1932

Abstract

Earth's terrestrial topography evolves in response to the interaction of tectonics, climate, and lithology. Recent discoveries suggest that the grain size of sediments produced on hillslopes and transported through river networks is key to understanding these interactions. Hillslope grain size varies systematically with erosion rate and residence time, the degree of chemical and physical weathering, and the fracture density and susceptibility to weathering of rock. Variations in initial grain size strongly influence the spatial evolution of grain size distributions as particles mix and wear during downstream transport through channel networks. In rivers, the size and flux of the coarse fraction of the sediment load control the rate of incision into bedrock and thus govern channel slope and ultimately the relief of actively eroding landscapes. These relationships suggest that a primary way that tectonics, climate, and lithology influence landscape evolution is through their controls on sediment grain size.

  • ▪  Recent research reveals the central role of sediment grain size in controlling bedrock river morphodynamics, linking grain size to channel slope and topographic relief.
  • ▪  Tectonics, climate, and lithology govern the size of sediments produced on hillslopes; hence, grain size mediates their influence on landscape evolution.
  • ▪  Feedbacks linking sediment grain size, topography, weathering, erosion, and sediment transport provide new opportunities for advances in Earth surface science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-052623-075856
2024-07-23
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-052623-075856.html?itemId=/content/journals/10.1146/annurev-earth-052623-075856&mimeType=html&fmt=ahah

Literature Cited

  1. Allen PA, Armitage JJ, Whittaker AC, Michael NA, Roda-Boluda D, D'Arcy M. 2015.. Fragmentation model of the grain size mix of sediment supplied to basins. . J. Geol. 123:(5):40527
    [Crossref] [Google Scholar]
  2. Almond P, Roering J, Hales TC. 2007.. Using soil residence time to delineate spatial and temporal patterns of transient landscape response. . J. Geophys. Res. 112:(F3):F03S17
    [Crossref] [Google Scholar]
  3. Anders AM, Roe GH, Durran DR. 2004.. Orographic precipitation and the form of mountain ranges. . Bull. Am. Meteorol. Soc. 85:(4):49899
    [Google Scholar]
  4. Arabnia O, Sklar LS. 2016.. Experimental study of particle size reduction in geophysical granular flows. . Int. J. Eros. Control Eng. 9:(3):12229
    [Crossref] [Google Scholar]
  5. Attal M, Lavé J. 2006.. Changes of bedload characteristics along the Marsyandi River (central Nepal): implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts. . Geol. Soc. Am. Spec. Pap. 398::14371
    [Google Scholar]
  6. Attal M, Lavé J. 2009.. Pebble abrasion during fluvial transport: experimental results and implications for the evolution of the sediment load along rivers. . J. Geophys. Res. 114:(F4):F04023
    [Crossref] [Google Scholar]
  7. Attal M, Mudd SM, Hurst MD, Weinman B, Yoo K, Naylor M. 2015.. Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (Sierra Nevada, California). . Earth Surf. Dyn. 3:(1):20122
    [Crossref] [Google Scholar]
  8. Auel C, Albayrak I, Sumi T, Boes RM. 2017a.. Sediment transport in high-speed flows over a fixed bed: 1. Particle dynamics. . Earth Surf. Proc. Landf. 42:(9):136583
    [Crossref] [Google Scholar]
  9. Auel C, Albayrak I, Sumi T, Boes RM. 2017b.. Sediment transport in high-speed flows over a fixed bed: 2. Particle impacts and abrasion prediction. . Earth Surf. Proc. Landf. 42:(9):138496
    [Crossref] [Google Scholar]
  10. Baynes ER, Lague D, Steer P, Bonnet S, Illien L. 2020.. Sediment flux-driven channel geometry adjustment of bedrock and mixed gravel–bedrock rivers. . Earth Surf. Proc. Landf. 45:(14):371431
    [Crossref] [Google Scholar]
  11. Beaud F, Flowers GE, Venditti JG. 2016.. Efficacy of bedrock erosion by subglacial water flow. . Earth Surf. Dyn. 4::12545
    [Crossref] [Google Scholar]
  12. Beer AR, Turowski JM, Kirchner JW. 2017.. Spatial patterns of erosion in a bedrock gorge. . J. Geophys. Res. Earth Surf. 122:(1):191214
    [Crossref] [Google Scholar]
  13. Beer AR, Lamb MP. 2021.. Abrasion regimes in fluvial bedrock incision. . Geology 49:(6):682
    [Crossref] [Google Scholar]
  14. Benjaram SS, Dixon JL, Wilcox AC. 2022.. Capturing the complexity of soil evolution: heterogeneities in rock cover and chemical weathering in Montana's Rocky Mountains. . Geomorphology 404::108186
    [Crossref] [Google Scholar]
  15. Blom A, Viparelli E, Chavarrías V. 2016.. The graded alluvial river: profile concavity and downstream fining. . Geophys. Res. Lett. 43:(12):628593
    [Crossref] [Google Scholar]
  16. Blom A, Arkesteijn L, Chavarrías V, Viparelli E. 2017a.. The equilibrium alluvial river under variable flow and its channel-forming discharge. . J. Geophys. Res. Earth Surf. 122:(10):192448
    [Crossref] [Google Scholar]
  17. Blom A, Chavarrías V, Ferguson RI, Viparelli E. 2017b.. Advance, retreat, and halt of abrupt gravel-sand transitions in alluvial rivers. . Geophys. Res. Lett. 44:(19):975160
    [Crossref] [Google Scholar]
  18. Bodek S, Jerolmack DJ. 2021.. Breaking down chipping and fragmentation in sediment transport: the control of material strength. . Earth Surf. Dyn. 9:(6):153143
