs. atmospheric inputs in a pristine SE USA salt marsh system: mercury isotope evidence. Chem. Geol. 336:50–61 [Google Scholar]
  16. Das R, Salters VJM, Odem AL. 2009. A case for in vivo mass-independent fractionation of mercury isotopes in fish. Geochem. Geophys. Geosyst. 10:Q11012 [Google Scholar]
  17. Day RD, Roseneau DG, Berail S, Hobson KA, Donard OFX. et al. 2012. Mercury stable isotopes in seabird eggs reflect a gradient from terrestrial geogenic to oceanic mercury reservoirs. Environ. Sci. Technol. 46:5327–35 [Google Scholar]
  18. Demers JD, Blum JD, Zak DR. 2013. Mercury isotopes in a forested ecosystem: implications for air-surface exchange dynamics and the global mercury cycle. Glob. Biogeochem. Cycles 27:1–17 [Google Scholar]
  19. Dommergue A, Ferrari CP, Gauchard P-A, Boutron CF. 2003. The fate of mercury species in a sub-arctic snowpack during snowmelt. Geophys. Res. Lett. 30:1621 [Google Scholar]
  20. Donovan PM, Blum JD, Yee D, Gehrke GE, Singer MB. 2013. An isotopic record of mercury in San Francisco Bay sediment. Chem. Geol. 349–50:87–98 [Google Scholar]
  21. Douglas TA, Sturm M, Simpson WR, Blum JD, Alvarez-Aviles L. et al. 2008. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic. Environ. Sci. Technol. 42:1542–51 [Google Scholar]
  22. Estrade N, Carignan J, Donard OFX. 2010. Isotope tracing of atmospheric mercury sources in an urban area of northeastern France. Environ. Sci. Technol. 44:6062–67 [Google Scholar]
  23. Estrade N, Carignan J, Donard OFX. 2011. Tracing and quantifying anthropogenic mercury sources in soils of northern France using isotopic signatures. Environ. Sci. Technol. 45:1235–42 [Google Scholar]
  24. Estrade N, Carignan J, Sonke JE, Donard OFX. 2009. Mercury isotope fractionation during liquid-vapor evaporation experiments. Geochim. Cosmochim. Acta 73:2693–711 [Google Scholar]
  25. Evers DC, Han Y-J, Driscoll CT, Kamman NC, Goodale MW. et al. 2007. Biological mercury hotspots in the northeastern United States and southeastern Canada. Bioscience 57:29–43 [Google Scholar]
  26. Feng X, Foucher D, Hintelmann H, Yan H, He T, Qiu G. 2010. Tracing mercury contamination sources in sediments using mercury isotope compositions. Environ. Sci. Technol. 44:3363–68 [Google Scholar]
  27. Fitzgerald WF, Lamborg CH. 2003. Geochemistry of mercury in the environment. Environmental Geochemistry HD Holland, KK Turekian 107–48 Treatise Geochem. 9 Oxford, UK: Elsevier [Google Scholar]
  28. Foucher D, Hintelmann H. 2006. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 384:1470–78 [Google Scholar]
  29. Foucher D, Hintelmann H, Al TA, MacQuarrie KT. 2013. Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): tracing mercury contamination and transformation. Chem. Geol. 336:87–95 [Google Scholar]
  30. Foucher D, Ogrinc N, Hintelmann H. 2009. Tracing mercury contamination from the Idrija mining region (Slovenia) to the Gulf of Trieste using Hg isotope ratio measurements. Environ. Sci. Technol. 43:33–39 [Google Scholar]
  31. Gantner N, Hintelmann H, Zheng W, Muir DC. 2009. Variations in stable isotope fractionation of Hg in food webs of Arctic lakes. Environ. Sci. Technol. 43:9148–54 [Google Scholar]
  32. Gehrke GE, Blum JD, Marvin-DePasquale M. 2011a. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes. Geochim. Cosmochim. Acta 75:691–705 [Google Scholar]
  33. Gehrke GE, Blum JD, Meyers PA. 2009. The geochemical behavior and isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel. Geochim. Cosmochim. Acta 73:1651–65 [Google Scholar]
  34. Gehrke GE, Blum JD, Slotton DG, Greenfield BK. 2011b. Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments. Environ. Sci. Technol. 45:1264–70 [Google Scholar]
  35. Ghosh S, Schauble EA, Couloume GL, Blum JD, Bergquist BA. 2013. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments. Chem. Geol. 336:5–12 [Google Scholar]
