The composition of much of Earth's lower continental crust is enigmatic. Wavespeeds require that 10–20% of the lower third is mafic, but the available heat-flow and wavespeed constraints can be satisfied if lower continental crust elsewhere contains anywhere from 49 to 62 wt% SiO. Thus, contrary to common belief, the lower crust in many regions could be relatively felsic, with SiO contents similar to andesites and dacites. Most lower crust is less dense than the underlying mantle, but mafic lowermost crust could be unstable and likely delaminates beneath rifts and arcs. During sediment subduction, subduction erosion, arc subduction, and continent subduction, mafic rocks become eclogites and may continue to descend into the mantle, whereas more silica-rich rocks are transformed into felsic gneisses that are less dense than peridotite but more dense than continental upper crust. These more felsic rocks may rise buoyantly, undergo decompression melting and melt extraction, and be relaminated to the base of the crust. As a result of this refining and differentiation process, such relatively felsic rocks could form much of Earth's lower crust.

[Erratum, Closure]

An erratum has been published for this article:
Continental Lower Crust

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Albarede F. 1998. The growth of continental crust. Tectonophysics 296:1–14 [Google Scholar]
  2. Arndt NT, Goldstein SL. 1989. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 161:201–12 [Google Scholar]
  3. Babeyko AY, Sobolev SV, Sinelnikov ED, Smirnov YP, Derevschikova NA. 1994. Calculation of elastic properties in lower part of the Kola borehole from bulk chemical compositions of core samples. Surv. Geophys. 15:545–73 [Google Scholar]
  4. Barker F, Peterman ZE. 1974. Bimodal tholeiitic-dacitic magmatism and the early Precambrian crust. Precambrian Res. 1:1–12 [Google Scholar]
  5. Bassin C, Laske G, Masters G. 2000. The current limits of resolution for surface wave tomography in North America. Eos Trans. AGU 81:F897 [Google Scholar]
  6. Behn MD, Kelemen PB. 2003. Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem. Geophys. Geosyst. 4:1041 [Google Scholar]
  7. Behn MD, Kelemen PB. 2006. The stability of arc lower crust: insights from the Talkeetna arc section, south-central Alaska and the seismic structure of modern arcs. J. Geophys. Res. 111:B11207 [Google Scholar]
  8. Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne HJ. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat. Geosci. 4:641–46 [Google Scholar]
  9. Birch F. 1961. The velocity of compressional waves in rocks to 10 kilobars: 2. J. Geophys. Res. 66:2199–224 [Google Scholar]
  10. Bond CE, Gibbs AD, Shipton ZK, Jones S. 2007. What do you think this is? “Conceptual uncertainty” in geoscience interpretation. GSA Today 17:4–10 [Google Scholar]
  11. Calvert AJ. 2011. The seismic structure of island arc crust. Arc-Continent Collision D Brown, PD Ryan 87–119 Berlin: Springer-Verlag [Google Scholar]
  12. Chemenda AI, Burg JP, Mattauer M. 2000. Evolutionary model of the Himalaya–Tibet system: geopoem: based on new modelling, geological and geophysical data. Earth Planet. Sci. Lett. 174:397–409 [Google Scholar]
  13. Christensen NI. 1989. Reflectivity and seismic properties of the deep continental crust. J. Geophys. Res. 94:B1217793–804 [Google Scholar]
  14. Christensen NI. 1996. Poisson's ratio and crustal seismology. J. Geophys. Res. 101:B23139–56 [Google Scholar]
  15. Christensen NI, Mooney WD. 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100:B69761–88 [Google Scholar]
  16. Currie CA, Beaumont C, Huismans RS. 2007. The fate of subducted sediments: a case for backarc intrusion and underplating. Geology 35:1111–14 [Google Scholar]
  17. DeBari SM, Sleep NH. 1991. High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol. Soc. Am. Bull. 103:37–47 [Google Scholar]
  18. Ducea MN, Saleeby JB. 1996. Buoyancy sources for a large unrooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. J. Geophys. Res. 101:B48229–41 [Google Scholar]
  19. Fischer K. 2002. Waning buoyancy in the crustal roots of old mountains. Nature 417:933–36 [Google Scholar]
  20. Fountain DM, Arculus R, Kay RW. 1992. Continental Lower Crust Amsterdam: Elsevier [Google Scholar]
