1932

Abstract

Microbe-mineral interactions occur in diverse modern environments, from the deep sea and subsurface rocks to soils and surface aquatic environments. They may have played a central role in the geochemical cycling of major (e.g., C, Fe, Ca, Mn, S, P) and trace (e.g., Ni, Mo, As, Cr) elements over Earth's history. Such interactions include electron transfer at the microbe-mineral interface that left traces in the rock record. Geomicrobiology consists in studying interactions at these organic-mineral interfaces in modern samples and looking for traces of past microbe-mineral interactions recorded in ancient rocks. Specific tools are required to probe these interfaces and to understand the mechanisms of interaction between microbes and minerals from the scale of the biofilm to the nanometer scale. In this review, we focus on recent advances in electron microscopy, in particular in cryoelectron microscopy, and on a panel of electrochemical and synchrotron-based methods that have recently provided new understanding and imaging of the microbe-mineral interface, ultimately opening new fields to be explored.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-050212-124110
2014-05-30
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-050212-124110.html?itemId=/content/journals/10.1146/annurev-earth-050212-124110&mimeType=html&fmt=ahah

Literature Cited

  1. Adrian M, Dubochet J, Lepault J, McDowall AW. 1984. Cryo-electron microscopy of viruses. Nature 308:32–36 [Google Scholar]
  2. Al-Amoudi A, Norlen LPO, Dubochet J. 2004. Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol. 148:131–35 [Google Scholar]
  3. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B. et al. 2007. A whiff of oxygen before the Great Oxidation Event?. Science 317:1903–6 [Google Scholar]
  4. Bach W, Fruh-Green GL. 2010. Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6:173–78 [Google Scholar]
  5. Banerjee NR, Muehlenbachs K. 2003. Tuff life: bioalteration in volcaniclastic rocks from the Ontong Java Plateau. Geochem. Geophys. Geosyst. 4:1037 [Google Scholar]
  6. Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL. 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–54 [Google Scholar]
  7. Bassim ND, De Gregorio BT, Kilcoyne ALD, Scott K, Chou T. et al. 2012. Minimizing damage during FIB sample preparation of soft materials. J. Microsc. 245:288–301 [Google Scholar]
  8. Baumgartner LK, Spear JR, Buckley DH, Pace NR, Reid RP. et al. 2009. Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environ. Microbiol. 11:2710–19 [Google Scholar]
  9. Beck M, Förster F, Ecke M, Plitzko JM, Melchior F. et al. 2004. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–90 [Google Scholar]
  10. Behrens S, Kappler A, Obst M. 2012. Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). Environ. Microbiol. 14:2851–69 [Google Scholar]
  11. Benzerara K. 2005. Nanoscale environments associated with bioweathering of a Mg-Fe-pyroxene. Proc. Natl. Acad. Sci. USA 102:979–82 [Google Scholar]
  12. Benzerara K, Menguy N, Banerjee NR, Tyliszczak T, Brown GE, Guyot F. 2007. Alteration of submarine basaltic glass from the Ontong Java Plateau: a STXM and TEM study. Earth Planet. Sci. Lett. 260:187–200 [Google Scholar]
  13. Benzerara K, Menguy N, Guyot F, Skouri F, de Luca G. et al. 2004a. Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth Planet. Sci. Lett. 228:439–49 [Google Scholar]
  14. Benzerara K, Menguy N, Guyot F, Vanni C, Gillet P. 2005. TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling. Geochim. Cosmochim. Acta 69:1413–22 [Google Scholar]
  15. Benzerara K, Yoon TH, Tyliszczak T, Constantz B, Spormann AM, Brown GE. 2004b. Scanning transmission X-ray microscopy study of microbial calcification. Geobiology 2:249–59 [Google Scholar]
  16. Bernard S, Benzerara K, Beyssac O, Brown GE, Stamm LG, Duringer P. 2009. Ultrastructural and chemical study of modern and fossil sporoderms by scanning transmission X-ray microscopy (STXM). Rev. Palaeobot. Palynol. 156:248–61 [Google Scholar]
