Comet samples returned to Earth by the NASA Stardust mission have provided a surprising glimpse into the nature of early Solar System materials and an epiphany on the origin of the initial rocky materials that once filled the cold regions of the solar nebula. The findings show that the cold regions of the early Solar System were not isolated and were not a refuge where interstellar materials could commonly survive. Wild 2, the sampled comet, appears to be a typical active Jupiter family comet, and yet most of its sampled micron and larger grains are familiar high-temperature meteoritic materials, such as chondrule fragments, that were transported to cold nebular regions. The rocky components in primitive asteroids and comets may differ because asteroid formation was dominated by local materials, whereas comets formed from mixed materials, many of which were transported from very distant locations.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. A'Hearn MF, Feaga LM, Keller HU, Kawakita H, Hampton DL. 2012. Cometary volatiles and the origin of comets. Astrophys. J. 758:29 [Google Scholar]
  2. A'Hearn MF, Millis RL, Schleicher DG, Osip DJ, Birch PV. 1995. The ensemble properties of comets: results from narrowband photometry of 85 comets, 1976–1992. Icarus 118:223–70 [Google Scholar]
  3. Basilevsky AT, Keller HU. 2006. Comet nuclei: morphology and implied processes of surface modification. Planet. Space Sci. 54:808–29 [Google Scholar]
  4. Belton MJS. 2010. Cometary activity, active areas, and a mechanism for collimated outflows on 1P, 9P, 19P, and 81P. Icarus 210:881–97 [Google Scholar]
  5. Belton MJS, Thomas P, Carcich B, Quick A, Veverka J. et al. 2013. The origin of pits on 9P/Tempel 1 and the geologic signature of outbursts in Stardust-NExT images. Icarus 222:477–86 [Google Scholar]
  6. Berger EL, Zega TJ, Keller LP, Lauretta DS. 2011. Evidence for aqueous activity on comet 81P/Wild 2 from sulfide mineral assemblages in Stardust samples and CI chondrites. Geochim. Cosmochim. Acta 75:3501–13 [Google Scholar]
  7. Berlin J, Jones RH, Brearley AJ. 2011. Fe-Mn systematics of type IIA chondrules in unequilibrated CO, CR, and ordinary chondrites. Meteorit. Planet. Sci. 46:513–33 [Google Scholar]
  8. Bocklee-Morvan D, Gautier D, Hersant F, Hurete JM, Robert F. 2002. Turbulent radial mixing in the solar nebula as the source of crystalline silicates in comets. Astron. Astrophys. 384:1107–18 [Google Scholar]
  9. Borovicka J. 2007. Properties of meteoroids from different classes of parent bodies. Near Earth Objects, Our Celestial Neighbors: Opportunity and Risk A Milani, GB Valsecchi, D Vokrouhlický 107–20 Proc. IAU Symp. Colloq. 236 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  10. Boss AP. 2012. Mixing and transport of isotopic heterogeneity in the early Solar System. Annu. Rev. Earth Planet. Sci. 40:23–43 [Google Scholar]
  11. Bradley JP. 2013. How and where did GEMS form?. Geochim. Cosmochim. Acta 107:336–40 [Google Scholar]
  12. Bradley JP, Dai ZR. 2004. Mechanism of formation of glass with embedded metal and sulfides. Astrophys. J. 617:650–55 [Google Scholar]
  13. Bradley JP, Sandford SA, Walker RM. 1988. Interplanetary dust particles. Meteorites and the Early Solar System II D Lauretta, HY McSween 861–95 Tucson: Univ. Ariz. Press [Google Scholar]
  14. Bridges JC, Changela HG, Nayakshin S, Starkey NA, Franchi IA. 2012. Chondrule fragments from Comet Wild 2: evidence for high temperature processing in the outer Solar System. Earth Planet. Sci. Lett. 341:186–94 [Google Scholar]
  15. Brown ME, Barkume KM, Ragozzine D, Schaller EL. 2007. A collisional family of icy objects in the Kuiper belt. Nature 446:294–96 [Google Scholar]