  21. Fountain DM, Salisbury MH. 1981. Exposed cross-sections through the continental crust: implications for crustal structures, petrology and evolution. Earth Planet. Sci. Lett. 56:267–77 [Google Scholar]
  22. Gao S, Luo TC, Zhang BR, Zhang HF, Han YW. et al. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 62:1959–75 [Google Scholar]
  23. Gerya TV, Meilick FI. 2011. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J. Metamorph. Geol. 29:7–31 [Google Scholar]
  24. Gerya TV, Perchuk LL, Burg JP. 2008. Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high temperature crust-mantle associations in collision belts. Lithos 103:236–56 [Google Scholar]
  25. Gerya TV, Yuen DA. 2003. Rayleigh–Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett. 212:47–62 [Google Scholar]
  26. Gorczyk W, Gerya TV, Connolly JAD, Yuen DA, Rudolph M. 2006. Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography. Geochem. Geophys. Geosyst. 7:Q05018 [Google Scholar]
  27. Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD. 2006. A detailed geochemical study of island arc crust: the Talkeetna Arc section, south-central Alaska. J. Petrol. 47:1051–93 [Google Scholar]
  28. Guy A, Edel JB, Schulmann K, Tomek Č, Lexa O. 2011. A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collisional orogens. Lithos 124:144–57 [Google Scholar]
  29. Hacker BR, Kelemen PB, Behn MD. 2011. Differentiation of the continental crust by relamination. Earth Planet. Sci. Lett. 307:501–16 [Google Scholar]
  30. Halliday AN, Dickin AP, Hunter RN, Davies GR, Dempster TJ. et al. 1993. Formation and composition of the lower continental crust: evidence from Scottish xenolith suites. J. Geophys. Res. 98:B1581–607 [Google Scholar]
  31. Hayes JL, Holbrook WS, Lizarralde D, van Avendonk HJA, Bullock AD. et al. 2013. Crustal structure across the Costa Rican Volcanic Arc. Geochem. Geophys. Geosyst. 14:1087–103 [Google Scholar]
  32. Heier KS, Adams JAS. 1965. Concentration of radioactive elements in deep crustal material. Geochim. Cosmochim. Acta 29:53–61 [Google Scholar]
  33. Herzberg CT, Fyfe WS, Carr MJ. 1983. Density constraints on the formation of the continental Moho and crust. Contrib. Mineral. Petrol. 84:1–5 [Google Scholar]
  34. Holbrook WS, Mooney WD, Christensen NI. 1992. The seismic velocity structure of the deep continental crust. See Fountain et al. 1992 1–42
  35. Holland HD, Turekian KK. 2003. Treatise on Geochemistry 3 The Crust Oxford, UK: Elsevier-Pergamon, 1st ed.. [Google Scholar]
  36. Holland HD, Turekian KK. 2014. Treatise on Geochemistry 4 The Crust Oxford, UK: Elsevier-Pergamon, 2nd ed.. [Google Scholar]
  37. Huang Y, Chubakov V, Mantovani F, Rudnick RL, McDonough WF. 2013. A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem. Geophys. Geosyst. 14:2003–29 [Google Scholar]
  38. Jacobson CE, Grove M, Pedrick JN, Barth AP, Marsaglia KM. et al. 2011. Late Cretaceous–early Cenozoic tectonic evolution of the southern California margin inferred from provenance of trench and forearc sediments. Geol. Soc. Am. Bull. 123:485–506 [Google Scholar]
  39. Jagoutz O, Behn MD. 2013. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504:131–34 [Google Scholar]
  40. Jagoutz O, Schmidt MW. 2012. The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem. Geol. 298–99:79–96 [Google Scholar]
  41. Jaupart C, Mareschal JC. 2003. Constraints on crustal heat production from heat flow data. See Holland & Turekian 2003 65–84
  42. Jordan EK, Lieu W, Stern RJ, Carr MJ, Feigenson MD, Gill JB. 2012. CentAm & IBM Geochem Database version 1.02 Palisades, NY: Integr. Earth Data Appl http://www.iedadata.org/doi?id=100053 [Google Scholar]
  43. Jull M, Kelemen PB. 2001. On the conditions for lower crustal convective instability. J. Geophys. Res. 106:B46423–45 [Google Scholar]
  44. Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH, Ding L. 2003. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 22:1043 [Google Scholar]
  45. Kay RW, Kay SM. 1988. Crustal recycling and the Aleutian arc. Geochim. Cosmochim. Acta 52:1351–59 [Google Scholar]
  46. Kay RW, Kay SM. 1991. Creation and destruction of lower continental crust. Geol. Rundsch. 80:259–78 [Google Scholar]
  47. Kelemen P. 1995. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120:1–19 [Google Scholar]
  48. Kelemen P, Behn MD. 2015. Relamination not delamination: Lower continental crust forms via arc magmatism followed by underplating of subducted, buoyant arc lavas and plutons. Nat. Geosci. In press [Google Scholar]