  17. Bernard S, Benzerara K, Beyssac O, Menguy N, Guyot F. et al. 2007. Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth Planet. Sci. Lett. 262:257–72 [Google Scholar]
  18. Beveridge TJ. 2006. Understanding the shapes of bacteria just got more complicated. Mol. Microbiol. 62:1–4 [Google Scholar]
  19. Beveridge TJ, Murray RG. 1976. Uptake and retention of metals by cell walls of Bacillus subtilis. J. Bacteriol. 127:1502–18 [Google Scholar]
  20. Blank CE. 2009. Phylogenomic dating—a method of constraining the age of microbial taxa that lack a conventional fossil record. Astrobiology 9:173–91 [Google Scholar]
  21. Bleck CKE, Merz A, Gutierrez MG, Walther P, Dubochet J. et al. 2010. Comparison of different methods for thin section EM analysis of Mycobacterium smegmatis. J. Microsc. 237:23–38 [Google Scholar]
  22. Boesen T, Nielsen LP. 2013. Molecular dissection of bacterial nanowires. mBio 4:e00270–13 [Google Scholar]
  23. Bond DR. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–85 [Google Scholar]
  24. Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69:1548–55 [Google Scholar]
  25. Bonnefoy V, Holmes DS. 2012. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ. Microbiol. 14:1597–611 [Google Scholar]
  26. Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M. et al. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44:15–23 [Google Scholar]
  27. Bose A, Newman DK. 2011. Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the global regulator, FixK. Mol. Microbiol. 79:63–75 [Google Scholar]
  28. Bouchet-Marquis C, Hoenger A. 2011. Cryo-electron tomography on vitrified sections: a critical analysis of benefits and limitations for structural cell biology. Micron 42:152–62 [Google Scholar]
  29. Bourdelle F, Benzerara K, Beyssac O, Cosmidis J, Neuville DR. et al. 2013. Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2,3 edges. Contrib. Mineral. Petrol. 166:423–34 [Google Scholar]
  30. Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA. et al. 2007. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73:7003–12 [Google Scholar]
  31. Briegel A, Chen S, Koster AJ, Plitzko JM, Schwartz CL, Jensen GJ. 2010. Correlated light and electron cryo-microscopy. Methods Enzymol. 481:317–41 [Google Scholar]
  32. Byrne ME, Ball DA, Guerquin-Kern J-L, Rouiller I, Wu T-D. et al. 2010. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc. Natl. Acad. Sci. USA 107:12263–68 [Google Scholar]
  33. Carlut J, Benzerara K, Horen H, Menguy N, Janots D. et al. 2010. Microscopy study of biologically mediated alteration of natural mid-oceanic ridge basalts and magnetic implications. J. Geophys. Res. 115:G00G11 [Google Scholar]
  34. Cayeux L. 1936. Existence de nombreuses bactéries dans les phosphates sédimentaires de tout âge. C.R. Acad. Sci. 23:1198–1200 [Google Scholar]
  35. Celler K, Koning RI, Koster AJ, van Wezel GP. 2013. Multidimensional view of the bacterial cytoskeleton. J. Bacteriol. 195:1627–36 [Google Scholar]
  36. Chan CS, Fakra SC, Edwards DC, Emerson D, Banfield JF. 2009. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim. Cosmochim. Acta 73:3807–18 [Google Scholar]
  37. Chi Fru E, Ivarsson M. 2013. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation. Nat. Commun. 4:2050 [Google Scholar]
  38. Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF. et al. 2011. Structure of a bacterial cell surface decaheme electron conduit. Proc. Natl. Acad. Sci. USA 108:9384–89 [Google Scholar]
  39. Cloud PE Jr. 1965. Significance of the Gunflint (Precambrian) microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science 148:27–35 [Google Scholar]
  40. Cockell CS. 2010. Geomicrobiology beyond Earth: microbe-mineral interactions in space exploration and settlement. Trends Microbiol. 18:308–14 [Google Scholar]
  41. Coker VS, Byrne JM, Telling ND, Van Der Laan G, Lloyd JR. et al. 2012. Characterisation of the dissimilatory reduction of Fe(III)-oxyhydroxide at the microbe-mineral interface: the application of STXM-XMCD. Geobiology 10:347–54 [Google Scholar]