  16. Brownlee DE, Horz F, Newburn RL, Zolensky M, Duxbury T. et al. 2004. Surface of young Jupiter family comet 81 P/Wild 2: view from the Stardust spacecraft. Science 304:1764–69 [Google Scholar]
  17. Brownlee DE, Joswiak D, Matrajt G. 2012. Overview of the rocky component of Wild 2 comet samples: insight into the early Solar System, relationship with meteoritic materials and the differences between comets and asteroids. Meteorit. Planet. Sci. 47:453–70 [Google Scholar]
  18. Brownlee DE, Joswiak D, Matrajt G. 2013. The nature and relationship of coarse and the mysterious fine materials collected from comet Wild 2. Lunar Planet. Sci. Conf. Abstr. 44:2564 [Google Scholar]
  19. Brownlee DE, Joswiak D, Matrajt G, Messenger S, Ito M. 2009. Silicon carbide in comet Wild 2 & the abundance of pre-solar grains in the Kuiper belt. Lunar Planet. Sci. Conf. Abstr. 40:2195 [Google Scholar]
  20. Brownlee DE, Tsou P, Aleon J, Alexander CMO, Araki T. et al. 2006. Comet 81P/Wild 2 under a microscope. Science 314:1711–16 [Google Scholar]
  21. Burchell MJ, Fairey SAJ, Wozniakiewicz P, Brownlee DE, Horz F. et al. 2008. Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations. Meteorit. Planet. Sci. 43:23–40 [Google Scholar]
  22. Busemann H, Nguyen AN, Cody GD, Hoppe P, Kilcoyne ALD. et al. 2009. Ultra-primitive interplanetary dust particles from the comet 26P/Grigg–Skjellerup dust stream collection. Earth. Planet. Sci. Lett. 288:44–57 [Google Scholar]
  23. Burger PV. 2005. Incipient aqueous alteration of meteorite parent bodies: hydration, mobilization, precipitation and equilibration Master's Thesis, Univ. N.M., Albuquerque [Google Scholar]
  24. Butterworth AL, Gainsforth Z, Bauville A, Bonal L, Brownlee DE. et al. 2010. A Type IIA chondrule fragment from comet 81P/Wild 2 in Stardust track C2052274. Lunar Planet. Sci. Conf. Abstr 41:2446 [Google Scholar]
  25. Chi M, Ishii HA, Simon SB, Bradley JP, Dai Z. et al. 2009. The origin of refractory minerals in comet 81P/Wild 2. Geochim. Cosmochim. Acta 73:7150–61 [Google Scholar]
  26. Ciesla FJ. 2010. The distributions and ages of refractory objects in the solar nebula. Icarus 208:455–67 [Google Scholar]
  27. Clark BC, Green SF, Economou E, Sandford SA, Zolensky ME. 2004. Release and fragmentation of aggregates to produce heterogeneous, lumpy coma streams. J. Geophys. Res. 109:E12S03 [Google Scholar]
  28. Clark BC, Mason LW, Kissel J. 1987. Systematics of the CHON and other light element particle populations in comet P/Halley. Astron. Astrophys. 187:779–84 [Google Scholar]
  29. Cuzzi JN, Hogan RC, Shariff K. 2008. Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687:1432–47 [Google Scholar]
  30. Dauphas N, Chaussidon M. 2011. A perspective from extinct radionuclides on a young stellar object: the Sun and its accretion disk. Annu. Rev. Earth Planet. Sci. 39:351–86 [Google Scholar]
  31. Davis DR, Farinella P. 1997. Collisional evolution of Edgeworth–Kuiper Belt objects. Icarus 125:50–60 [Google Scholar]
  32. De Gregorio BT, Stroud RM, Nittler LR, Alexander CMO, Kilcoyne ALD, Zega TJ. 2010. Isotopic anomalies in organic nanoglobules from comet 81P/Wild 2: comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation. Geochim. Cosmochim. Acta 74:4454–70 [Google Scholar]
  33. de Val-Borro M, Hartogh P, Crovisier J, Bocklee-Morvan D, Biver N. 2010. Water production in comet 81P/Wild 2 as determined by Herschel/HIFI. Astron. Astrophys. 521:L50 [Google Scholar]
  34. Dello Russo N, Vervack RJ Jr, Kawakita H, Harris WM, Cochran AL. et al. 2012. The volatile composition of 81P/Wild 2 and a chemical comparison to other Jupiter-family comets. AAS Div. Planet. Sci. Meet. Abstr. 44:314 [Google Scholar]