  49. Kelemen PB, Shimizu N, Dunn T. 1993. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet. Sci. Lett. 120:111–34 [ Erratum] [Google Scholar]
  50. Kelemen PB, Hanghøj K, Greene A. 2003a. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. See Holland & Turekian 2003 593–659
  51. Kelemen PB, Hanghøj K, Greene A. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. See Holland & Turekian 2014 749–806
  52. Kelemen PB, Parmentier EM, Rilling J, Mehl L, Hacker BR. 2003b. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. AGU Monogr. 138:293–311 [Google Scholar]
  53. Kern H, Gao S, Liu QS. 1996. Seismic properties and densities of middle and lower crustal rocks exposed along the North China Geoscience Transect. Earth Planet. Sci. Lett. 139:439–55 [Google Scholar]
  54. Kimbrough DL, Grove M. 2007. Evidence for rapid recycling of subduction erosion forearc material into Cordilleran TTG batholiths: insight from the Peninsular Ranges of southern and Baja California. Eos Trans. AGU 88:Fall Meet. Suppl.T11B–0581 (Abstr.) [Google Scholar]
  55. Korja A, Heikkinen PJ. 1995. Proterozoic extensional tectonics of the central Fennoscandian Shield: results from the Baltic and Bothnian Echoes from the Lithosphere experiment. Tectonics 14:504–17 [Google Scholar]
  56. Kramers JD, Tolstikhin IN. 1997. Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem. Geol. 139:75–100 [Google Scholar]
  57. Lambert IB, Heier KS. 1968. Geochemical investigations of deep-seated rocks in the Australian Shield. Lithos 1:30–53 [Google Scholar]
  58. Laske G, Masters G, Ma Z, Pasyanos M. 2013. Update on CRUST1.0: a 1-degree global model of Earth's crust. Geophys. Res. Abstr. 15:EGU2013–658 [Google Scholar]
  59. Lee CTA. 2014. Physics and chemistry of continental crust recycling. See Holland & Turekian 214 423–56
  60. Lee CTA, Morton DM, Little MG, Kistler R, Horodyskyj UN. et al. 2008. Regulating continent growth and composition by chemical weathering. PNAS 105:4981–86 [Google Scholar]
  61. Lexa O, Schulmann K, Janoušek V, Štípská P, Guy A, Racek M. 2011. Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J. Metamorph. Geol. 29:79–102 [Google Scholar]
  62. Li Z, Gerya TV. 2009. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. J. Geophys. Res. 114:B09406 [Google Scholar]
  63. Liu XM, Rudnick RL. 2011. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. PNAS 108:20873–80 [Google Scholar]
  64. Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–56 [Google Scholar]
  65. McLennan SM, Taylor SR, Heming SR. 2005. Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heatflow. Evolution and Differentiation of the Continental Crust M Brown, T Rushmer 92–134 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  66. Michaut C, Jaupart C, Mareschal JC. 2009. Thermal evolution of cratonic roots. Lithos 109:47–60 [Google Scholar]
  67. Miller DJ, Christensen NI. 1994. Seismic signature and geochemistry of an island arc: a multidisciplinary study of the Kohistan accreted terrane, northern Pakistan. J. Geophys. Res. 99:B611623–42 [Google Scholar]
  68. Mooney WD, Laske G, Master TG. 1998. CRUST 5.1: a global crustal model at 5° × 5°. J. Geophys. Res. 103:B1727–47 [Google Scholar]
  69. Morgan P, Sawka WN, Furlong KP. 1987. Introduction: background and implications of the linear heat flow-heat production relationship. Geophys. Res. Abstr. 14:248–51 [Google Scholar]
  70. Musacchio G, Mooney WD, Luetgert JH, Christensen NI. 1997. Composition of the crust in the Grenville and Appalachian Provinces of North America inferred from VP/VS ratios. J. Geophys. Res. 102:B715225–41 [Google Scholar]
  71. Pakiser LC, Robinson R. 1966. Composition and evolution of the continental crust as suggested by seismic observations. Tectonophysics 3:547–57 [Google Scholar]
  72. Patiño Douce AE. 1995. Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. J. Geophys. Res. 100:B815623–39 [Google Scholar]
  73. Percival JA, Fountain DM, Salisbury M. 1992. Exposed crustal cross sections as windows on the lower crust. See Fountain et al. 1992 317–62
  74. Reid MR, Hart SR, Padovani ER, Wandless GA. 1989. Contribution of metapelitic sediments to the composition, heat production, and seismic velocity of the lower crust of southern New Mexico, U. S.A. Earth Planet. Sci. Lett. 95:367–81 [Google Scholar]