  42. Comolli LR, Luef B, Chan CS. 2011. High-resolution 2D and 3D cryo-TEM reveals structural adaptations of two stalk-forming bacteria to an Fe-oxidizing lifestyle. Environ. Microbiol. 13:2915–29 [Google Scholar]
  43. Cosmidis J, Benzerara K. 2014. Soft X-ray scanning transmission micro-spectroscopy: How can we discover how minerals form on nm length scale?. Handbook of Biomineralization L Gower, E DiMasi London: Taylor and Francis In press [Google Scholar]
  44. Cosmidis J, Benzerara K, Gheerbrant E, Estève I, Bouya B, Amaghzaz M. 2013. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco). Geobiology 11:139–53 [Google Scholar]
  45. Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S. et al. 2012. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336:459–62 [Google Scholar]
  46. Couradeau E, Benzerara K, Moreira D, Gérard E, Kaźmierczak J. et al. 2011. Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline Lake Alchichica (Mexico). PLoS ONE 6:e28767 [Google Scholar]
  47. Czaja AD, Johnson CM, Beard BL, Roden EE, Li WQ, Moorbath S. 2013. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett. 363:192–203 [Google Scholar]
  48. Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR. et al. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochim. Cosmochim. Acta 86:118–37 [Google Scholar]
  49. David LA, Alm EJ. 2010. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93–96 [Google Scholar]
  50. de Jonge N, Ross FM. 2011. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6:695–704 [Google Scholar]
  51. de Winter DAM, Schneijdenberg CTWM, Lebbink MN, Lich B, Verkleij AJ. et al. 2009. Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J. Microsc. 233:372–83 [Google Scholar]
  52. Dohnalkova AC, Marshall MJ, Arey BW, Williams KH, Buck EC, Fredrickson JK. 2010. Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl. Environ. Microbiol. 77:1254–62 [Google Scholar]
  53. Drew GH. 1911. The action of some denitrifying bacteria in tropical temperate seas, and the bacterial precipitation of calcium carbonate in the sea. J. Mar. Biol. Assoc. U.K. 9:142–55 [Google Scholar]
  54. Dubochet J. 2012. Cryo-EM—the first thirty years. J. Microsc. 245:221–24 [Google Scholar]
  55. Edwards KJ. 2000. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–99 [Google Scholar]
  56. Edwards KJ, Glazer BT, Rouxel OJ, Bach W, Emerson D. et al. 2011. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME J. 5:1748–58 [Google Scholar]
  57. Ehrhardt CJ, Haymon RM, Sievert SM, Holden PA. 2009. An improved method for nanogold in situ hybridization visualized with environmental scanning electron microscopy. J. Microsc. 236:5–10 [Google Scholar]
  58. Ehrlich H. 1998. Geomicrobiology: its significance for geology. Earth-Sci. Rev. 45:45–60 [Google Scholar]
  59. El-Naggar MY, Gorby YA, Xia W, Nealson KH. 2008. The molecular density of states in bacterial nanowires. Biophys. J. 95:L10–12 [Google Scholar]
  60. El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G. et al. 2010. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 107:18127–31 [Google Scholar]
  61. Eltsov M, MacLellan KM, Maeshima K, Frangakis AS, Dubochet J. 2008. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc. Natl. Acad. Sci. USA 105:19732–37 [Google Scholar]
  62. Emerson D, Fleming EJ, McBeth JM. 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 64:561–83 [Google Scholar]
  63. Ferris F, Hallberg R, Lyvén B, Pedersen K. 2000. Retention of strontium, cesium, lead and uranium by bacterial iron oxides from a subterranean environment. Appl. Geochem. 15:1035–42 [Google Scholar]
  64. Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H. 2010. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–33 [Google Scholar]