  36. Ghosh S, Xu Y, Humayun M, Odom L. 2008. Mass-independent fractionation of mercury isotopes in the environment. Geochem. Geophys. Geosyst. 9:Q03004 [Google Scholar]
  37. Gratz LE, Keeler GJ, Blum JD, Sherman LS. 2010. Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. Environ. Sci. Technol. 44:7764–70 [Google Scholar]
  38. Gray JE, Pribil MJ, Van Metre PC, Borrok DM, Thapalia A. 2013. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA. Appl. Geochem. 29:1–12 [Google Scholar]
  39. Gustin MS, Lindberg SE, Weisberg PJ. 2008. An update on the natural sources and sinks of atmospheric mercury. Appl. Geochem. 23:482–93 [Google Scholar]
  40. Hintelmann H. 2012. Use of stable isotopes in mercury research. Mercury in the Environment MS Bank 55–71 Berkeley: Univ. Calif. Press [Google Scholar]
  41. Hintelmann H, Lu S. 2003. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry. Analyst 128:635–39 [Google Scholar]
  42. Jackson TA. 2001. Variations in the isotope composition of mercury in a freshwater sediment sequence and food web. Can. J. Fish. Aquat. Sci. 58:185–96 [Google Scholar]
  43. Jackson TA, Muir DCG. 2012. Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from a lake polluted by emissions from the combustion of coal. Sci. Total Environ. 417–18:189–203 [Google Scholar]
  44. Jackson TA, Muir DCG, Vincent WF. 2004. Historical variations in the stable isotope composition of mercury in Arctic lake sediments. Environ. Sci. Technol. 38:2813–21 [Google Scholar]
  45. Jackson TA, Telmer KH, Muir DCG. 2013. Mass-dependent and mass-independent variations in the isotope composition of mercury in cores from lakes polluted by a smelter: effects of smelter emissions, natural processes, and their interactions. Chem. Geol. 352:27–46 [Google Scholar]
  46. Jackson TA, Whittle DM, Evans MS, Muir DCG. 2008. Evidence for mass-independent and mass-dependent fractionation of the stable isotopes of mercury by natural processes in aquatic ecosystems. Appl. Geochem. 23:547–71 [Google Scholar]
  47. Jiskra M, Wiederhold JG, Bourdon B, Kretzschmar R. 2012. Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite. Environ. Sci. Technol. 46:6654–62 [Google Scholar]
  48. Johnson CM, Beard BL, Albarede F. 2004. Geochemistry of Non-Traditional Stable Isotopes Rev. Mineral. Geochem 55 Washington, DC: Mineral. Soc. Am. [Google Scholar]
  49. Johnson KP, Blum JD, Keeler GJ, Douglas TA. 2008. Investigation of the deposition and emission of mercury in arctic snow during an atmospheric mercury depletion event. J. Geophys. Res. 113:D17304 [Google Scholar]
  50. Kritee K, Barkay T, Blum JD. 2009. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochim. Cosmochim. Acta 73:1285–96 [Google Scholar]
  51. Kritee K, Blum JD, Johnson MW, Bergquist BA, Barkay T. 2007. Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by mercury resistant microorganisms. Environ. Sci. Technol. 41:1889–95 [Google Scholar]
  52. Kritee K, Blum JD, Reinfelder JR, Barkay T. 2012. Microbial stable isotope fractionation of mercury: a synthesis of present understanding and future directions. Chem. Geol. 336:13–25 [Google Scholar]
  53. Kwon SY, Blum JD, Carvan MJ, Basu N, Head JA. et al. 2012. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity. Environ. Sci. Technol. 46:7527–34 [Google Scholar]
  54. Kwon SY, Blum JD, Chirby MA, Chesney EJ. 2013. Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environ. Toxicol. Chem. 32:2322–30 [Google Scholar]
  55. Laffont L, Sonke JE, Maurice L, Hintelmann H, Pouilly M. et al. 2009. Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon. Environ. Sci. Technol. 43:8985–90 [Google Scholar]
  56. Laffont L, Sonke JE, Maurice L, Monrroy SL, Chincheros J. et al. 2011. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury. Environ. Sci. Technol. 45:9910–16 [Google Scholar]