  35. Duncan M, Levison H, Dones L. 2004. Dynamical evolution of ecliptic comets. Comets II M Festou, HU Keller, HA Weaver 193–204 Tucson: Univ. Ariz. Press [Google Scholar]
  36. Duxbury TC, Newburn RL, Brownlee DE. 2004. Comet 81P/Wild 2 size, shape, and orientation. J. Geophys. Res. 109:E12S02 [Google Scholar]
  37. Ebel DS. 2006. Condensation of rocky material in astrophysical environments. Meteorites and the Early Solar System II D Lauretta, HY McSween 253–77 Tucson: Univ. Ariz. Press [Google Scholar]
  38. Ebel DS, Weisberg MK, Beckett JR. 2012. Thermochemical stability of low-iron, manganese-enriched olivine in astrophysical environments. Meteorit. Planet. Sci. 47:585–93 [Google Scholar]
  39. Elsila JE, Glavin DP, Dworkin JP. 2009. Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 44:1323–30 [Google Scholar]
  40. Farnham TL, Schleicher DG. 2005. Physical and compositional studies of Comet 81P/Wild 2 at multiple apparitions. Icarus 173:533–58 [Google Scholar]
  41. Fink U, Hicks MP, Fevig RA. 1999. Production rates for the Stardust mission target: 81P/Wild 2. Icarus 141:331–40 [Google Scholar]
  42. Floss C, Stadermann FJ, Kearsley AT, Burchell MJ, Ong WJ. 2013. The abundance of presolar grains in comet 81P/Wild 2. Astrophys. J. 763:140–51 [Google Scholar]
  43. Flynn GJ, Bleuet P, Borg J, Bradley JP, Brenker FE. et al. 2006. Elemental compositions of comet 81P/Wild 2 samples collected by Stardust. Science 314:1731–35 [Google Scholar]
  44. Frank DR, Westphal AJ, Zolensky ME, Gainsforth Z, Butterworth AL. et al. 2013a. Stardust Interstellar Preliminary Examination II: curating the interstellar dust collector, picokeystones, and sources of impact tracks. Meteorit. Planet. Sci. doi: 10.1111/maps.12147 [Google Scholar]
  45. Frank DR, Zolensky M, Le L. 2012a. Deducing Wild 2 components with a statistical dataset of olivine in chondrite matrix. Meteorit. Planet. Sci. Suppl. 75:5396–98 [Google Scholar]
  46. Frank DR, Zolensky M, Le L. 2012b. Using the Fe/Mn ratio of FeO-rich olivine in Wild 2, chondrite matrix, and type IIA chondrules to disentangle their histories. Lunar Planet. Sci. Conf. Abstr. 43:2748 [Google Scholar]
  47. Frank DR, Zolensky M, Le L. 2013b. Olivine in terminal particles of Stardust aerogel tracks and analogous grains in chondrite matrix. Geochim. Cosmochim. Acta. In press [Google Scholar]
  48. Frank DR, Zolensky ME, Le L, Weisberg MK, Kimura M. 2013c. Highly reduced forsterite and enstatite from Stardust track 61: implications for radial transport of E asteroid material. Lunar Planet. Sci. Conf. Abstr. 44:3082 [Google Scholar]
  49. Gainsforth Z, Butterworth AL, Bonal L, Brownlee DE, Huss GR. et al. 2010. Coordinated TEM/STXM/IMS analysis of a type IIA chondrule fragment from comet 81P/Wild 2 Stardust track C2052274. Meteorit. Planet. Sci. Suppl. 73:5428 [Google Scholar]
  50. Gounelle M. 2012. The asteroid-comet continuum: evidence from extraterrestrial samples. Eur. Planet. Sci. Congr. Abstr. 7:220 [Google Scholar]
  51. Green SF, Economou TE, Sandford SA, Zolensky ME, McBride N. et al. 2004a. Release and fragmentation of aggregates to produce heterogeneous, lumpy coma streams. J. Geophys. Res. 109:E12S03 [Google Scholar]
  52. Green SF, McBride N, Colwell MTSH, McDonnell JAM, Tuzzolino AJ. et al. 2007. Stardust Wild 2 dust measurements. Workshop on Dust in Planetary Systems H Krueger, A Graps 59–61 Houston: LPI [Google Scholar]
  53. Green SF, McDonnell JAM, McBride N, Colwell MTSH, Tuzzolino AJ. et al. 2004b. The dust mass distribution of comet 81P/Wild 2. J. Geophys. Res. 109:E12S04 [Google Scholar]
  54. Greenberg JM, Li A. 1999. Morphological structure and chemical composition of cometary nuclei and dust. Space Sci. Rev. 90:149–61 [Google Scholar]