  65. Fliegel D, Wirth R, Simonetti A, Schreiber A, Furnes H, Muehlenbachs K. 2011. Tubular textures in pillow lavas from a Caledonian west Norwegian ophiolite: a combined TEM, LA-ICP-MS, and STXM study. Geochem. Geophys. Geosyst. 12:Q02010 [Google Scholar]
  66. Fortin D, Davis B, Beveridge TJ. 1996. Role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiol. Ecol. 21:11–24 [Google Scholar]
  67. Fredrickson JK, Zachara JM. 2008. Electron transfer at the microbe-mineral interface: a grand challenge in biogeochemistry. Geobiology 6:245–53 [Google Scholar]
  68. Frei R, Gaucher C, Poulton SW, Canfield DE. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–53 [Google Scholar]
  69. Furnes H, Banerjee NR, Muehlenbachs K, Kontinen A. 2005. Preservation of biosignatures in metaglassy volcanic rocks from the Jormua ophiolite complex, Finland. Precambr. Res. 136:125–37 [Google Scholar]
  70. Gadd GM. 2009. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–43 [Google Scholar]
  71. Gautier C, Livage J, Coradin T, Lopez PJ. 2006. Sol-gel encapsulation extends diatom viability and reveals their silica dissolution capability. Chem. Commun. 2006:4611–13 [Google Scholar]
  72. Gérard E, Guyot F, Philippot P, López-García P. 2005. Fluorescence in situ hybridisation coupled to ultra small immunogold detection to identify prokaryotic cells using transmission and scanning electron microscopy. J. Microbiol. Methods 63:20–28 [Google Scholar]
  73. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D. et al. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103:11358–63 [Google Scholar]
  74. Hao L, Li J, Kappler A, Obst M. 2013. Mapping of heavy metal ion sorption to cell–extracellular polymeric substance–mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy. Appl. Environ. Microbiol. 796524–34
  75. Hartman H. 1984. The evolution of photosynthesis and microbial mats: a speculation on the banded iron formations. Microbial Mats: Stromatolites Y Cohen, RW Castenholz, HO Halvorson 449–53 New York: Alan Liss [Google Scholar]
  76. Hitchcock AP, Obst M, Wang J, Lu YS, Tyliszczak T. 2012. Advances in the detection of As in environmental samples using low energy X-ray fluorescence in a scanning transmission X-ray microscope: arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria. Environ. Sci. Technol. 46:2821–29 [Google Scholar]
  77. Hohmann C, Morin G, Ona-Nguema G, Guigner J-M, Brown GE, Kappler A. 2011. Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Geochim. Cosmochim. Acta 75:4699–712 [Google Scholar]
  78. Jogler C, Wanner G, Kolinko S, Niebler M, Amann R. et al. 2010. Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. Proc. Natl. Acad. Sci. USA 108:1134–39 [Google Scholar]
  79. Kalkowski E. 1908. Oolith und Stromatolith im norddeutschen Buntsandstein. Z. Dtsch. Geol. Ges. 60:68–125 [Google Scholar]
  80. Kato S, Hashimoto K, Watanabe K. 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA 109:10042–46 [Google Scholar]
  81. Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D. 2010. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol. Microbiol. 77:208–24 [Google Scholar]
  82. Kim J, Dong H. 2011. Application of electron energy-loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) to the study of mineral transformation associated with microbial Fe-reduction of magnetite. Clays Clay Miner. 59:176–88 [Google Scholar]
  83. Koehler I, Konhauser KO, Papineau D, Bekker A, Kappler A. 2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nat. Commun. 4:1741 [Google Scholar]
  84. Komeili A, Li Z, Newman DK, Jensen GJ. 2006. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–45 [Google Scholar]
  85. Konhauser KO, Kappler A, Roden EE. 2011a. Iron in microbial metabolisms. Elements 7:89–93 [Google Scholar]
  86. Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW. et al. 2011b. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478:369–73 [Google Scholar]
  87. Konhauser KO, Newman DK, Kappler A. 2005. The potential significance of microbial Fe(III)-reduction during deposition of Precambrian banded iron formations. Geobiology 3:167–77 [Google Scholar]
