1932

Abstract

New Horizons data provide a snapshot of the current state of Pluto's atmosphere. Winds are slow and mostly controlled by sublimation of surface ices. Molecular nitrogen is the primary constituent below 1,800 km, while methane and carbon monoxide are important minor species. Photolysis of these gases leads to a thin haze that encompasses Pluto from the surface up to >500-km altitude and is important in heating and cooling the atmosphere. A cold (∼70 K) upper atmosphere curtails the escape of Pluto's molecular nitrogen to space, although there is substantial escape of methane (∼5 × 1025 molecules s−1), coincidentally about equal to its loss by photochemistry. It is unknown if the current atmosphere is representative of its long-term average state. From the inferred rapid rate of haze settling, it seems that Pluto's atmosphere must occasionally undergo collapse to allow time for radiation processing of the colorless haze material into the dark deposits found on the surface.

  • ▪  This article outlines what has been gleaned about Pluto's atmosphere in the years since the New Horizons flyby.
  • ▪  Pluto's atmosphere is most similar to Titan's—with the photochemistry of supervolatile nitrogen and hydrocarbons resulting in a kind of factory for cold haze production.
  • ▪  Much has been learned about Pluto's atmosphere, but many new questions have arisen, and these will likely remain unanswered until there is a follow-up mission—no doubt a long time from now.

Keyword(s): atmosphereNew HorizonsPluto
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060128
2019-05-30
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060128.html?itemId=/content/journals/10.1146/annurev-earth-053018-060128&mimeType=html&fmt=ahah

Literature Cited

  1. Ali A, Sittler EC, Chornay D, Rowe BR, Puzzarini C 2013. Cyclopropenyl cation—the simplest Huckel's aromatic molecule—and its cyclic methyl derivatives in Titan's upper atmosphere. Planet. Space Sci. 87:96–105
    [Google Scholar]
  2. Anderson CM, Samuelson RE, Yung YL, McLain JL 2016. Solid-state photochemistry as a formation mechanism for Titan's stratospheric C4N2 ice clouds. Geophys. Res. Lett. 43:3088–94
    [Google Scholar]
  3. Bagenal F, Horányi M, McComas DJ, McNutt RL, Elliott H et al. 2016. Pluto's interaction with its space environment: solar wind, energetic particles, and dust. Science 351:aad9045
    [Google Scholar]
  4. Bell JM, Waite JH, Westlake JH, Bougher SW, Ridley AJ et al. 2014. Developing a self-consistent description of Titan's upper atmosphere without hydrodynamic escape. J. Geophys. Res. Space Phys. 119:4957–72
    [Google Scholar]
  5. Bertrand T, Forget F 2016. Observed glacier and volatile distribution on Pluto from atmosphere-topography processes. Nature 540:86–89
    [Google Scholar]
  6. Bertrand T, Forget F 2017. 3D modeling of organic haze in Pluto's atmosphere. Icarus 287:72–86
    [Google Scholar]
  7. Bertrand T, Forget F, Umurhan OM, Grundy WM, Schmitt B et al. 2018. The nitrogen cycles on Pluto over seasonal and astronomical timescales. Icarus 309:277–96
    [Google Scholar]
  8. Bosh AS, Person MJ, Levine SE, Zuluaga CA, Zangari AM et al. 2015. The state of Pluto's atmosphere in 2012–2013. Icarus 246:237–46
    [Google Scholar]
  9. Brown GN, Ziegler WT 1980. Vapor pressure and heats of vaporization and sublimation of liquids and solids of interest in cryogenics below 1-atm pressure. Adv. Cryog. Eng. 25:662–70
    [Google Scholar]
  10. Cable ML, Vu TH, Hodyss R, Choukroun M, Malaska MJ et al. 2014. Experimental determination of the kinetics of formation of the benzene-ethane co-crystal and implications for Titan. Geophys. Res. Lett. 41:5396–401