  55. Hanner MS, Zolensky ME. 2010. The mineralogy of cometary dust. Lect. Notes Phys. 815:203–32 [Google Scholar]
  56. Harker DE, Desch SJ. 2002. Annealing of silicate dust by nebular shocks at 10 AU. Astrophys. J. Lett. 565:L109–12 [Google Scholar]
  57. Hewins RH, Radomsky PM. 1990. Temperature conditions for chondrule formation. Meteorit. Planet. Sci. 25:309–18 [Google Scholar]
  58. Hewins RH, Zanda B, Bourot-Denise M. 2011. The formation of type II chondrules in CM chondrites: the view from Paris. Lunar Planet. Sci. Conf. Abstr. 42:1914 [Google Scholar]
  59. Hoppe P. 2010. Stardust in primitive Solar System materials. Fifth European Summer School on Experimental Nuclear Astrophysics C Spitaleri, C Rolfs, RG Pizzone 84–94 AIP Conf. Ser. 1213 Melville, NY: AIP [Google Scholar]
  60. Horz F, Bastien R, Borg J, Bradley JP, Bridges JC. et al. 2006. Impact features on Stardust: implications for comet 81P/Wild 2 dust. Science 314:1716–19 [Google Scholar]
  61. Hsieh HH, Jewitt D. 2006. A population of comets in the main asteroid belt. Science 312:561–63 [Google Scholar]
  62. Ishii HA, Bradley JP, Dai ZR, Chi M, Kearsley AT. et al. 2008. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets. Science 319:447–50 [Google Scholar]
  63. Jacob D, Stodolna J, Langenhorst F, Houdellier F. 2009. Pyroxenes microstructure in comet 81P/Wild 2 terminal Stardust particles. Meteorit. Planet. Sci. 44:1475–88 [Google Scholar]
  64. Jedwab J. 1971. Magnetite of the Orgueil meteorite as seen under the scanning electron microscope. Icarus 15:319–40 [Google Scholar]
  65. Jewitt D. 2012. The active asteroids. Astron. J. 143:66–80 [Google Scholar]
  66. Jones RH. 1990. Petrology and mineralogy of type II, FeO-rich chondrules in Semarkona (LL3.0): origin by closed-system fractional crystallization, with evidence for supercooling. Geochim. Cosmochim. Acta 54:1785–802 [Google Scholar]
  67. Jones RH. 1992. On the relationship between isolated and chondrule olivine grains in theh carbonaceous chondrite ALHA77307. Geochim. Cosmochim. Acta 56:467–82 [Google Scholar]
  68. Joswiak DJ, Brownlee DE, Matrajt G. 2013. First occurrence of a probable amoeboid olivine aggregate in a “cometary” interplanetary dust particle. Lunar Planet. Sci. Conf. Abstr. 44:2410 [Google Scholar]
  69. Joswiak DJ, Brownlee DE, Matrajt G, Messenger S, Ito M. 2010. Stardust track 130 terminal article: possible Al-rich chondrule fragment or altered amoeboid olivine aggregate. Lunar Planet. Sci. Conf. Abstr. 41:2119 [Google Scholar]
  70. Joswiak DJ, Brownlee DE, Matrajt G, Westphal AJ, Snead CJ. 2009. Kosmochloric Ca-rich pyroxenes and FeO-rich olivines (Kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: possible precursors to FeO-rich type II chondrules in ordinary chondrites. Meteorit. Planet. Sci. 44:1561–88 [Google Scholar]
  71. Joswiak DJ, Brownlee DE, Matrajt G, Westphal AJ, Snead CJ, Gainsforth Z. 2012. Comprehensive examination of large mineral and rock fragments in Stardust tracks: mineralogy, analogous extraterrestrial materials, and source regions. Meteorit. Planet. Sci. 47:471–524 [Google Scholar]
  72. Kearsley AT, Burchell MJ, Price MC, Cole MJ, Wozniakiewicz PJ. et al. 2012. Experimental impact features in Stardust aerogel: how track morphology reflects particle structure, composition, and density. Meteorit. Planet. Sci. 47:737–62 [Google Scholar]
  73. Keller LP, Bajt S, Baratta GA, Borg J, Bradley JP. et al. 2006. Infrared spectroscopy of comet 81P/Wild 2 samples returned by Stardust. Science 314:1728–31 [Google Scholar]
  74. Keller LP, Messenger S. 2011. On the origins of GEMS grains. Geochim. Cosmochim. Acta 75:5336–65 [Google Scholar]