  88. Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG. et al. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–53 [Google Scholar]
  89. Kump LR. 2008. The rise of atmospheric oxygen. Nature 451:277–78 [Google Scholar]
  90. Lalonde SV, Smith DS, Owttrim GW, Konhauser KO. 2008. Acid-base properties of cyanobacterial surfaces. I: Influences of growth phase and nitrogen metabolism on cell surface reactivity. Geochim. Cosmochim. Acta 72:1257–68 [Google Scholar]
  91. Lee MR. 2010. Transmission electron microscopy (TEM) of Earth and planetary materials: a review. Mineral. Mag. 74:1–27 [Google Scholar]
  92. Lefevre CT, Menguy N, Abreu F, Lins U, Posfai M. et al. 2011. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334:1720–23 [Google Scholar]
  93. Leforestier A, Lemercier N, Livolant F. 2012. Contribution of cryoelectron microscopy of vitreous sections to the understanding of biological membrane structure. Proc. Natl. Acad. Sci. USA 109:8959–64 [Google Scholar]
  94. Lentini CJ, Wankel SD, Hansel CM. 2012. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front. Microbiol. 3:404 [Google Scholar]
  95. Lepot K, Benzerara K, Philippot P. 2011. Biogenic versus metamorphic origins of diverse microtubes in 2.7 Gyr old volcanic ashes: multi-scale investigations. Earth Planet. Sci. Lett. 312:37–47 [Google Scholar]
  96. Leung BO, Wang J, Brash JL, Hitchcock AP. 2009. Imaging hydrated albumin on a polystyrene-poly(methyl methacrylate) blend surface with X-ray spectromicroscopy. Langmuir 25:13332–35 [Google Scholar]
  97. Li J, Pan Y, Liu Q, Yu-Zhang K, Menguy N. et al. 2010. Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. Earth Planet. Sci. Lett. 293:368–76 [Google Scholar]
  98. Lin W, Wang Y, Li B, Pan Y. 2011. A biogeographic distribution of magnetotactic bacteria influenced by salinity. ISME J. 6:475–79 [Google Scholar]
  99. Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7:375–81 [Google Scholar]
  100. Lovley DR. 2008. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19:564–71 [Google Scholar]
  101. Lovley DR. 2011. Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev. Environ. Sci. Biotechnol. 10:101–5 [Google Scholar]
  102. Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382:445–48 [Google Scholar]
  103. Luef B, Fakra SC, Csencsits R, Wrighton KC, Williams KH. et al. 2012. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME J. 7:338–50 [Google Scholar]
  104. Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ. 2003. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185:6112–18 [Google Scholar]
  105. McAllister SM, Davis RE, McBeth JM, Tebo BM, Emerson D, Moyer CL. 2011. Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria. Appl. Environ. Microbiol. 77:5445–57 [Google Scholar]
  106. Milne JLS, Subramaniam S. 2009. Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat. Rev. Microbiol. 7:666–75 [Google Scholar]
  107. Miot J, Benzerara K, Morin G, Bernard S, Beyssac O. et al. 2009a. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7:373–84 [Google Scholar]
  108. Miot J, Benzerara K, Morin G, Kappler A, Bernard S. et al. 2009b. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim. Cosmochim. Acta 73:696–711 [Google Scholar]
  109. Miot J, Benzerara K, Obst M, Kappler A, Hegler F. et al. 2009c. Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria. Appl. Environ. Microbiol. 75:5586–91 [Google Scholar]
  110. Miot J, MacLellan K, Benzerara K, Boisset N. 2011. Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study. Geobiology 9:459–70 [Google Scholar]
  111. Miot J, Recham N, Larcher D, Guyot F, Brest J, Tarascon JMT. 2014. Biomineralized α-Fe2O3: texture and electrochemical reaction with Li. Energy Environ. Sci. 7451–60
  112. Murat D, Falahati V, Bertinetti L, Csencsits R, Körnig A. et al. 2012. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol. 85:684–99 [Google Scholar]
  113. Myers CR, Nealson KH. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 240:1319–21 [Google Scholar]