    [Google Scholar]
  11. Catling DC, Zahnle KJ 2009. The planetary air leak. Scientific American May 36–43
    [Google Scholar]
  12. Cheng AF, Summers ME, Gladstone GR, Strobel DF, Young LA et al. 2017. Haze in Pluto's atmosphere. Icarus 290:112–33
    [Google Scholar]
  13. Cheng AF, Weaver HA, Conard SJ, Morgan MF, Barnouin-Jha O et al. 2008. Long-Range Reconnaissance Imager on New Horizons. Space Sci. Rev. 140:189–215
    [Google Scholar]
  14. Cruikshank DP, Silvaggio PM 1980. The surface and atmosphere of Pluto. Icarus 41:96–102
    [Google Scholar]
  15. Desai RT, Coates AJ, Wellbrock A, Vuitton V, Crary FJ et al. 2017. Carbon chain anions and the growth of complex organic molecules in Titan's ionosphere. Astrophys. J. 844:L18
    [Google Scholar]
  16. Dias-Oliveira A, Sicardy B, Lellouch E, Vieira-Martins R, Assafin M et al. 2015. Pluto's atmosphere from stellar occultations in 2012 and 2013. Astrophys. J. 811:53
    [Google Scholar]
  17. Elliot JL, Ates A, Babcock BA, Bosh AS, Buie MW et al. 2003. The recent expansion of Pluto's atmosphere. Nature 424:165–68
    [Google Scholar]
  18. Elliot JL, Dunham EW, Bosh AS, Slivan SM, Young LA et al. 1989. Pluto's atmosphere. Icarus 77:148–70
    [Google Scholar]
  19. Elliot JL, Person MJ, Gulbis AAS, Souza SP, Adams ER et al. 2007. Changes in Pluto's atmosphere: 1988–2006. Astron. J. 134:1–13
    [Google Scholar]
  20. Erwin J, Tucker OJ, Johnson RE 2013. Hybrid fluid/kinetic modeling of Pluto's escaping atmosphere. Icarus 226:375–84
    [Google Scholar]
  21. Fink U, Smith BA, Johnson JR, Reitsema HJ, Benner DC, Westphal JA 1980. Detection of a CH4 atmosphere on Pluto. Icarus 44:62–71
    [Google Scholar]
  22. Forget F, Bertrand T, Vangvichith M, Leconte J, Millour E, Lellouch E 2017. A post-New Horizons global climate model of Pluto including the N2, CH4 and CO cycles. Icarus 287:54–71
    [Google Scholar]
  23. Fray N, Schmitt B 2009. Sublimation of ices of astrophysical interest: a bibliographic review. Planet. Space Sci. 57:2053–80
    [Google Scholar]
  24. French RG, Toigo AD, Gierasch PJ, Hansen CJ, Young LA et al. 2015. Seasonal variations in Pluto's atmospheric tides. Icarus 246:247–67
    [Google Scholar]
  25. Gao P, Fan S, Wong ML, Liang MC, Shia RL et al. 2017. Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations. Icarus 287:116–23
    [Google Scholar]
  26. Gladstone GR, Stern SA, Ennico K, Olkin CB, Weaver HA et al. 2016. The atmosphere of Pluto as observed by New Horizons. Science 351:aad8866
    [Google Scholar]
  27. Golitsyn GS 1975. A possible atmosphere on Pluto. Sov. Astron. Lett. 1:19–20
    [Google Scholar]
  28. Grundy WM, Bertrand T, Binzel RP, Buie MW, Buratti BJ et al. 2018. Pluto's haze as a surface material. Icarus 314:232–45
    [Google Scholar]
  29. Grundy WM, Cruikshank DP, Gladstone GR, Howett CJA, Lauer TR 2016. The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature 539:65–68
    [Google Scholar]
  30. Hansen CJ, Paige DA 1996. Seasonal nitrogen cycles on Pluto. Icarus 120:247–65
    [Google Scholar]
  31. Hansen CJ, Paige DA, Young LA 2015. Pluto's climate modeled with new observational constraints. Icarus 246:183–91
    [Google Scholar]
  32. Hart MH 1974. A possible atmosphere for Pluto. Icarus 21:242–47
    [Google Scholar]
  33. Hinson DP, Linscott IR, Strobel DF, Tyler GL, Bird MK et al. 2018. An upper limit on Pluto's ionosphere from radio occultation measurements with New Horizons. Icarus 307:17–24
    [Google Scholar]
  34. Hinson DP, Linscott IR, Young LA, Tyler GL, Stern SA et al. 2017. Radio occultation measurements of Pluto's neutral atmosphere with New Horizons. Icarus 290:96–111