  75. Keller LP, Messenger S. 2012. Formation and processing of amorphous silicates in primitive carbonaceous chondrites and cometary Dust. Lunar Planet. Sci. Conf. Abstr. 43:1880 [Google Scholar]
  76. Keller LP, Messenger S. 2013. On the origins of GEMS grains: a reply. Geochim. Cosmochim. Acta 107:341–44 [Google Scholar]
  77. Kemper F, Vriend WJ, Tielens AGGM. 2005. Erratum: “The absence of crystalline silicates in the diffuse interstellar medium” (ApJ, 609, 826 [2004]). Astrophys. J. 633:534 [Google Scholar]
  78. Kirk RL, Duxbury TC, Horz F, Brownlee DE, Newburn RL. et al. 2005. Topography of the 81/P Wild 2 nucleus derived from Stardust stereo images. Lunar Planet. Sci. Conf. Abstr. 36:2244 [Google Scholar]
  79. Kita NT, Yin Q-Z, MacPherson GJ, Ushikubo T, Jacobsen B. et al. 2013. 26Al-26Mg isotope systematics of the first solids in the early Solar System. Meteorit. Planet. Sci. 48:1383–400 [Google Scholar]
  80. Klock W, Thomas KL, McKay DS, Palme H. 1989. Unusual olivine and pyroxene composition in interplanetary dust and unequilibrated ordinary chondrites. Nature 339:126–28 [Google Scholar]
  81. Knight MM, Schleicher DG. 2010. Dust and gas morphology of comets 81P/Wild 2, 9P/Tempel 1, and 103P/Hartley 2. Bull. Am. Astron. Soc. 42:965 [Google Scholar]
  82. Krot AN, MacPherson GJ, Ulyanov AA, Petaev MI. 2004. Fine-grained, spinel-rich inclusions from the reduced CV chondrites Efremovka and Leoville: I. Mineralogy, petrology, and bulk chemistry. Meteorit. Planet. Sci. 39:1517–53 [Google Scholar]
  83. Krot AN, Makide K, Nagashima K, Huss GR, Ogliore RC. et al. 2012. Heterogeneous distribution of 26Al at the birth of the Solar System: evidence from refractory grains and inclusions. Meteorit. Planet. Sci. 47:1948–79 [Google Scholar]
  84. Leinhardt ZM, Marcus RA, Stewart ST. 2010. The formation of the collisional family around the dwarf planet Haumea. Astrophys. J. 714:1789–99 [Google Scholar]
  85. Leitner J, Heck PR, Hoppe P, Huth J. 2012. The C-, N-, and O-isotopic composition of cometary dust from comet 81P/Wild 2. Lunar Planet. Sci. Conf. Abstr. 43:1839 [Google Scholar]
  86. Leitner J, Hoppe P, Heck PR. 2010. First discovery of presolar material of possible supernova origin in impact residues from comet 81P/Wild 2. Lunar Planet. Sci. Conf. Abstr. 41:1607 [Google Scholar]
  87. Leroux H. 2012. Fine-grained material of 81P/Wild 2 in interaction with the Stardust aerogel. Meteorit. Planet. Sci. 47:613–22 [Google Scholar]
  88. Leroux H, Cuvillier P, Zanda B, Hewins RH. 2013. A TEM investigation of the fine-grained matrix of the Paris CM chondrite. Lunar Planet. Sci. Conf. Abstr. 44:1528 [Google Scholar]
  89. Levison HF, Duncan MJ. 1997. From the Kuiper Belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127:13–32 [Google Scholar]
  90. Levison HF, Morbidelli A, Tsiganis K, Nesvorne D, Gomes R. 2011. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142:152–63 [Google Scholar]
  91. Li A, Greenberg JM. 2003. In dust we trust: an overview of observations and theories of interstellar dust. Solid State Astrochemistry V Pirronello, J Krelowski, G Manicò 37–84 NATO Sci. Ser. 120 Dordrecht, Neth.: Kluwer Acad. [Google Scholar]
  92. Lin Y, Kimura M. 1998. Anorthite-spinel-rich inclusions in the Ningqiang carbonaceous chondrite: genetic links with type A and C inclusions. Meteorit. Planet. Sci. 33:435–46 [Google Scholar]
  93. Lisse CM, Kraemer KE, Nuth JA, Li A, Joswiak D. 2007. Comparison of the composition of the Tempel 1 ejecta to the dust in Comet C/Hale Bopp 1995 O1 and YSO HD 100546. Icarus 187:69–86 [Google Scholar]
  94. Luu JX, Jewitt DC. 2002. Kuiper Belt objects: relics from the accretion disk of the Sun. Annu. Rev. Astron. Astrophys. 40:63–101 [Google Scholar]