    [Crossref] [Google Scholar]
  19. Brantley SL, Eissenstat DM, Marshall JA, Godsey SE, Balogh-Brunstad Z, et al. 2017.. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. . Biogeosciences 14:(22):511542
    [Crossref] [Google Scholar]
  20. Brocard GY, Willenbring JK, Miller TE, Scatena FN. 2016.. Relict landscape resistance to dissection by upstream migrating knickpoints. . J. Geophys. Res. Earth Surf. 121:(6):1182203
    [Crossref] [Google Scholar]
  21. Burr DM, Emery JP, Lorenz RD, Collins GC, Carling PA. 2006.. Sediment transport by liquid surficial flow: application to Titan. . Icarus 181:(1):23542
    [Crossref] [Google Scholar]
  22. Burr DM, Perron JT, Lamb MP, Irwin RP III, Collins GC, et al. 2013.. Fluvial features on Titan: insights from morphology and modeling. . Geol. Soc. Am. Bull. 125:(3–4):299321
    [Crossref] [Google Scholar]
  23. Buss HL, Sak PB, Webb SM, Brantley SL. 2008.. Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: coupling oxidation, dissolution, and fracturing. . Geochim. Cosmochim. Acta 72:(18):4488507
    [Crossref] [Google Scholar]
  24. Callahan RP, Ferrier KL, Dixon J, Dosseto A, Hahm WJ, et al. 2019.. Arrested development: erosional equilibrium in the southern Sierra Nevada, California, maintained by feedbacks between channel incision and hillslope sediment production. . Geol. Soc. Am. Bull. 131:(7–8):1179202
    [Crossref] [Google Scholar]
  25. Carling PA, Perillo M, Best J, Garcia MH. 2017.. The bubble bursts for cavitation in natural rivers: Laboratory experiments reveal minor role in bedrock erosion. . Earth Surf. Proc. Landf. 42:(9):130816
    [Crossref] [Google Scholar]
  26. Carr JC, DiBiase RA, Yeh EC, Fisher DM, Kirby E. 2023.. Rock properties and sediment caliber govern bedrock river morphology across the Taiwan Central Range. . Sci. Adv. 9:(46):eadg6794
    [Crossref] [Google Scholar]
  27. Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG, et al. 2003.. The impact of climate on the biogeochemical functioning of volcanic soils. . Chem. Geol. 202:(3–4):195223
    [Crossref] [Google Scholar]
  28. Chatanantavet P, Parker G. 2009.. Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion. . J. Geophys. Res. 114:(F4):F04018
    [Crossref] [Google Scholar]
  29. Chatanantavet P, Whipple KX, Adams MA, Lamb MP. 2013.. Experimental study on coarse grain saltation dynamics in bedrock channels. . J. Geophys. Res. Earth Surf. 118:(2):116176
    [Crossref] [Google Scholar]
  30. Church M. 2006.. Bed material transport and the morphology of alluvial river channels. . Annu. Rev. Earth Planet. Sci. 34::32554
    [Crossref] [Google Scholar]
  31. Collins GC. 2005.. Relative rates of fluvial bedrock incision on Titan and Earth. . Geophys. Res. Lett. 32:(22):L22202
    [Crossref] [Google Scholar]
  32. Cook KL, Turowski JM, Hovius N. 2013.. A demonstration of the importance of bedload transport for fluvial bedrock erosion and knickpoint propagation. . Earth Surf. Proc. Landf. 38:(7):68395
    [Crossref] [Google Scholar]
  33. Cook KL, Turowski JM, Hovius N. 2014.. River gorge eradication by downstream sweep erosion. . Nat. Geosci. 7:(9):68286
    [Crossref] [Google Scholar]
  34. Cook KL, Ermann C, Gimbert F, Adhikari BR, Hovius N. 2018.. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. . Science 362:(6410):5357
    [Crossref] [Google Scholar]
  35. Crosby BT, Whipple KX, Gasparini NM, Wobus CW. 2007.. Formation of fluvial hanging valleys: theory and simulation. . J. Geophys. Res. 112:(F3):F03S10
    [Crossref] [Google Scholar]
  36. D'Arcy M, Roda-Boluda DC, Whittaker AC. 2017.. Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California. . Quat. Sci. Rev. 169::288311
    [Crossref] [Google Scholar]
  37. Demiral D, Albayrak I, Turowski JM, Boes RM. 2022.. Particle saltation trajectories in supercritical open channel flows: roughness effect. . Earth Surf. Proc. Landf. 47:(15):3588610
    [Crossref] [Google Scholar]
  38. DiBiase RA, Rossi MW, Neely AB. 2018.. Fracture density and grain size controls on the relief structure of bedrock landscapes. . Geology 46:(5):399402
    [Crossref] [Google Scholar]
  39. Dietrich WE, Bellugi D, Sklar LS, Stock JD, Heimsath AM, Roering JJ. 2003.. Geomorphic transport laws for predicting landscape form and dynamics. . In Prediction in Geomorphology, Vol. 135, ed. P Wilcock, R Iverson , pp. 10332. Washington, DC:: Am. Geophys. Union
    [Google Scholar]
  40. Dingle EH, Attal M, Sinclair HD. 2017.. Abrasion-set limits on Himalayan gravel flux. . Nature 544:(7651):47174
    [Crossref] [Google Scholar]
  41. Dingle EH, Kusack KM, Venditti JG. 2021.. The gravel-sand transition and grain size gap in river bed sediments. . Earth-Sci. Rev. 222::103838
    [Crossref] [Google Scholar]
  42. Domokos G, Jerolmack DJ, Sipos , Török Á. 2014.. How river rocks round: resolving the shape-size paradox. . PLOS ONE 9:(2):e88657
    [Crossref] [Google Scholar]
  43. Egholm DL, Knudsen MF, Sandiford M. 2013.. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. . Nature 498:(7455):47578
    [Crossref] [Google Scholar]
  44. Eppes MC, Magi B, Hallet B, Delmelle E, Mackenzie-Helnwein P, et al. 2016.. Deciphering the role of solar-induced thermal stresses in rock weathering. . Geol. Soc. Am. Bull. 128:(9–10):131538
    [Crossref] [Google Scholar]