  57. Lalonde J, Poulain AJ, Amyot M. 2002. The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environ. Sci. Technol. 36:174–78 [Google Scholar]
  58. Lauretta DS, Klaue B, Blum JD, Buseck PR. 2001. Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites. Geochim. Cosmochim. Acta 65:2807–18 [Google Scholar]
  59. Lefticariu L, Blum JD, Gleason JD. 2011. Mercury isotopic evidence for multiple mercury sources in coal from the Illinois Basin. Environ. Sci. Technol. 45:1724–29 [Google Scholar]
  60. Lindberg SE, Brooks S, Lin C-J, Scott KJ, Landis MS. et al. 2002. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environ. Sci. Technol. 36:1245–56 [Google Scholar]
  61. Liu J, Feng X, Yin R, Zhu W, Li Z. 2011. Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China. Chem. Geol. 287:81–89 [Google Scholar]
  62. Ludwig K. 2007. Isoplot 3.57, a geochronological toolkit for Microsoft Excel Spec. Publ. 4, Berkeley Geochronol. Cent., Berkeley, CA [Google Scholar]
  63. Ma J, Hintelmann H, Kirk JL, Muir DCG. 2013. Mercury concentrations and mercury isotope composition in lake sediment cores from the vicinity of a metal smelting facility in Flin Flon, Manitoba. Chem. Geol. 336:96–102 [Google Scholar]
  64. Mason RP, Fitzgerald WF, Morel FMM. 1994. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim. Cosmochim. Acta 58:3191–98 [Google Scholar]
  65. Mead C, Lyons JR, Johnson TM, Anbar AD. 2013. Unique Hg stable isotope signatures of compact fluorescent lamp–sourced Hg. Environ. Sci. Technol. 47:2542–47 [Google Scholar]
  66. Mil-Homens M, Blum JD, Canario J, Caetano M, Costa AM. et al. 2013. Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin. Chem. Geol. 336:62–71 [Google Scholar]
  67. Morel FMM, Kraepiel AML, Amyot M. 1998. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 29:543–66 [Google Scholar]
  68. North S. 2011. Mercury concentrations and isotopic signature of the Alpine and Otago Schists, New Zealand Senior Thesis, Dept. Earth Env. Sci., Univ. Mich. [Google Scholar]
  69. Perrot V, Epov VN, Pastukhov MV, Grebenshchikova VI, Zouiten C. et al. 2010. Tracing sources and bioaccumulation of mercury in fish of Lake Baikal–Angara River using Hg isotopic composition. Environ. Sci. Technol. 44:8030–37 [Google Scholar]
  70. Perrot V, Pastukhov MV, Epov VN, Husted S, Donard OFX, Amouroux D. 2012. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia). Environ. Sci. Technol. 46:5902–11 [Google Scholar]
  71. Point D, Sonke JE, Day RD, Roseneau DG, Hobson KA. et al. 2011. Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems. Nat. Geosci. 4:188–94 [Google Scholar]
  72. Porcelli D, Baskaran M. 2011. An overview of isotope geochemistry in environmental studies. Handbook of Environmental Isotope Geochemistry M Baskaran 11–32 Berlin: Springer [Google Scholar]
  73. Ridley WI, Stetson SJ. 2006. A review of isotopic composition as an indicator of the natural and anthropogenic behavior of mercury. Appl. Geochem. 21:1889–99 [Google Scholar]
  74. Rodriguez-Gonzalez P, Epov VN, Bridou R, Tessier E, Guyoneaud R. et al. 2009. Species-specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria (Desulfobulbus propionicus) under dark conditions. Environ. Sci. Technol. 43:9183–88 [Google Scholar]
  75. Rolison JM, Landing WM, Luke W, Cohen M, Salters VJM. 2013. Isotopic composition of species-specific atmospheric Hg in a coastal environment. Chem. Geol. 336:37–49 [Google Scholar]
  76. Schroeder WH, Munthe J. 1998. Atmospheric mercury—an overview. Atmos. Environ. 32:809–22 [Google Scholar]
  77. Senn DB, Chesney EJ, Blum JD, Bank MS, Maage A, Shine JP. 2010. Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern Gulf of Mexico. Environ. Sci. Technol. 44:1630–37 [Google Scholar]
  78. Sherman LS, Blum JD. 2013. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Sci. Total Environ. 448:163–75 [Google Scholar]