  95. Makide K, Nagashima K, Krot AN, Huss GR, Hutcheon ID. et al. 2013. Heterogeneous distribution of 26Al at the birth of the Solar System: evidence from corundum-bearing refractory inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta 110:190–215 [Google Scholar]
  96. Malhotra R. 1993. The origin of Pluto's peculiar orbit. Nature 365:819–21 [Google Scholar]
  97. Marty B, Palma RL, Pepin RO, Zimmermann L, Schlutter DJ. et al. 2008. Helium and neon abundances and compositions in cometary matter. Science 319:75–78 [Google Scholar]
  98. Matrajt G, Flynn G, Brownlee D, Joswiak D, Bajt S. 2013a. The origin of the 3.4 μm feature in Wild 2 cometary particles and in ultracarbonaceous interplanetary dust particles. Astrophys. J. 765:145 [Google Scholar]
  99. Matrajt G, Messenger S, Brownlee DE, Joswiak D. 2012. Diverse forms of primordial organic matter identified in interplanetary dust particles. Meteorit. Planet. Sci. 47:525–49 [Google Scholar]
  100. Matrajt G, Messenger S, Ito M, Wirick S, Flynn G. et al. 2010. TEM, XANES and NanoSIMS characterization of carbonaceous phases from individual Stardust and IDP particles. Lunar Planet. Sci. Conf. Abstr. 41:1564 [Google Scholar]
  101. Matrajt G, Messenger S, Joswiak DJ, Brownlee DE. 2013b. Textures and isotopic compositions of carbonaceous materials in A and B-type Stardust tracks: track 130 (Bidi), track 141 (Coki) and track 80 (Tule). Geochim. Cosmochim. Acta. 117:65–79 [Google Scholar]
  102. Matzel J, Ishii HA, Joswiak D, Hutcheon I, Bradley J. et al. 2009. Mg isotope measurements of a Stardust CAI: no evidence of 26Al. Meteorit. Planet. Sci. Suppl. 72:5373 [Google Scholar]
  103. McKeegan KD, Aleon J, Bradley J, Brownlee D, Busemann H. et al. 2006. Isotopic compositions of cometary matter returned by Stardust. Science 314:1724–28 [Google Scholar]
  104. McKeegan KD, Kallio APA, Heber VS, Jarzebinski G, Mao PH. et al. 2011. The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332:1528–32 [Google Scholar]
  105. Messenger S, Joswiak D, Ito M, Matrajt G, Brownlee DE. 2009. Discovery of presolar SiC from comet Wild-2. Lunar Planet. Sci. Conf. Abstr. 40:1790 [Google Scholar]
  106. Nakamura T, Noguchi T, Tanaka M, Zolensky ME, Kimura M. et al. 2011. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333:1113–16 [Google Scholar]
  107. Nakamura T, Noguchi T, Tsuchiyama A, Ushikubo T, Kita NT. et al. 2008a. Chondrule-like objects in short-period comet 81P/Wild 2. Science 321:1664–67 [Google Scholar]
  108. Nakamura T, Noguchi T, Tsuchiyama A, Ushikubo T, Kita NT. et al. 2008b. Mineralogy, three dimensional structure, and oxygen isotope ratios of four crystalline particles from comet 81P/Wild 2. Lunar Planet. Sci. Conf. Abstr. 39:1695 [Google Scholar]
  109. Nakamura T, Noguchi T, Tsuchiyama A, Ushikubo T, Kita N. et al. 2009. Additional evidence for the presence of chondrules in comet 81P/Wild 2. Meteorit. Planet. Sci. Suppl. 72:5304 [Google Scholar]
  110. Nakamura-Messenger K, Keller LP, Clemett SJ, Messenger S, Ito M. 2011. Nanometer-scale anatomy of entire Stardust tracks. Meteorit. Planet. Sci. 46:1033–51 [Google Scholar]
  111. Nakashima D, Ushikubo T, Joswiak DJ, Brownlee DE, Matrajt G. et al. 2012. Oxygen isotopes in crystalline silicates of comet Wild 2: a comparison of oxygen isotope systematics between Wild 2 particles and chondritic materials. Earth Planet. Sci. Lett. 357:355–65 [Google Scholar]
  112. Nakashima D, Ushikubo T, Zolensky ME, Weisberg MK, Joswiak DJ. et al. 2011. High precision oxygen three isotope analysis of Wild-2 particles and anhydrous chondritic interplanetary dust particles. Lunar Planet. Sci. Conf. Abstr. 42:1240 [Google Scholar]