  45. Eppes MC, Keanini R. 2017.. Mechanical weathering and rock erosion by climate-dependent subcritical cracking. . Rev. Geophys. 55:(2):470508
    [Crossref] [Google Scholar]
  46. Eppes MC, Magi B, Scheff J, Warren K, Ching S, Feng T. 2020.. Warmer, wetter climates accelerate mechanical weathering in field data, independent of stress-loading. . Geophys. Res. Lett. 47:(24):2020GL089062
    [Crossref] [Google Scholar]
  47. Ferguson R, Hoey T, Wathen S, Werritty A. 1996.. Field evidence for rapid downstream fining of river gravels through selective transport. . Geology 24:(2):17982
    [Crossref] [Google Scholar]
  48. Fernández R, Parker G, Stark CP. 2019.. Experiments on patterns of alluvial cover and bedrock erosion in a meandering channel. . Earth Surf. Dyn. 7:(4):94968
    [Crossref] [Google Scholar]
  49. Ferrer-Boix C, Scorpio V, Martín-Vide JP, Núñez-González F, Mora D. 2023.. Massive incision and outcropping of bedrock in a former braided river attributed to mining and training. . Geomorphology 436::108774
    [Crossref] [Google Scholar]
  50. Ferrier KL, Kirchner JW, Riebe CS, Finkel RC. 2010.. Mineral-specific chemical weathering rates over millennial timescales: measurements at Rio Icacos, Puerto Rico. . Chem. Geol. 277:(1–2):10114
    [Crossref] [Google Scholar]
  51. Ferrier KL, Riebe CS, Hahm WJ. 2016.. Testing for supply-limited and kinetic-limited chemical erosion in field measurements of regolith production and chemical depletion. . Geochem. Geophys. Geosyst. 17:(6):227085
    [Crossref] [Google Scholar]
  52. Finnegan NJ, Klier RA, Johnstone S, Pfeiffer AM, Johnson K. 2017.. Field evidence for the control of grain size and sediment supply on steady-state bedrock river channel slopes in a tectonically active setting. . Earth Surf. Proc. Landf. 42:(14):233849
    [Crossref] [Google Scholar]
  53. Finnegan NJ, Sklar LS, Fuller TK. 2007.. Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel. . J. Geophys. Res. 112:(F3):F03S11
    [Crossref] [Google Scholar]
  54. Fletcher RC, Buss HL, Brantley SL. 2006.. A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation. . Earth Planet. Sci. Lett. 244::44457
    [Crossref] [Google Scholar]
  55. Fox M, Hoseason T, Bernard T, Sinclair H, Smith AGG. 2023.. Bedload-bedrock contrasts form enigmatic low-relief surfaces of the Pyrenees. . Geophys. Res. Lett. 50:(6):e2022GL101995
    [Crossref] [Google Scholar]
  56. Fuller TK, Perg LA, Willenbring JK, Lepper K. 2009.. Field evidence for climate-driven changes in sediment supply leading to strath terrace formation. . Geology 37:(5):46770
    [Crossref] [Google Scholar]
  57. Fuller TK, Gran KB, Sklar LS, Paola C. 2016.. Lateral erosion in an experimental bedrock channel: the influence of bed roughness on erosion by bed load impacts. . J. Geophys. Res. Earth Surf. 121:(5):1084105
    [Crossref] [Google Scholar]
  58. Furbish DJ, Roering JJ, Almond P, Doane TH. 2018.. Soil particle transport and mixing near a hillslope crest: 1. Particle ages and residence times. . J. Geophys. Res. Earth Surf. 123:(5):105277
    [Crossref] [Google Scholar]
  59. Gasparini NM, Tucker GE, Bras RL. 1999.. Downstream fining through selective particle sorting in an equilibrium drainage network. . Geology 27:(12):107982
    [Crossref] [Google Scholar]
  60. Gasparini NM, Tucker GE, Bras RL. 2004.. Network-scale dynamics of grain-size sorting: implications for downstream fining, stream-profile concavity, and drainage basin morphology. Earth Surf. . Proc. Landf. 29:(4):40121
    [Crossref] [Google Scholar]
  61. Gilbert GK. 1877.. Report on the Geology of the Henry Mountains. Washington, DC:: US Gov. Print. Off.
    [Google Scholar]
  62. Glade RC, Erson RS, Tucker GE. 2017.. Block-controlled hillslope form and persistence of topography in rocky landscapes. . Geology 45:(4):31114
    [Crossref] [Google Scholar]
  63. Glade RC, Anderson RS. 2018.. Quasi-steady evolution of hillslopes in layered landscapes: an analytic approach. . J. Geophys. Res. Earth Surf. 123:(1):2645
    [Crossref] [Google Scholar]
  64. Goode JK, Burbank DW. 2009.. Numerical study of degradation of fluvial hanging valleys due to climate change. . J. Geophys. Res. 114:(F1):F01017
    [Crossref] [Google Scholar]
  65. Goode JR, Wohl E. 2010.. Coarse sediment transport in a bedrock channel with complex bed topography. . Water Resour. Res. 46:(11):W11532
    [Crossref] [Google Scholar]
  66. Goodfellow BW, Hilley GE, Webb SM, Sklar LS, Moon S, Olson CA. 2016.. The chemical, mechanical, and hydrological evolution of weathering granitoid. . J. Geophys. Res. Earth Surf. 121:(8):141035
    [Crossref] [Google Scholar]
  67. Granger DE, Riebe CS, Kirchner JW, Finkel RC. 2001.. Modulation of erosion on steep granitic slopes by boulder armoring, as revealed by cosmogenic 26Al and 10Be. . Earth Planet. Sci. Lett. 186:(2):26981
    [Crossref] [Google Scholar]
  68. Hajek EA, Straub KM. 2017.. Autogenic sedimentation in clastic stratigraphy. . Annu. Rev. Earth Planet. Sci. 45::681709
    [Crossref] [Google Scholar]
  69. Heller PL, Beland PE, Humphrey NF, Konrad SK, Lynds RM, et al. 2001.. Paradox of downstream fining and weathering-rind formation in the lower Hoh River, Olympic Peninsula, Washington. . Geology 29:(11):97174
    [Crossref] [Google Scholar]
  70. Hilley GE, Strecker MR. 2004.. Steady state erosion of critical Coulomb wedges with applications to Taiwan and the Himalaya. . J. Geophys. Res. 109:(B1):B01411