  75. Ringwood AE, Green DH. 1966. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics 3:383–427 [Google Scholar]
  76. Rudnick RL. 1992. Xenoliths—samples of the lower continental crust. See Fountain et al.. 1992 269–316
  77. Rudnick RL, Fountain DM. 1995. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33:267–309 [Google Scholar]
  78. Rudnick RL, Gao S. 2003. Composition of the continental crust. See Holland & Turekian 2003 1–64
  79. Rudnick RL, Gao S. 2014. Composition of the continental crust. See Holland & Turekian 2014 1–51
  80. Rudnick RL, Goldstein SL. 1990. The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb. Earth Planet. Sci. Lett. 98:192–207 [Google Scholar]
  81. Rudnick RL, Presper T. 1990. Geochemistry of intermediate- to high-pressure granulites. NATO Sci. Ser. C 311:523–50 [Google Scholar]
  82. Scholl DW, von Huene R. 2007. Crustal recycling at modern subduction zones applied to the past—issues of growth and preservation of continental basement, mantle geochemistry, and supercontinent reconstruction. Geol. Soc. Am. Mem. 200:9–32 [Google Scholar]
  83. Shaw DM, Reilly GA, Muysson JR, Pattenden GE, Campbell AF. 1967. An estimate of the chemical composition of the Canadian Precambrian shield. Can. J. Earth Sci. 4:829–53 [Google Scholar]
  84. Simon L, Lécuyer C. 2005. Continental recycling: the oxygen isotope point of view. Geochem. Geophys. Geosyst. 6:Q08004 [Google Scholar]
  85. Singer BS, Jicha BR, Leeman WP, Rogers NW, Thirlwall MF. et al. 2007. Along-strike trace element and isotopic variation in Aleutian Island arc basalt: subduction melts sediments and dehydrates serpentine. J. Geophys. Res. 112:B06206 [Google Scholar]
  86. Smithson SB. 1978. Modeling continental crust: structural and chemical constraints. Geophys. Res. Lett. 5:749–52 [Google Scholar]
  87. Sobolev SV, Babeyko AY. 1994. Modeling of mineralogical composition, density and elastic-wave velocities in anhydrous magmatic rocks. Surv. Geophys. 15:515–44 [Google Scholar]
  88. Stöckhert B, Gerya TV. 2005. Pre-collisional high pressure metamorphism and nappe tectonics at active continental margins: a numerical simulation. Terra Nova 17:102–10 [Google Scholar]
  89. Su YJ. 2002. Mid-ocean ridge basalt trace element systematics: constraints from database management, ICPMS analyses, global data compilation, and petrologic modeling PhD Thesis, Columbia Univ., New York, NY [Google Scholar]
  90. Tamura Y, Ishizuka O, Aoike K, Kawate S, Kawabata H. et al. 2010. Missing Oligocene crust of the Izu–Bonin arc: consumed or rejuvenated during collision?. J. Petrol. 51:823–46 [Google Scholar]
  91. Taylor SR. 1967. The origin and growth of continents. Tectonophysics 4:17–34 [Google Scholar]
  92. Tredoux M, Hart RJ, Carlson RW, Shirey SB. 1999. Ultramafic rocks at the center of the Vredefort structure: further evidence for the crust on edge model. Geology 27:923–26 [Google Scholar]
  93. Vogt K, Castro A, Gerya T. 2013. Numerical modeling of geochemical variations caused by crustal relamination. Geochem. Geophys. Geosyst. 14:470–87 [Google Scholar]
  94. Wanless VD, Perfit MR, Ridley WI, Klein E. 2010. Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. J. Petrol. 51:2377–410 [Google Scholar]
  95. Warren CJ, Beaumont C, Jamieson RA. 2008. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet. Sci. Lett. 267:129–45 [Google Scholar]
  96. Weaver BL, Tarney J. 1984. Empirical approach to estimating the composition of the continental crust. Nature 310:575–77 [Google Scholar]
  97. Yin A, Manning CE, Lovera O, Menold CA, Chen X, Gehrels GE. 2007. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, northwest China. Int. Geol. Rev. 49:681–716 [Google Scholar]
  98. Yogodzinski GM, Brown ST, Kelemen P, Vervoort J, Portnya M. et al. 2015. The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the western Aleutians. J. Petrol. In press [Google Scholar]
  99. Zhu G, Gerya TV, Yuen DA, Honda S, Yoshida T, Connolly JAD. 2009. Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones. Geochem. Geophys. Geosyst. 10:Q11006 [Google Scholar]
  100. Zirakparvar NA, Baldwin SL, Vervoort JD. 2012. The origin and geochemical evolution of the Woodlark Rift of Papua New Guinea. Gondwana Res. 23:931–43 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error