  113. Nayakshin S, Cha SH, Bridges JC. 2011. The tidal downsizing hypothesis for planet formation and the composition of Solar System comets. MNRAS Lett. 416:L50–54 [Google Scholar]
  114. Nesvorny D, Jenniskens P, Levison HF, Bottke WF, Vokrouhlický D, Gounelle M. 2010. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713:816–36 [Google Scholar]
  115. Niimi R, Kadono T, Arakawa M, Yasui M, Dohi K. et al. 2011. In situ observation of penetration process in silica aerogel: deceleration mechanism of hard spherical projectiles. Icarus 211:986–92 [Google Scholar]
  116. Noguchi T, Nakamura T, Okudaira K, Yano H, Sugita S, Burchell MJ. 2007. Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust. Meteorit. Planet. Sci. 42:357–72 [Google Scholar]
  117. Ogliore RC, Huss GR, Nagashima K, Butterworth AL, Gainsforth Z. et al. 2012. Incorporation of a late-forming chondrule into comet Wild 2. Astrophys. J. Lett. 745:L19 [Google Scholar]
  118. Poteet CA, Megeath ST, Watson DM, Calvet N, Remming IS. 2011. A Spitzer infrared spectrograph detection of crystalline silicates in a protostellar envelope. Astrophys. J. Lett. 733:L32 [Google Scholar]
  119. Price MC, Kearsley AT, Burchell MJ, Horz F, Borg J. et al. 2010. Comet 81P/Wild 2: the size distribution of finer (sub–10 μm) dust collected by the Stardust spacecraft. Meteorit. Planet. Sci. 45:1409–28 [Google Scholar]
  120. Rietmeijer FJM. 1999. Interplanetary dust particles. Planetary Materials JJ Papike 2–12-96 Rev. Mineral. 36 Chantilly, VA: Mineral . Soc. Am. [Google Scholar]
  121. Sandford SA, Aleon J, Alexander CMO, Araki T. et al. 2006. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science 314:1720–24 [Google Scholar]
  122. Sandford SA, Bajt S, Clemett SJ, Cody GD, Cooper G. et al. 2010. Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2. Meteorit. Planet. Sci. 45:406–33 [Google Scholar]
  123. Schmitz S, Brenker FE. 2011. Relict structure of a hydrous mineral identified in Wild 2 dust. Meteorit. Planet. Sci. Suppl. 74:5316–17 [Google Scholar]
  124. Schmitz S, Brenker FE, Schoonjans T, Vekemans B, Silversmit G. et al. 2009. In situ identification of a CAI candidate in 81P/Wild 2 cometary dust by confocal high resolution synchrotron X-ray fluorescence. Geochim. Cosmochim. Acta 73:5483–92 [Google Scholar]
  125. Scott ERD, Krot AN. 2005. Chondritic meteorites and the high-temperature nebular origins of their components. Chondrites and the Protoplanetary Disk AN Krot, ERD Scott, B Reipurth 15–53 Astron. Soc. Pac. Conf. Ser. 341 Orem, UT: Astron . Soc. Pac. [Google Scholar]
  126. Sekanina Z. 2009. Crystallization of gas-laden amorphous water ice, activated by heat transport to its subsurface reservoirs, as trigger of huge explosions of comet 17P/Holmes. Int. Comet Q. 31:99–124 [Google Scholar]
  127. Sekanina Z, Brownlee DE, Economou TE, Tuzzolino AJ, Green SF. 2004. Modeling the nucleus and jets of comet 81P/Wild 2 based on the Stardust encounter data. Science 304:1769–74 [Google Scholar]
  128. Sekanina Z, Chodas PW. 2007. Fragmentation hierarchy of bright sungrazing comets and the birth and orbital evolution of the Kreutz system. II. The case for cascading fragmentation. Astrophys. J. 663:657–76 [Google Scholar]
  129. Shu FH, Shang H, Gounelle M, Glassgold AE, Lee T. 2001. The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J. 548:1029–50 [Google Scholar]
  130. Simon SB, Joswiak DJ, Ishii HA, Bradley JP, Chi M. et al. 2008. A refractory inclusion returned by Stardust from comet 81P/Wild 2. Meteorit. Planet. Sci. 43:1861–77 [Google Scholar]
  131. Stadermann FJ, Floss C, Kearsley AT, Burchell MJ. 2009. Why are there so few presolar grains in samples from comet Wild 2?. Geochim. Cosmochim. Acta Suppl. 73:1262 [Google Scholar]