    [Google Scholar]
  71. Hodge RA, Hoey TB, Sklar LS. 2011.. Bed load transport in bedrock rivers: the role of sediment cover in grain entrainment, translation, and deposition. . J. Geophys. Res. 116:(F4):F04028
    [Crossref] [Google Scholar]
  72. Howard AD. 1980.. Thresholds in river regime. . In The Concept of Geomorphic Thresholds, ed. D Coates, J Vitek , pp. 22758. London:: Routledge
    [Google Scholar]
  73. Howard AD, Kerby G. 1983.. Channel changes in badlands. . Geol. Soc. Am. Bull. 94:(6):73952
    [Crossref] [Google Scholar]
  74. Hsu L, Dietrich WE, Sklar LS. 2014.. Mean and fluctuating basal forces generated by granular flows: laboratory observations in a large vertically rotating drum. . J. Geophys. Res. Earth Surf. 119:(6):1283309
    [Crossref] [Google Scholar]
  75. Huda SA, Small EE. 2014.. Modeling the effects of bed topography on fluvial bedrock erosion by saltating bed load. . J. Geophys. Res. Earth Surf. 119:(6):122239
    [Crossref] [Google Scholar]
  76. Inoue T, Izumi N, Shimizu Y, Parker G. 2014.. Interaction among alluvial cover, bed roughness, and incision rate in purely bedrock and alluvial-bedrock channel. . J. Geophys. Res. Earth Surf. 119:(10):212346
    [Crossref] [Google Scholar]
  77. Jansen JD, Fabel D, Bishop P, Xu S, Schnabel C, Codilean AT. 2011.. Does decreasing paraglacial sediment supply slow knickpoint retreat?. Geology 39:(6):54346
    [Crossref] [Google Scholar]
  78. Johnson JP. 2014.. A surface roughness model for predicting alluvial cover and bed load transport rate in bedrock channels. . J. Geophys. Res. Earth Surf. 119:(10):214773
    [Crossref] [Google Scholar]
  79. Johnson JP, Whipple KX, Sklar LS, Hanks TC. 2009.. Transport slopes, sediment cover, and bedrock channel incision in the Henry Mountains, Utah. . J. Geophys. Res. 114:(F2):F02014
    [Crossref] [Google Scholar]
  80. Johnson JP, Whipple KX, Sklar LS. 2010.. Contrasting bedrock incision rates from snowmelt and flash floods in the Henry Mountains, Utah. . Geol. Soc. Am. Bull. 122:(9/10):160015
    [Crossref] [Google Scholar]
  81. Johnson KN, Finnegan NJ. 2015.. A lithologic control on active meandering in bedrock channels. . Geol. Soc. Am. Bull. 127:(11–12):176676
    [Crossref] [Google Scholar]
  82. Kodama Y. 1994.. Downstream changes in the lithology and grain size of fluvial gravels, the Watarase River, Japan; evidence of the role of abrasion in downstream fining. . J. Sediment. Res. 64:(1a):6875
    [Crossref] [Google Scholar]
  83. Koons PO, Zeitler PK, Chamberlain CP, Craw D, Meltzer AS. 2002.. Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya. . Am. J. Sci. 302::74973
    [Crossref] [Google Scholar]
  84. Lague D. 2014.. The stream power river incision model: evidence, theory and beyond. . Earth Surf. Proc. Landf. 39:(1):3861
    [Crossref] [Google Scholar]
  85. Lai LSH, Roering JJ, Finnegan NJ, Dorsey RJ, Yen JY. 2021.. Coarse sediment supply sets the slope of bedrock channels in rapidly uplifting terrain: field and topographic evidence from eastern Taiwan. . Earth Surf. Proc. Landf. 46:(13):267189
    [Crossref] [Google Scholar]
  86. Lamb MP, Dietrich WE, Sklar LS. 2008.. A model for fluvial bedrock incision by impacting suspended and bed load sediment. . J. Geophys. Res. 113:(F3):F03025
    [Crossref] [Google Scholar]
  87. Lamb MP, Finnegan NJ, Scheingross JS, Sklar LS. 2015.. New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory. . Geomorphology 244::3355
    [Crossref] [Google Scholar]
  88. Lamb MP, Venditti JG. 2016.. The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout. . Geophys. Res. Lett. 43:(8):377785
    [Crossref] [Google Scholar]
  89. Lane EW. 1937.. Stable channels in erodible material. . Trans. Am. Soc. Civil Eng. 102:(1):12342
    [Crossref] [Google Scholar]
  90. Langston AL, Robertson CH. 2023.. Wide bedrock valley development and sensitivity to environmental perturbations: insights from flume experiments in erodible bedrock. . Earth Surf. Proc. Landf. 48:(15):304158
    [Crossref] [Google Scholar]
  91. Lapôtre MG, Malaska MJ, Cable ML. 2022.. The role of seasonal sediment transport and sintering in shaping Titan's landscapes: a hypothesis. . Geophys. Res. Lett. 49:(8):e2021GL097605
    [Crossref] [Google Scholar]
  92. Larimer JE, Yager EM, Yanites BJ, Witsil AJ. 2021.. Flume experiments on the erosive energy of bed load impacts on rough and planar beds. . J. Geophys. Res. Earth Surf. 126:(4):e2020JF005834
    [Crossref] [Google Scholar]
  93. Larsen IJ, Lamb MP. 2016.. Progressive incision of the Channeled Scablands by outburst floods. . Nature 538:(7624):22932
    [Crossref] [Google Scholar]
  94. Lavarini C, Attal M, da Costa Filho CA, Kirstein LA. 2018.. Does pebble abrasion influence detrital age population statistics? A numerical investigation of natural data sets. . J. Geophys. Res. Earth Surf. 123:(10):2577601
    [Crossref] [Google Scholar]
  95. Le Bouteiller C, Naaim-Bouvet F, Mathys N, Lavé J. 2011.. A new framework for modeling sediment fining during transport with fragmentation and abrasion. . J. Geophys. Res. 116:(F3):F03002
    [Crossref] [Google Scholar]
  96. Lebedeva MI, Brantley SL. 2017.. Weathering and erosion of fractured bedrock systems. . Earth Surf. Proc. Landf. 42:(13):2090108