    [Google Scholar]
  35. Hoey WA, Yeoh SK, Trafton LM, Goldstein DB, Varghese PL 2017. Rarified gas dynamic simulation of transfer and escape in the Pluto-Charon system. Icarus 287:87–102
    [Google Scholar]
  36. Hofgartner JD, Buratti BJ, Devins SL, Beyer RA, Schenk P et al. 2018. A search for temporal changes on Pluto and Charon. Icarus 302:273–84
    [Google Scholar]
  37. Hörst SM 2017. Titan's atmosphere and climate. J. Geophys. Res. Planets 122:432–82
    [Google Scholar]
  38. Howard AD, Moore JM, Umurhan OM, White OL, Anderson RS et al. 2017. Present and past glaciation on Pluto. Icarus 287:287–300
    [Google Scholar]
  39. Hubbard WB, Hunten DM, Dieters SW, Hill KM, Watson RD 1988. Occultation evidence for an atmosphere on Pluto. Nature 336:452–54
    [Google Scholar]
  40. Hubbard WB, McCarthy DW, Kulesa CA, Benecchi SD, Person MJ et al. 2009. Buoyancy waves in Pluto's high atmosphere: implications for stellar occultations. Icarus 204:284–89
    [Google Scholar]
  41. Hubbard WB, Yelle RV, Lunine JI 1990. Nonisothermal Pluto atmosphere models. Icarus 84:1–11
    [Google Scholar]
  42. Hunten DM, Watson AJ 1982. Stability of Pluto's atmosphere. Icarus 51:665–67
    [Google Scholar]
  43. Johnson RE, Tucker OJ, Michael M, Sittler EC, Smith HT et al. 2009. Mass loss processes in Titan's upper atmosphere. Titan from Cassini Huygens RH Brown, JP Lebreton, JH Waite 373–91 Berlin: Springer
    [Google Scholar]
  44. Krasnopolsky VA 1999. Hydrodynamic flow of N2 from Pluto. J. Geophys. Res. 104:5955–62
    [Google Scholar]
  45. Krasnopolsky VA 2018. Some problems in interpretation of the New Horizons observations of Pluto's atmosphere. Icarus 301:152–54
    [Google Scholar]
  46. Krasnopolsky VA, Cruikshank DP 1999. Photochemistry of Pluto's atmosphere and ionosphere near perihelion. J. Geophys. Res. 104:21979–96
    [Google Scholar]
  47. Lara LM, Ip WH, Rodrigo R 1997. Photochemical models of Pluto's atmosphere. Icarus 130:16–35
    [Google Scholar]
  48. Larson EJL, Toon OB, Friedson AJ 2014. Simulating Titan's aerosols in a three dimensional general circulation model. Icarus 243:400–19
    [Google Scholar]
  49. Lavvas P, Yelle RV, Koskinen T, Bazin A, Vuitton V et al. 2013. Aerosol growth in Titan's ionosphere. PNAS 110:2729–34
    [Google Scholar]
  50. Lellouch E, de Bergh C, Sicardy B, Forget F, Vangvichith M, Käufl HU 2015. Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere. Icarus 246:268–78
    [Google Scholar]
  51. Lellouch E, de Bergh C, Sicardy B, Käufl HU, Smette A 2011. High resolution spectroscopy of Pluto's atmosphere: detection of the 2.3 μm CH4 bands and evidence for carbon monoxide. Astron. Astrophys. 530:L4
    [Google Scholar]
  52. Lellouch E, Gurwell M, Butler B, Fouchet T, Lavvas P 2017. Detection of CO and HCN in Pluto's atmosphere with ALMA. Icarus 286:289–307
    [Google Scholar]
  53. Lellouch E, Sicardy B, de Bergh C, Käufl HU, Kassi S, Campargue A 2009. Pluto's lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations. Astron. Astrophys. 495:L17
    [Google Scholar]
  54. Lodders K, Fegley B 1998. The Planetary Scientist's Companion Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  55. Luspay-Kuti A, Mandt K, Jessup KL, Kammer J, Hue V et al. 2017. Photochemistry on Pluto: I. Hydrocarbons and aerosols. Mon. Not. R. Astron. Soc. 472:104–17
    [Google Scholar]
  56. Mandt K, Luspay-Kuti A, Hamel M, Jessup KL, Hue V et al. 2017. Photochemistry on Pluto: II. HCN and nitrogen isotope fractionation. Mon. Not. R. Astron. Soc. 472:118–28
    [Google Scholar]