  132. Stephan T, Rost D, Vicenzi EP, Bullock ES. 2008. TOF-SIMS analysis of cometary matter in Stardust aerogel tracks. Meteorit. Planet. Sci. 43:233–46 [Google Scholar]
  133. Stodolna J, Jacob D, Leroux H. 2012. Mineralogy and petrology of Stardust particles encased in the bulb of track 80: TEM investigation of the Wild 2 fine-grained material. Geochim. Cosmochim. Acta 87:3550 [Google Scholar]
  134. Sykes MV, Walker RG. 1992. Cometary dust trails. I: Survey. Icarus 95:180–210 [Google Scholar]
  135. Thomas KL, Blanford GE, Keller LP, Klock W, McKay DS. 1993. Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim. Cosmochim. Acta 57:1551–66 [Google Scholar]
  136. Thomas N. 2009. The nuclei of Jupiter family comets: a critical review of our present knowledge. Planet. Space Sci. 57:1106–17 [Google Scholar]
  137. Trigo-Rodriguez JM, Dominguez G, Burchell MJ, Horz F, Llorca J. 2008. Bulbous tracks arising from hypervelocity capture in aerogel. Meteorit. Planet. Sci. 43:75–86 [Google Scholar]
  138. Tsiganis K, Gomes R, Morbidelli A, Levison HF. 2005. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435:459–61 [Google Scholar]
  139. Tsou P, Brownlee DE, Anderson JD, Bhaskaran S, Cheuvront AR. et al. 2004. Stardust encounters comet 81P/Wild 2. J. Geophys. Res. 109:E12S01 [Google Scholar]
  140. Tuzzolino AJ, Economou TE, Clark BC, Tsou P, Brownlee DE. et al. 2004. Dust measurements in the coma of comet 81P/Wild 2 by the Dust Flux Monitor Instrument. Science 304:1776–80 [Google Scholar]
  141. Ushikubo T, Nakashima D, Kimura M, Tenner TJ, Kita NT. 2013. Contemporaneous formation of chondrules in distinct oxygen isotope reservoirs. Geochim. Cosmochim. Acta 109:280–95 [Google Scholar]
  142. Westphal AJ, Stroud R, Bechtel HA, Brenker FE, Butterworth AL. et al. 2013. Stardust Interstellar Preliminary Examination I: identification of tracks in aerogel. Meteorit. Planet. Sci. doi: 10.1111/maps.12147 [Google Scholar]
  143. Walsh KJ, Morbidelli A, Raymond SN, O'Brien DP, Mandell AM. 2011. A low mass for Mars from Jupiter's early gas-driven migration. Nature 475:206–9 [Google Scholar]
  144. Wooden DH. 2008. Cometary refractory grains: interstellar and nebular sources. Space Sci. Rev. 138:75–108 [Google Scholar]
  145. Wooden DH, Desch S, Harker D, Gail H-P, Keller L. 2007. Comet grains and implications for heating and radial mixing in the protoplanetary disk. Protostars and Planets V B Reipurth, D Jewitt, K Keil 815–33 Tucson: Univ. Ariz. Press [Google Scholar]
  146. Wopenka B. 2012. Raman spectroscopic investigation of two grains from comet 81P/Wild 2: information that can be obtained beyond the presence of sp2-bonded carbon. Meteorit. Planet. Sci. 47:565–84 [Google Scholar]
  147. Wozniakiewicz PJ, Kearsley AT, Ishii HA, Burchell MJ, Bradley JP. et al. 2012. The origin of crystalline residues in Stardust Al foils: surviving cometary dust or crystallized impact melts?. Meteorit. Planet. Sci. 47:660–70 [Google Scholar]
  148. Young ED, Russell SS. 1998. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282:452–55 [Google Scholar]
  149. Zolensky M, Nakamura K, Weisberg MK, Prinz M, Nakamura T. et al. 2003. A primitive dark inclusion with radiation-damaged silicates in the Ningqiang carbonaceous chondrite. Meteorit. Planet. Sci. 38:305–22 [Google Scholar]
  150. Zolensky M, Nakamura-Messenger K, Rietmeijer F, Leroux H, Mikouchi T, Ohsumi K. 2008. Comparing Wild 2 particles to chondrites and IDPs. Meteorit. Planet. Sci. 43:261–72 [Google Scholar]
  151. Zolensky ME, Zega TJ, Yano H, Wirick S, Westphal AJ. et al. 2006. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314:1735–39 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error