    [Crossref] [Google Scholar]
  97. Leith K, Moore JR, Amann F, Loew S. 2014.. In situ stress control on microcrack generation and macroscopic extensional fracture in exhuming bedrock. . J. Geophys. Res. Solid Earth 119::594615
    [Crossref] [Google Scholar]
  98. Li T, Fuller TK, Sklar LS, Gran KB, Venditti JG. 2020.. A mechanistic model for lateral erosion of bedrock channel banks by bedload particle impacts. . J. Geophys. Res. Earth Surf. 125:(6):e2019JF005509
    [Crossref] [Google Scholar]
  99. Li T, Venditti JG, Sklar LS. 2023a.. Steady-state bedrock channel width. . Geophys. Res. Lett. 50::e2023GL105344
    [Crossref] [Google Scholar]
  100. Li T, Venditti JG, Sklar LS, Lamb MP. 2023b.. Lateral erosion of bedrock channel banks by bedload and suspended load. . J. Geophys. Res. Earth Surf. 128::e2022JF006806
    [Crossref] [Google Scholar]
  101. Litty C, Schlunegger F. 2017.. Controls on pebbles’ size and shape in streams of the Swiss Alps. . J. Geol. 125::10112
    [Crossref] [Google Scholar]
  102. Lodes E, Scherler D, van Dongen R, Wittmann H. 2023.. The story of a summit nucleus: hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera. . Earth Surf. Dyn. 11:(2):30524
    [Crossref] [Google Scholar]
  103. Lukens CE, Riebe CS, Sklar LS, Shuster DL. 2016.. Grain size bias in cosmogenic nuclide studies of stream sediment in steep terrain. . J. Geophys. Res. Earth Surf. 121:(5):97899
    [Crossref] [Google Scholar]
  104. Lukens CE, Riebe CS, Sklar LS, Shuster DL. 2020.. Sediment size and abrasion biases in detrital thermochronology. . Earth Planet. Sci. Lett. 531::115929
    [Crossref] [Google Scholar]
  105. Mackin JH. 1948.. Concept of the graded river. . Geol. Soc. Am. Bull. 59:(5):463512
    [Crossref] [Google Scholar]
  106. Marshall JA, Sklar LS. 2012.. Mining soil databases for landscape-scale patterns in the abundance and size distribution of hillslope rock fragments. . Earth Surf. Proc. Landf. 37:(3):287300
    [Crossref] [Google Scholar]
  107. Marshall JA, Roering JJ, Rempel AW, Shafer SL, Bartlein PJ. 2021.. Extensive frost weathering across unglaciated North America during the Last Glacial Maximum. . Geophys. Res. Lett. 48:(5):e2020GL090305
    [Crossref] [Google Scholar]
  108. Massong TM, Montgomery DR. 2000.. Influence of sediment supply, lithology, and wood debris on the distribution of bedrock and alluvial channels. . Geol. Soc. Am. Bull. 112:(5):59199
    [Crossref] [Google Scholar]
  109. Menting F, Langston AL, Temme AJ. 2015.. Downstream fining, selective transport, and hillslope influence on channel bed sediment in mountain streams, Colorado Front Range, USA. . Geomorphology 239::91105
    [Crossref] [Google Scholar]
  110. Merritts DJ, Rahnis MA. 2022.. Pleistocene periglacial processes and landforms, Mid-Atlantic region, eastern United States. . Annu. Rev. Earth Planet. Sci. 50::54192
    [Crossref] [Google Scholar]
  111. Miller KL, Szabó T, Jerolmack DJ, Domokos G. 2014.. Quantifying the significance of abrasion and selective transport for downstream fluvial grain size evolution. . J. Geophys. Res. Earth Surf. 119:(11):241229
    [Crossref] [Google Scholar]
  112. Miller KL, Jerolmack D. 2021.. Controls on the rates and products of particle attrition by bed-load collisions. . Earth Surf. Dyn. 9:(4):75570
    [Crossref] [Google Scholar]
  113. Mishra J, Inoue T. 2020.. Alluvial cover on bedrock channels: applicability of existing models. . Earth Surf. Dyn. 8:(3):695716
    [Crossref] [Google Scholar]
  114. Molnar P, Erson RS, Anderson SP. 2007.. Tectonics, fracturing of rock, and erosion. . J. Geophys. Res. 112:(F3):F03014
    [Crossref] [Google Scholar]
  115. Montgomery DR, Abbe TB, Buffington JM, Peterson N, Schmidt KM, Stock JD. 1996.. Distribution of bedrock and alluvial channels in forested mountain drainage basins. . Nature 381:(6583):58789
    [Crossref] [Google Scholar]
  116. Montgomery DR, Buffington JM. 1997.. Channel-reach morphology in mountain drainage basins. . Geol. Soc. Am. Bull. 109:(5):596611
    [Crossref] [Google Scholar]
  117. Moon S, Perron JT, Martel SJ, Holbrook WS, St. Clair J. 2017.. A model of three-dimensional topographic stresses with implications for bedrock fractures, surface processes, and landscape evolution. . J. Geophys. Res. Earth Surf. 122:(4):82346
    [Crossref] [Google Scholar]
  118. Morey SM, Shobe CM, Huntington KW, Lang KA, Johnson AG, Duvall AR. 2024.. The lasting legacy of megaflood boulder deposition in mountain rivers. . Geophys. Res. Lett. 51:(1):e2023GL105066
    [Crossref] [Google Scholar]
  119. Mudd SM, Clubb FJ, Gailleton B, Hurst MD. 2018.. How concave are river channels?. Earth Surf. Dyn. 6:(2):50523
    [Crossref] [Google Scholar]
  120. Mueller ER, Smith ME, Pitlick J. 2016.. Lithology-controlled evolution of stream bed sediment and basin-scale sediment yields in adjacent mountain watersheds, Idaho, USA. . Earth Surf. Proc. Landf. 41:(13):186983
    [Crossref] [Google Scholar]
  121. Müller-Hagmann M, Albayrak I, Auel C, Boes RM. 2020.. Field investigation on hydroabrasion in high-speed sediment-laden flows at sediment bypass tunnels. . Water 12:(2):469
    [Crossref] [Google Scholar]
  122. Murphy BP, Johnson JP, Gasparini NM, Sklar LS. 2016.. Chemical weathering as a mechanism for the climatic control of bedrock river incision. . Nature 532:(7598):22327