  114. Nassif N, Bouvet O, Rager MN, Roux C, Coradin T, Livage J. 2002. Living bacteria in silica gels. Nat. Mater. 1:42–44 [Google Scholar]
  115. Nevin KP, Kim B-C, Glaven RH, Johnson JP, Woodard TL. et al. 2009. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4:e5628 [Google Scholar]
  116. Obst M. 2005. TEM-specimen preparation of cell/mineral interfaces by Focused Ion Beam milling. Am. Mineral. 90:1270–77 [Google Scholar]
  117. Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M. et al. 2010. Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J. 5:692–703 [Google Scholar]
  118. Ozyamak E, Kollman J, Agard DA, Komeili A. 2012. The bacterial actin MamK: in vitro assembly behavior and filament architecture. J. Biol. Chem. 288:4265–77 [Google Scholar]
  119. Pantke C, Obst M, Benzerara K, Morin G, Ona-Nguema G. et al. 2012. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ. Sci. Technol. 46:1439–46 [Google Scholar]
  120. Petit PE, Farges F, Wilke M, Solé VA. 2001. Determination of the iron oxidation state in Earth materials using XANES pre-edge information. J. Synchrotron Radiat. 8:952–54 [Google Scholar]
  121. Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F. et al. 2012. Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–21 [Google Scholar]
  122. Phoenix VR, Martinez RE, Konhauser KO, Ferris FG. 2002. Characterization and implications of the cell surface reactivity of Calothrix sp. strain KC97. Appl. Environ. Microbiol. 68:4827–34 [Google Scholar]
  123. Posth NR, Hegler F, Konhauser KO, Kappler A. 2008. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nat. Geosci. 1:703–8 [Google Scholar]
  124. Posth NR, Konhauser KO, Kappler A. 2013. Microbiological processes in banded iron formation deposition. Sedimentology 601733–54
  125. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–4 [Google Scholar]
  126. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:1098–101 [Google Scholar]
  127. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM. et al. 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–92 [Google Scholar]
  128. Reimers CE, Tender LM, Fertig S, Wang W. 2001. Harvesting energy from the marine sediment–water interface. Environ. Sci. Technol. 35:192–95 [Google Scholar]
  129. Remusat L, Hatton P-J, Nico PS, Zeller B, Kleber M, Derrien D. 2012. NanoSIMS study of organic matter associated with soil aggregates: advantages, limitations, and combination with STXM. Environ. Sci. Technol. 46:3943–49 [Google Scholar]
  130. Richardson DJ, Edwards MJ, White GF, Baiden N, Hartshorne RS. et al. 2012. Exploring the biochemistry at the extracellular redox frontier of bacterial mineral Fe(III) respiration. Biochem. Soc. Trans. 40:493–500 [Google Scholar]
  131. Rigort A, Bäuerlein FJB, Leis A, Gruska M, Hoffmann C. et al. 2010. Micromachining tools and correlative approaches for cellular cryo-electron tomography. J. Struct. Biol. 172:169–79 [Google Scholar]
  132. Rigort A, Bäuerlein FJB, Villa E, Eibauer M, Laugks T. et al. 2012. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl. Acad. Sci. USA 109:4449–54 [Google Scholar]
  133. Ripper D, Schwarz H, Stierhof Y-D. 2008. Cryo-section immunolabelling of difficult to preserve specimens: advantages of cryofixation, freeze-substitution and rehydration. Biol. Cell 100:109–23 [Google Scholar]
  134. Risgaard-Petersen N, Revil A, Meister P, Nielsen LP. 2012. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim. Cosmochim. Acta 92:1–13 [Google Scholar]
  135. Roden EE. 2012. Microbial iron-redox cycling in subsurface environments. Biochem. Soc. Trans. 40:1249–56 [Google Scholar]
  136. Schaedler S, Burkhardt C, Hegler F, Straub KL, Miot J. et al. 2009. Formation of cell–iron mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria. Geomicrobiol. J. 26:93–103 [Google Scholar]
  137. Schaedler S, Burkhardt C, Kappler A. 2008. Evaluation of electron microscopic sample preparation methods and imaging techniques for characterization of cell-mineral aggregates. Geomicrobiol. J. 25:228–39 [Google Scholar]