  79. Sherman LS, Blum JD, Douglas TA, Steffen A. 2012a. Frost flowers growing in the Arctic ocean–atmosphere–sea ice–snow interface: 2. Mercury exchange between the atmosphere, snow, and frost flowers. J. Geophys. Res. 117:D00R10 [Google Scholar]
  80. Sherman LS, Blum JD, Franzblau A, Basu N. 2013. New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. Environ. Sci. Technol. 47:3403–9 [Google Scholar]
  81. Sherman LS, Blum JD, Johnson KP, Keeler GJ, Barres JA, Douglas TA. 2010. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight. Nat. Geosci. 3:173–77 [Google Scholar]
  82. Sherman LS, Blum JD, Keeler GJ, Demers JD, Dvonch JT. 2012b. Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes. Environ. Sci. Technol. 46:382–90 [Google Scholar]
  83. Sherman LS, Blum JD, Nordstrom DK, McCleskey RB, Barkay T, Vetriani C. 2009. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift. Earth Planet. Sci. Lett. 279:86–96 [Google Scholar]
  84. Smith CN. 2010. Isotopic geochemistry of mercury in active and fossil hydrothermal systems PhD Thesis, Dep. Geol. Sci., Univ. Mich., Ann Arbor [Google Scholar]
  85. Smith CN, Kesler SE, Blum JD, Rytuba JJ. 2008. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA. Earth Planet. Sci. Lett. 269:399–407 [Google Scholar]
  86. Smith CN, Kesler SE, Klaue B, Blum JD. 2005. Mercury isotope fractionation in fossil hydrothermal systems. Geology 33:825–28 [Google Scholar]
  87. Sonke JE, Schafer J, Chmeleff J, Audry S, Blanc G, Dupre B. 2010. Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chem. Geol. 279:90–100 [Google Scholar]
  88. Stetson SJ, Gray JE, Wanty RB, Macalady DL. 2009. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury. Environ. Sci. Technol. 43:7331–36 [Google Scholar]
  89. Sun R, Heimbürger L-E, Sonke JE, Liu G, Amouroux D, Berail S. 2013. Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants. Chem. Geol. 336:103–11 [Google Scholar]
  90. Sunderland EM. 2007. Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environ. Health Perspect. 115:235–42 [Google Scholar]
  91. Tsui MTK, Blum JD, Finlay JC, Balogh SJ, Kwon SY, Nollet YH. 2013. Photodegradation of methylmercury in stream ecosystems. Limnol. Oceanogr. 58:13–22 [Google Scholar]
  92. Tsui MTK, Blum JD, Kwon SY, Finlay JC, Balogh SJ, Nollet YH. 2012. Sources and transfers of methylmercury in adjacent river and forest food webs. Environ. Sci. Technol. 46:10957–64 [Google Scholar]
  93. US EPA. 1997. Mercury study report to Congress II An inventory of anthropogenic mercury emissions in the United States EPA-452/R-97-004 Research Triangle Park, NC: EPA OAQPS /ORD [Google Scholar]
  94. Wiederhold JG, Cramer CJ, Daniel K, Infante I, Bourdon B, Kretzschmar R. 2010. Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg. Environ. Sci. Technol. 44:4191–97 [Google Scholar]
  95. Yin R, Feng X, Meng B. 2013a. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China. Environ. Sci. Technol. 47:2238–45 [Google Scholar]
  96. Yin R, Feng X, Shi W. 2010. Application of the stable-isotope system to the study of sources and fate of Hg in the environment: a review. Appl. Geochem. 25:1467–77 [Google Scholar]
  97. Yin R, Feng X, Wang J, Bao Z, Yu B, Chen J. 2013b. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan mercury mine, SW China. Chem. Geol. 336:80–86 [Google Scholar]
  98. Yin R, Feng X, Wang J, Li P, Liu J. et al. 2013c. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China. Chem. Geol. 336:72–79 [Google Scholar]
  99. Zambardi T, Sonke JE, Toutain JP, Sortino F, Shinohara H. 2009. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy). Earth Planet. Sci. Lett. 277:236–43 [Google Scholar]
  100. Zheng W, Hintelmann H. 2010. Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds. J. Phys. Chem. A 114:4246–53 [Google Scholar]
/content/journals/10.1146/annurev-earth-050212-124107
Loading
/content/journals/10.1146/annurev-earth-050212-124107
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error