    [Crossref] [Google Scholar]
  123. Neely AB, DiBiase RA. 2020.. Drainage area, bedrock fracture spacing, and weathering controls on landscape-scale patterns in surface sediment grain size. . J. Geophys. Res. Earth Surf. 125:(10):e2020JF005560
    [Crossref] [Google Scholar]
  124. Nelson PA, Seminara G. 2011.. Modeling the evolution of bedrock channel shape with erosion from saltating bed load. . Geophys. Res. Lett. 38:(17):L17406
    [Crossref] [Google Scholar]
  125. Nicollier T, Rickenmann D, Hartlieb A. 2021.. Field and flume measurements with the impact plate: effect of bedload grain-size distribution on signal response. . Earth Surf. Proc. Landf. 46:(8):150420
    [Crossref] [Google Scholar]
  126. Novák-Szabó T, Sipos , Shaw S, Bertoni D, Pozzebon A, et al. 2018.. Universal characteristics of particle shape evolution by bed-load chipping. . Sci. Adv. 4:(3):eaao4946
    [Crossref] [Google Scholar]
  127. O'Connor JE, Mangano JF, Anderson SW, Wallick JR, Jones KL, Keith MK. 2014.. Geologic and physiographic controls on bed-material yield, transport, and channel morphology for alluvial and bedrock rivers, western Oregon. . Geol. Soc. Am. Bull. 126:(3–4):37797
    [Crossref] [Google Scholar]
  128. O'Connor JE, Mangano JF, Wise DR, Roering JR. 2021.. Eroding Cascadia—sediment and solute transport and landscape denudation in western Oregon and northwestern California. . Geol. Soc. Am. Bull. 133:(9–10):185174
    [Crossref] [Google Scholar]
  129. Paola C, Parker G, Seal R, Sinha SK, Southard JB, Wilcock PR. 1992.. Downstream fining by selective deposition in a laboratory flume. . Science 258:(5089):175760
    [Crossref] [Google Scholar]
  130. Paola C, Ganti V, Mohrig D, Runkel AC, Straub KM. 2018.. Time not our time: physical controls on the preservation and measurement of geologic time. . Annu. Rev. Earth Planet. Sci. 46::40938
    [Crossref] [Google Scholar]
  131. Parker G. 1991.. Selective sorting and abrasion of river gravel. I: Theory. . J. Hydraul. Eng. 117:(2):13147
    [Crossref] [Google Scholar]
  132. Perron JT, Royden L. 2013.. An integral approach to bedrock river profile analysis. . Earth Surf. Proc. Landf. 38:(6):57076
    [Crossref] [Google Scholar]
  133. Pfeiffer AM, Finnegan NJ, Willenbring JK. 2017.. Sediment supply controls equilibrium channel geometry in gravel rivers. . PNAS 114:(13):334651
    [Crossref] [Google Scholar]
  134. Pfeiffer AM, Morey S, Karlsson HM, Fordham EM, Montgomery DR. 2022.. Survival of the strong and dense: field evidence for rapid, transport-dependent bed material abrasion of heterogeneous source lithology. . J. Geophys. Res. Earth Surf. 127:(6):e2021JF006455
    [Crossref] [Google Scholar]
  135. Pike AS, Scatena FN, Wohl EE. 2010.. Lithological and fluvial controls on the geomorphology of tropical montane stream channels in Puerto Rico. . Earth Surf. Proc. Landf. 35:(12):140217
    [Crossref] [Google Scholar]
  136. Riebe CS, Kirchner JW, Finkel RC. 2003.. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. . Geochim. Cosmochim. Acta 67:(22):441127
    [Crossref] [Google Scholar]
  137. Riebe CS, Kirchner JW, Finkel RC. 2004.. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. . Earth Planet. Sci. Lett. 224:(3–4):54762
    [Crossref] [Google Scholar]
  138. Riebe CS, Sklar LS, Lukens CE, Shuster DL. 2015.. Climate and topography control the size and flux of sediment produced on steep mountain slopes. . PNAS 112:(51):1557479
    [Crossref] [Google Scholar]
  139. Roda-Boluda DC, D'Arcy M, McDonald J, Whittaker AC. 2018.. Lithological controls on hillslope sediment supply: insights from landslide activity and grain size distributions. Earth Surf. . Proc. Landf. 43:(5):95677
    [Crossref] [Google Scholar]
  140. Roe GH, Whipple KX, Fletcher JK. 2008.. Feedbacks among climate, erosion, and tectonics in a critical wedge orogen. . Am. J. Sci. 308:(7):81542
    [Crossref] [Google Scholar]
  141. Roy SG, Tucker GE, Koons PO, Smith SM, Upton P. 2016.. A fault runs through it: modeling the influence of rock strength and grain-size distribution in a fault-damaged landscape. . J. Geophys. Res. Earth Surf. 121:(10):191130
    [Crossref] [Google Scholar]
  142. Schanz SA, Montgomery DR, Collins BD. 2019.. Anthropogenic strath terrace formation caused by reduced sediment retention. . PNAS 116:(18):873439
    [Crossref] [Google Scholar]
  143. Scheingross JS, Brun F, Lo DY, Omerdin K, Lamb MP. 2014.. Experimental evidence for fluvial bedrock incision by suspended and bedload sediment. . Geology 42:(6):52326
    [Crossref] [Google Scholar]
  144. Scheingross JS, Lamb MP, Fuller BM. 2019.. Self-formed bedrock waterfalls. . Nature 567:(7747):22933
    [Crossref] [Google Scholar]
  145. Scheingross JS, Limaye AB, McCoy SW, Whittaker AC. 2020.. The shaping of erosional landscapes by internal dynamics. . Nat. Rev. Earth Environ. 1:(12):66176
    [Crossref] [Google Scholar]
  146. Scott DN, Wohl EE. 2019.. Bedrock fracture influences on geomorphic process and form across process domains and scales. . Earth Surf. Proc. Landf. 44:(1):2745
    [Crossref] [Google Scholar]
  147. Seidl MA, Dietrich WE, Schmidt KH, De Ploey J. 1992.. The problem of channel erosion into bedrock. . Funct. Geomorphol. 23::10124
    [Google Scholar]
  148. Seybold H, Berghuijs WR, Prancevic JP, Kirchner JW. 2021.. Global dominance of tectonics over climate in shaping river longitudinal profiles. . Nat. Geosci. 14:(7):5037