  57. McCarthy DW, Hubbard WB, Kulesa CA, Benecchi SD, Person MJ et al. 2008. Long-wavelength density fluctuations resolved in Pluto's high atmosphere. Astron. J. 136:1519–22
    [Google Scholar]
  58. McComas DJ, Elliott HA, Weidner S, Valek P, Zirnstein EJ et al. 2016. Pluto's interaction with the solar wind. J. Geophys. Res. Space Phys. 121:4232–46
    [Google Scholar]
  59. McNutt RL 1989. Models of Pluto's upper atmosphere. Geophys. Res. Lett. 16:1125–228
    [Google Scholar]
  60. Moore JM, Howard AD, Umurhan OM, White OL, Schenk PM et al. 2018. Bladed terrain on Pluto: possible origins and evolution. Icarus 300:129–44
    [Google Scholar]
  61. Moores JE, Smith CL, Toigo AD, Guzewich SD 2017. Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature 541:188–90
    [Google Scholar]
  62. Nimmo F, Umurhan O, Lisse CM, Bierson CJ, Carver J et al. 2017. Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 28:12–29
    [Google Scholar]
  63. Olkin CB, Young LA, Borncamp D, Pickles A, Sicardy B et al. 2015. Evidence that Pluto's atmosphere does not collapse from occultations including the 2013 May 04 event. Icarus 246:220–25
    [Google Scholar]
  64. Olkin CB, Young LA, French RG, Young EF, Buie MW et al. 2014. Pluto's atmospheric structure from the July 2007 stellar occultation. Icarus 239:15–22
    [Google Scholar]
  65. Pasachoff JM, Souza SP, Babcock BA, Ticehurst DR, Elliot JL et al. 2005. The structure of Pluto's atmosphere from the 2002 August 21 stellar occultation. Astron. J. 129:1718–23
    [Google Scholar]
  66. Person MJ, Elliot JL, Gulbis AAS, Zuluaga CA, Babcock BA et al. 2008. Waves in Pluto's upper atmosphere. Astrophys. J. 136:1510–18
    [Google Scholar]
  67. Prokhvatilov AI, Yantsevich LD 1983. X-ray investigation of the equilibrium phase diagram of CH4-N2 solid mixtures. Sov. J. Low Temp. Phys. 9:94–98
    [Google Scholar]
  68. Protopapa S, Grundy WM, Reuter DC, Hamilton DP, Dalle Ore CM et al. 2017. Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus 287:218–28
    [Google Scholar]
  69. Rannou P, West R 2018. Supersaturation on Pluto and elsewhere. Icarus 312:36–44
    [Google Scholar]
  70. Reuter DC, Stern SA, Scherrer J, Jennings DE, Baer JW et al. 2008. Ralph: a visible/infrared imager for the New Horizons Pluto/Kuiper Belt Mission. Space Sci. Rev. 140:129–54
    [Google Scholar]
  71. Schenk P, Beyer RA, McKinnon WB, Moore JM, Spencer JR et al. 2018. Basins, fractures and volcanoes: global cartography and topography of Pluto from New Horizons. Icarus 314:400–33
    [Google Scholar]
  72. Schmitt B, Philippe S, Grundy WM, Reuter DC, Côte R et al. 2017. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287:229–60
    [Google Scholar]
  73. Sicardy B, Talbot J, Meza E, Camargo JIB, Desmars J et al. 2016. Pluto's atmosphere from the 2015 June 29 ground-based stellar occultation at the time of the New Horizons flyby. Astrophys. J. 819:L38
    [Google Scholar]
  74. Sicardy B, Widemann T, Lellouch E, Veillet C, Cuillandre JC et al. 2003. Large changes in Pluto's atmosphere as revealed by recent stellar occultations. Nature 424:168–70
    [Google Scholar]
  75. Spencer JR, Stansberry JA, Trafton LM, Young EF, Binzel RP, Croft SK 1997. Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto. See Stern & Tholen 1997 435–73
  76. Stansberry JA, Lunine JI, Hubbard WB, Yelle RV, Hunten DM 1994. Mirages and the nature of Pluto's atmosphere. Icarus 111:503–13
    [Google Scholar]
  77. Stansberry JA, Spencer JR, Schmitt B, Benchkoura AI, Yelle RV, Lunine JI 1996. A model for the overabundance of methane in the atmospheres of Pluto and Triton. Planet. Space Sci. 44:1051–63
    [Google Scholar]