  138. Scheffel A, Gruska M, Faivre D, Linaroudis A, Graumann PL. et al. 2006. Corrigendum: An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 441:248 [Google Scholar]
  139. Schmid G, Obst M. 2014. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo- and environmental science. In Electron Microscopy: Methods and Protocols J Kuo 757–81 Methods Mol. Biol. 1117. Totowa, NJ Humana., 3rd. [Google Scholar]
  140. Schmid G, Zeitvogel F, Hao L, Ingino P, Kuerner W. et al. 2014. Synchrotron-based chemical nano-tomography of microbial cell–mineral aggregates in their natural, hydrated state. Microsc. Microanal. In press
  141. Schneider G, Guttmann P, Rehbein S, Werner S, Follath R. 2012. Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging. J. Struct. Biol. 177:212–23 [Google Scholar]
  142. Scott CT, Bekker A, Reinhardt CT, Schnetger B, Krapez B. et al. 2011. Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39:119–22 [Google Scholar]
  143. Solomon D, Lehmann J, Wang J, Kinyangi J, Heymann K. et al. 2012. Micro- and nano-environments of C sequestration in soil: a multi-elemental STXM-NEXAFS assessment of black C and organomineral associations. Sci. Total Environ. 438:372–88 [Google Scholar]
  144. Southam G. 2012. Minerals as substrates for life: the prokaryotic view. Elements 8:101–6 [Google Scholar]
  145. Templeton A, Knowles E. 2009. Microbial transformations of minerals and metals: recent advances in geomicrobiology derived from synchrotron-based X-ray spectroscopy and X-ray microscopy. Annu. Rev. Earth Planet. Sci. 37:367–91 [Google Scholar]
  146. Templeton AS, Knowles EJ, Eldridge DL, Arey BW, Dohnalkova AC. et al. 2009. A seafloor microbial biome hosted within incipient ferromanganese crusts. Nat. Geosci. 2:872–76 [Google Scholar]
  147. Tokuyasu KT. 1973. A technique for ultracryotomy of cell suspensions and tissues. J. Cell Biol. 57:551–65 [Google Scholar]
  148. Toner B, Fakra S, Villalobos M, Warwick T, Sposito G. 2005. Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm. Appl. Environ. Microbiol. 71:1300–310 [Google Scholar]
  149. Torres CI, Marcus AK, Lee H-S, Parameswaran P, Krajmalnik-Brown R, Rittmann BE. 2010. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 34:3–17 [Google Scholar]
  150. Tremblay P-L, Summers ZM, Glaven RH, Nevin KP, Zengler K. et al. 2011. A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environ. Microbiol. 13:13–23 [Google Scholar]
  151. Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17:378–87 [Google Scholar]
  152. van Aken PA, Liebscher B. 2002. Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23 electron energy-loss near-edge spectra. Phys. Chem. Miner. 29:188–200 [Google Scholar]
  153. Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith JA. et al. 2013. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio 4:e00105–13 [Google Scholar]
  154. Von Canstein H, Ogawa J, Shimizu S, Lloyd JR. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74:615–23 [Google Scholar]
  155. Wessel AK, Hmelo L. 2013. Going local: technologies for exploring bacterial microenvironments. Nat. Rev. Microbiol. 11:337–48 [Google Scholar]
  156. White GF, Shi Z, Shi L, Dohnalkova AC, Fredrickson JK. et al. 2012. Development of a proteoliposome model to probe transmembrane electron-transfer reactions. Biochem. Soc. Trans. 40:1257–60 [Google Scholar]
  157. White GF, Shi Z, Shi L, Wang Z, Dohnalkova AC. et al. 2013. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc. Natl. Acad. Sci. USA 110:6346–51 [Google Scholar]
  158. Wolf M, Kappler A, Jiang J, Meckenstock RU. 2009. Effect of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. Environ. Sci. Technol. 43:5679–85 [Google Scholar]
/content/journals/10.1146/annurev-earth-050212-124110
Loading
/content/journals/10.1146/annurev-earth-050212-124110
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error