    [Crossref] [Google Scholar]
  149. Shirahama Y, Miyairi Y, He H, Fu B, Echigo T, et al. 2015.. Climate-induced changes in sediment supply revealed by surface exposure dating of Sijiquan River terraces, northeastern Tibet. . Geomorphology 235::1526
    [Crossref] [Google Scholar]
  150. Shobe CM, Tucker GE, Anderson RS. 2016.. Hillslope-derived blocks retard river incision. . Geophys. Res. Lett. 43:(10):507078
    [Crossref] [Google Scholar]
  151. Shobe CM, Turowski JM, Nativ R, Glade RC, Bennett GL, Dini B. 2021.. The role of infrequently mobile boulders in modulating landscape evolution and geomorphic hazards. . Earth-Sci. Rev. 220::103717
    [Crossref] [Google Scholar]
  152. Simms MJ. 2004.. Tortoises and hares: dissolution, erosion and isostasy in landscape evolution. . Earth Surf. Proc. Landf. 29:(4):47794
    [Crossref] [Google Scholar]
  153. Sinha SK, Parker G. 1996.. Causes of concavity in longitudinal profiles of rivers. . Water Resour. Res. 32:(5):141728
    [Crossref] [Google Scholar]
  154. Sklar L, Dietrich WE. 1998.. River longitudinal profiles and bedrock incision models: stream power and the influence of sediment supply. . Geophys. Monogr. Ser. 107::23760
    [Google Scholar]
  155. Sklar LS, Dietrich WE. 2001.. Sediment and rock strength controls on river incision into bedrock. . Geology 29:(12):108790
    [Crossref] [Google Scholar]
  156. Sklar LS, Dietrich WE. 2004.. A mechanistic model for river incision into bedrock by saltating bed load. . Water Resour. Res. 40:(6):W06301
    [Crossref] [Google Scholar]
  157. Sklar LS, Dietrich WE. 2006.. The role of sediment in controlling steady-state bedrock channel slope: implications of the saltation–abrasion incision model. . Geomorphology 82:(1–2):5883
    [Crossref] [Google Scholar]
  158. Sklar LS, Dietrich WE. 2008.. Implications of the saltation–abrasion bedrock incision model for steady-state river longitudinal profile relief and concavity. . Earth Surf. Proc. Landf. 33:(7):112951
    [Crossref] [Google Scholar]
  159. Sklar LS, Dietrich WE, Foufoula-Georgiou E, Lashermes B, Bellugi D. 2006.. Do gravel bed river size distributions record channel network structure?. Water Resour. Res. 42:(6):W06D18
    [Crossref] [Google Scholar]
  160. Sklar LS, Riebe CS, Lukens CE, Bellugi D. 2016.. Catchment power and the joint distribution of elevation and travel distance to the outlet. . Earth Surf. Dyn. 4:(4):799818
    [Crossref] [Google Scholar]
  161. Sklar LS, Riebe CS, Marshall JA, Genetti J, Leclere S, et al. 2017.. The problem of predicting the size distribution of sediment supplied by hillslopes to rivers. . Geomorphology 277::3149
    [Crossref] [Google Scholar]
  162. Sklar LS, Riebe CS, Genetti J, Leclere S, Lukens CE. 2020.. Downvalley fining of hillslope sediment in an alpine catchment: implications for downstream fining of sediment flux in mountain rivers. . Earth Surf. Proc. Landf. 45:(8):182845
    [Crossref] [Google Scholar]
  163. Smith WO, Vetter CP, Cummings GB. 1960.. Comprehensive survey of sedimentation in Lake Mead, 1948–49. US Geol. Surv. Prof. Pap. 295 , Gov. Print. Off., Washington, DC:
    [Google Scholar]
  164. Stock GM, Ehlers TA, Farley KA. 2006.. Where does sediment come from? Quantifying catchment erosion with detrital apatite (U-Th)/He thermochronometry. . Geology 34:(9):72528
    [Crossref] [Google Scholar]
  165. Stock JD, Montgomery DR, Collins BD, Dietrich WE, Sklar L. 2005.. Field measurements of incision rates following bedrock exposure: implications for process controls on the long profiles of valleys cut by rivers and debris flows. . Geol. Soc. Am. Bull. 117:(1–2):17494
    [Crossref] [Google Scholar]
  166. Stock JD, Dietrich WE. 2006.. Erosion of steepland valleys by debris flows. . Geol. Soc. Bull. 118:(9–10):112548
    [Crossref] [Google Scholar]
  167. Stokes MF, Goldberg SL, Perron JT. 2018.. Ongoing river capture in the Amazon. . Geophys. Res. Lett. 45:(11):554552
    [Crossref] [Google Scholar]
  168. Szabó T, Domokos G, Grotzinger JP, Jerolmack DJ. 2015.. Reconstructing the transport history of pebbles on Mars. . Nat. Commun. 6:(1):8366
    [Crossref] [Google Scholar]
  169. Terweh S, Hassan MA, Mao L, Schrott L, Hoffmann TO. 2021.. Bio-climate affects hillslope and fluvial sediment grain size along the Chilean Coastal Cordillera. . Geomorphology 384::107700
    [Crossref] [Google Scholar]
  170. Tofelde S, Duesing W, Schildgen TF, Wickert AD, Wittmann H, et al. 2018.. Effects of deep-seated versus shallow hillslope processes on cosmogenic 10Be concentrations in fluvial sand and gravel. . Earth Surf. Proc. Landf. 43:(15):308698
    [Crossref] [Google Scholar]
  171. Tucker GE, Hancock GR. 2010.. Modelling landscape evolution. Earth Surf. . Proc. Landf. 35:(1):2850
    [Crossref] [Google Scholar]
  172. Turowski JM, Lague D, Hovius N. 2007.. Cover effect in bedrock abrasion: a new derivation and its implications for the modeling of bedrock channel morphology. . J. Geophys. Res. 112:(F4):F04006
    [Crossref] [Google Scholar]
  173. Turowski JM, Hovius N, Hsieh ML, Lague D, Chen MC. 2008.. Distribution of erosion across bedrock channels. . Earth Surf. Proc. Landf. 33::35363
    [Crossref] [Google Scholar]