  78. Stern SA, Bagenal F, Ennico K, Gladstone GR, Grundy WM et al. 2015. The Pluto system: initial results from its exploration by New Horizons. Science 350:aad1815
    [Google Scholar]
  79. Stern SA, Binzel RP, Earle AM, Singer KN, Young LA et al. 2017a. Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287:47–53
    [Google Scholar]
  80. Stern SA, Kammer JA, Barth EL, Singer KN, Lauer T et al. 2017b. Evidence for possible clouds in Pluto's present-day atmosphere. Astron. J. 154:43
    [Google Scholar]
  81. Stern SA, Kammer JA, Gladstone GR, Steffl AJ, Cheng AF et al. 2017c. New Horizons constraints on Charon's present day atmosphere. Icarus 287:124–30
    [Google Scholar]
  82. Stern SA, Slater DC, Scherrer J, Stone J, Dirks G et al. 2008. Alice: the ultraviolet imaging spectrograph aboard the New Horizons Pluto-Kuiper Belt mission. Space Sci. Rev. 140:155–87
    [Google Scholar]
  83. Stern SA, Tholen DJ, eds. 1997. Pluto and Charon Tucson: Univ. Ariz. Press
    [Google Scholar]
  84. Strobel DF 2009. Titan's hydrodynamically escaping atmosphere: escape rates and the structure of the exobase region. Icarus 202:632–41
    [Google Scholar]
  85. Strobel DF, Atreya SK, Bézard B, Ferri F, Flasar FM et al. 2009. Atmospheric structure and composition. Titan from Cassini Huygens RH Brown, JP Lebreton, JH Waite 235–57 Berlin: Springer
    [Google Scholar]
  86. Strobel DF, Zhu X 2017. Comparative planetary nitrogen atmospheres: density and thermal structures of Pluto and Triton. Icarus 291:55–64
    [Google Scholar]
  87. Strobel DF, Zhu X, Summers ME, Stevens MH 1996. On the vertical thermal structure of Pluto's atmosphere. Icarus 120:266–89
    [Google Scholar]
  88. Summers ME, Strobel DF, Gladstone GR 1997. Chemical models of Pluto's atmosphere. See Stern & Tholen 1997 391–434
  89. Tan SP, Kargel JS 2018. Solid-phase equilibria on Pluto's surface. Mon. Not. R. Astron. Soc. 474:4254–63
    [Google Scholar]
  90. Telfer MW, Parteli EJR, Radebaugh J, Beyer RA, Bertrand T et al. 2018. Dunes on Pluto. Science 360:992–97
    [Google Scholar]
  91. Tian F, Toon OB 2005. Hydrodynamic escape of nitrogen from Pluto. Geophys. Res. Lett. 32:L18201
    [Google Scholar]
  92. Toigo AD, French RG, Gierasch PJ, Guzewich SD, Zhu X, Richardson MI 2015. General circulation models of the dynamics of Pluto's volatile transport on the eve of the New Horizons encounter. Icarus 254:306–23
    [Google Scholar]
  93. Toigo AD, Gierasch PJ, Sicardy B, Lellouch E 2010. Thermal tides on Pluto. Icarus 208:402–11
    [Google Scholar]
  94. Tomasko MG, West RA 2009. Aerosols in Titan's atmosphere. Titan from Cassini Huygens RH Brown, JP Lebreton, JH Waite 297–321 Berlin: Springer
    [Google Scholar]
  95. Trafton LM 1980. Does Pluto have a substantial atmosphere. ? Icarus 44:53–61
    [Google Scholar]
  96. Trafton LM 2015. On the state of methane and nitrogen ice on Pluto and Triton: implications of the binary phase diagram. Icarus 246:197–205
    [Google Scholar]
  97. Trafton LM, Hunten DM, Zahnle KJ, McNutt RL 1997. Escape processes at Pluto and Charon. See Stern & Tholen 1997 475–522
  98. Trafton LM, Stern SA 1983. On the global distribution of Pluto's atmosphere. Astrophys. J. 267:872–81
    [Google Scholar]
  99. Tucker OJ, Erwin JT, Deighan JI, Volkov AN, Johnson RE 2012. Thermally driven escape from Pluto's atmosphere: a combined fluid/kinetic model. Icarus 217:408–15
    [Google Scholar]
  100. Tucker OJ, Johnson RE, Young LA 2015. Gas transfer in the Pluto-Charon system: a Charon atmosphere. Icarus 246:291–97
    [Google Scholar]
  101. Tyler GL, Linscott IR, Bird MK, Hinson DP, Strobel DF et al. 2008. The New Horizons radio science experiment (REX). Space Sci. Rev. 140:217–59
    [Google Scholar]
  102. Volkov AN, Johnson RE, Tucker OJ, Erwin JT 2011. Thermally driven atmospheric escape: transition from hydrodynamic to Jeans escape. Astrophys. J. 729:L24
    [Google Scholar]
  103. Watson AJ, Donahue TM, Walker JCG 1981. The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48:150–66
    [Google Scholar]
  104. Westlake JH, Waite JH, Carrasco N, Richard M, Cravens T 2014. The role of ion-molecule reactions in the growth of heavy ions in Titan's ionosphere. J. Geophys. Res. Space Phys. 119:5951–63
    [Google Scholar]
  105. Willacy K, Allen M, Yung YL 2016. A new astrobiological model of the atmosphere of Titan. Astrophys. J. 829:79
    [Google Scholar]
  106. Wong ML, Fan S, Gao P, Liang MC, Shia RL et al. 2017. The photochemistry of Pluto's atmosphere as illuminated by New Horizons. Icarus 287:110–15
    [Google Scholar]
  107. Wong ML, Yung YL, Gladstone GR 2015. Pluto's implications for a snowball Titan. Icarus 246:192–96
    [Google Scholar]
  108. Yelle RV, Cui J, Müller-Wodarg ICF 2008. Methane escape from Titan's atmosphere. J. Geophys. Res. 113:E10003
    [Google Scholar]
  109. Yelle RV, Elliot JL 1997. Atmospheric structure and composition: Pluto and Charon. See Stern & Tholen 1997 347–90
  110. Yelle RV, Lunine JI 1989. Evidence for a molecule heavier than methane in the atmosphere of Pluto. Nature 339:288–90
    [Google Scholar]
  111. Yelle RV, Lunine JI, Pollack JB, Brown RH 1995. Lower atmospheric structure and surface-atmosphere interactions on Triton. Neptune and Triton DP Cruikshank 1031–105 Tucson: Univ. Ariz. Press
    [Google Scholar]
  112. Young EF, French RG, Young LA, Ruhland CR, Buie MW et al. 2008. Vertical structure in Pluto's atmosphere from the 2006 June 12 stellar occultation. Astron. J. 136:1757–69
    [Google Scholar]
  113. Young LA 1994. Bulk properties and atmospheric structure of Pluto and Charon PhD Diss., Mass. Inst. Technol Cambridge, MA:
    [Google Scholar]
  114. Young LA 2012. Volatile transport on inhomogeneous surfaces: I. Analytic expressions, with application to Pluto's day. Icarus 221:80–88
    [Google Scholar]
  115. Young LA 2013. Pluto's seasons: new predictions for New Horizons. Astrophys. J. 766:L22
    [Google Scholar]
  116. Young LA, Elliot JL, Tokunaga A, de Bergh C, Owen T 1997. Detection of gaseous methane on Pluto. Icarus 127:258–62
    [Google Scholar]
  117. Young LA, Kammer JA, Steffl AJ, Gladstone GR, Summers ME et al. 2018. Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation. Icarus 300:174–99
    [Google Scholar]
  118. Young LA, Stern SA, Weaver HA, Bagenal F, Binzel RP et al. 2008. New Horizons: anticipated scientific investigations at the Pluto system. Space Sci. Rev. 140:93–127
    [Google Scholar]
  119. Yung YL, DeMore WB 1998. Photochemistry of Planetary Atmospheres Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  120. Yung YL, Lyons JR 1990. Triton: topside ionosphere and nitrogen escape. Geophys. Res. Lett. 17:1717–20
    [Google Scholar]
  121. Zalucha AM, Michaels TI 2013. A 3D general circulation model for Pluto and Triton with fixed volatile abundance and simplified surface forcing. Icarus 223:819–31
    [Google Scholar]
  122. Zhang X, Strobel DF, Imanaka H 2018. Haze heats Pluto's atmosphere yet explains its cold temperature. Nature 551:352–55
    [Google Scholar]
  123. Zhu X, Strobel DF, Erwin JT 2014. The density and thermal structure of Pluto's atmosphere and associated escape processes and rates. Icarus 228:301–14
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060128
Loading
/content/journals/10.1146/annurev-earth-053018-060128
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error