  174. Turowski JM, Yager EM, Badoux A, Rickenmann D, Molnar P. 2009.. The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel. . Earth Surf. Proc. Landf. 34:(12):166173
    [Crossref] [Google Scholar]
  175. Turowski JM, Rickenmann D, Dadson SJ. 2010.. The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. . Sedimentology 57:(4):112646
    [Crossref] [Google Scholar]
  176. Turowski JM, Böckli M, Rickenmann D, Beer AR. 2013.. Field measurements of the energy delivered to the channel bed by moving bed load and links to bedrock erosion. . J. Geophys. Res. Earth Surf. 118:(4):243850
    [Crossref] [Google Scholar]
  177. Turowski JM, Wyss CR, Beer AR. 2015.. Grain size effects on energy delivery to the streambed and links to bedrock erosion. . Geophys. Res. Lett. 42:(6):177580
    [Crossref] [Google Scholar]
  178. Turowski JM, Hodge R. 2017.. A probabilistic framework for the cover effect in bedrock erosion. . Earth Surf. Dyn. 5:(2):31130
    [Crossref] [Google Scholar]
  179. Turowski JM. 2018.. Alluvial cover controlling the width, slope and sinuosity of bedrock channels. . Earth Surf. Dyn. 6:(1):2948
    [Crossref] [Google Scholar]
  180. van Dongen R, Scherler D, Wittmann H, von Blanckenburg F. 2019.. Cosmogenic 10Be in river sediment: where grain size matters and why. . Earth Surf. Dyn. 7:(2):393410
    [Crossref] [Google Scholar]
  181. Venditti JG, Church M. 2014.. Morphology and controls on the position of a gravel-sand transition: Fraser River, British Columbia. . J. Geophys. Res. Earth Surf. 119:(9):195976
    [Crossref] [Google Scholar]
  182. Venditti JG, Li T, Deal E, Dingle E, Church M. 2020.. Struggles with stream power: connecting theory across scales. . Geomorphology 366::106817
    [Crossref] [Google Scholar]
  183. Verdian JP, Sklar LS, Riebe CS, Moore JR. 2021.. Sediment size on talus slopes correlates with fracture spacing on bedrock cliffs: implications for predicting initial sediment size distributions on hillslopes. . Earth Surf. Dyn. 9:(4):107390
    [Crossref] [Google Scholar]
  184. Walter RC, Merritts DJ. 2008.. Natural streams and the legacy of water-powered mills. . Science 319:(5861):299304
    [Crossref] [Google Scholar]
  185. Whipple KX. 2004.. Bedrock rivers and the geomorphology of active orogens. . Annu. Rev. Earth Planet. Sci. 32::15185
    [Crossref] [Google Scholar]
  186. Whipple KX. 2009.. The influence of climate on the tectonic evolution of mountain belts. . Nat. Geosci. 2:(2):97104
    [Crossref] [Google Scholar]
  187. Whittaker AC, Attal M, Allen PA. 2010.. Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. . Basin Res. 22:(6):80928
    [Crossref] [Google Scholar]
  188. Wickert AD, Schildgen TF. 2019.. Long-profile evolution of transport-limited gravel-bed rivers. . Earth Surf. Dyn. 7:(1):1743
    [Crossref] [Google Scholar]
  189. Willett SD. 1999.. Orogeny and orography: the effects of erosion on the structure of mountain belts. . J. Geophys. Res. 104:(B12):2895781
    [Crossref] [Google Scholar]
  190. Willgoose G. 2018.. Principles of Soilscape and Landscape Evolution. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  191. Wilson A, Hovius N, Turowski JM. 2013.. Upstream-facing convex surfaces: bedrock bedforms produced by fluvial bedload abrasion. . Geomorphology 180::187204
    [Crossref] [Google Scholar]
  192. Wilson CA, Goodbred SL. 2015.. Construction and maintenance of the Ganges-Brahmaputra-Meghna delta: linking process, morphology, and stratigraphy. . Annu. Rev. Mar. Sci. 7::6788
    [Crossref] [Google Scholar]
  193. Wobus CW, Crosby BT, Whipple KX. 2006.. Hanging valleys in fluvial systems: controls on occurrence and implications for landscape evolution. . J. Geophys. Res. 111:(F2):F02017
    [Crossref] [Google Scholar]
  194. Yager EM, Turowski JM, Rickenmann D, McArdell BW. 2012.. Sediment supply, grain protrusion, and bedload transport in mountain streams. . Geophys. Res. Lett. 39:(10):L10402
    [Crossref] [Google Scholar]
  195. Yanites BJ. 2018.. The dynamics of channel slope, width, and sediment in actively eroding bedrock river systems. . J. Geophys. Res. Earth Surf. 123:(7):150427
    [Crossref] [Google Scholar]
  196. Yanites BJ, Tucker GE, Mueller KJ, Chen YG. 2010.. How rivers react to large earthquakes: evidence from central Taiwan. . Geology 38:(7):63942
    [Crossref] [Google Scholar]
  197. Yanites BJ, Tucker GE, Hsu HL, Chen CC, Chen YG, Mueller KJ. 2011.. The influence of sediment cover variability on long-term river incision rates: an example from the Peikang River, central Taiwan. . J. Geophys. Res. 116:(F3):F03016
    [Crossref] [Google Scholar]
  198. Yanites BJ, Ehlers TA, Becker JK, Schnellmann M, Heuberger S. 2013.. High magnitude and rapid incision from river capture: Rhine River, Switzerland. . J. Geophys. Res. Earth Surf. 118:(2):106084
    [Crossref] [Google Scholar]
  199. Zhang L, Parker G, Stark CP, Inoue T, Viparelli E, et al. 2015.. Macro-roughness model of bedrock–alluvial river morphodynamics. . Earth Surf. Dyn. 3:(1):11338
    [Crossref] [Google Scholar]
  200. Zhang L, Iwasaki T, Li T, Fu X, Wang G, Parker G. 2019.. Bedrock-alluvial streams with knickpoint and plunge pool that migrate upstream with permanent form. . Sci. Rep. 9:(1):6176
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-052623-075856
Loading
/content/journals/10.1146/annurev-earth-052623-075856
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error