1932

Abstract

Flood basalts were Earth's largest volcanic episodes that, along with related intrusions, were often emplaced rapidly and coincided with environmental disruption: oceanic anoxic events, hyperthermals, and mass extinction events. Volatile emissions, both from magmatic degassing and vaporized from surrounding rock, triggered short-term cooling and longer-term warming, ocean acidification, and deoxygenation. The magnitude of biological extinction varied considerably, from small events affecting only select groups to the largest extinction of the Phanerozoic, with less-active organisms and those with less-developed respiratory physiology faring especially poorly. The disparate environmental and biological outcomes of different flood basalt events may at first order be explained by variations in the rate of volatile release modulated by longer trends in ocean carbon cycle buffering and the composition of marine ecosystems. Assessing volatile release, environmental change, and biological extinction at finer temporal resolution should be a top priority to refine ancient hyperthermals as analogs for anthropogenic climate change.

  • ▪  Flood basalts, the largest volcanic events in Earth history, triggered dramatic environmental changes on land and in the oceans.
  • ▪  Rapid volcanic carbon emissions led to ocean warming, acidification, and deoxygenation that often caused widespread animal extinctions.
  • ▪  Animal physiology played a key role in survival during flood basalt extinctions, with reef builders such as corals being especially vulnerable.
  • ▪  The rate and duration of volcanic carbon emission controlled the type of environmental disruption and the severity of biological extinction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060136
2019-05-30
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060136.html?itemId=/content/journals/10.1146/annurev-earth-053018-060136&mimeType=html&fmt=ahah

Literature Cited

  1. Aberhan M, Baumiller TK 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31:1077–80
    [Google Scholar]
  2. Ager DV 1987. Why the rhynchonellid brachiopods survived and the spiriferids did not: a suggestion. Palaeontology 30:853–57
    [Google Scholar]
  3. Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ 2011. Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308:1–11
    [Google Scholar]
  4. Alvarez LW, Alvarez W, Asaro F, Michel HV 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–108
    [Google Scholar]
  5. Arcila D, Tyler JC 2017. Mass extinction in tetraodontiform fishes linked to the Palaeocene–Eocene thermal maximum. Proc. R. Soc. B 284:20171771
    [Google Scholar]
  6. Aze T, Pearson PN, Dickson AJ, Badger MPS, Bown PR et al. 2014. Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum. Geology 42:739–42
    [Google Scholar]
  7. Bachan A, van de Schootbrugge B, Fiebig J, McRoberts CA, Ciarapica G, Payne JL 2012. Carbon cycle dynamics following the end-Triassic mass extinction: constraints from paired δ13Ccarb and δ13Corg records. Geochem. Geophys. Geosystems 13:Q09008
    [Google Scholar]
  8. Bambach RK, Knoll AH, Sepkoski JJ 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. PNAS 99:6854–59
    [Google Scholar]
  9. Barclay RS, McElwain JC, Sageman BB 2010. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nat. Geosci. 3:205–8
    [Google Scholar]
  10. Barnet JSK, Littler K, Kroon D, Leng MJ, Westerhold T et al. 2018. A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism. Geology 46:147–50
    [Google Scholar]
  11. Beerling DJ, Harfoot M, Lomax B, Pyle JA 2007. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Philos. Trans. R. Soc. A 365:1843–66
    [Google Scholar]
  12. Black BA, Elkins-Tanton LT, Rowe MC, Peate IU 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317–318:363–73
    [Google Scholar]
  13. Black BA, Hauri EH, Elkins-Tanton LT, Brown SM 2014. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth Planet. Sci. Lett. 394:58–69
    [Google Scholar]
  14. Black BA, Manga M 2017. Volatiles and the tempo of flood basalt magmatism. Earth Planet. Sci. Lett. 458:130–40
    [Google Scholar]
  15. Blättler CL, Jenkyns HC, Reynard LM, Henderson GM 2011. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 309:77–88
    [Google Scholar]
  16. Bond DPG, Wignall PB 2010. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geol. Soc. Am. Bull. 122:1265–79
    [Google Scholar]
  17. Bond DPG, Wignall PB 2014. Large igneous provinces and mass extinctions: an update. Volcanism, Impacts, and Mass Extinctions: Causes and Effects G Keller, AC Kerr 29–55 Geol. Soc. Am. Spec. Pap. 505 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  18. Bottini C, Cohen AS, Erba E, Jenkyns HC, Coe AL 2012. Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a. Geology 40:583–86
    [Google Scholar]
  19. Brazier J-M, Suan G, Tacail T, Simon L, Martin JE et al. 2015. Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic). Earth Planet. Sci. Lett. 411:164–76
    [Google Scholar]
  20. Brennecka GA, Herrmann AD, Algeo TJ, Anbar AD 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. PNAS 108:17631–34
    [Google Scholar]
  21. Burgess SD, Muirhead JD, Bowring SA 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8:164
    [Google Scholar]
  22. Carmichael MJ, Inglis GN, Badger MPS, Naafs BDA, Behrooz L et al. 2017. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum. Glob. Planet. Change 157:114–38
    [Google Scholar]
  23. Chen J, Chen Z-Q, Tong J 2011. Environmental determinants and ecologic selectivity of benthic faunas from nearshore to bathyal zones in the end-Permian mass extinction: brachiopod evidence from South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308:84–97
    [Google Scholar]
  24. Chu JWF, Tunnicliffe V 2015. Oxygen limitations on marine animal distributions and the collapse of epibenthic community structure during shoaling hypoxia. Glob. Change Biol. 21:2989–3004
    [Google Scholar]
  25. Clapham ME 2017. Organism activity levels predict marine invertebrate survival during ancient global change extinctions. Glob. Change Biol. 23:1477–85
    [Google Scholar]
  26. Clapham ME, Payne JL 2011. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39:1059–62
    [Google Scholar]
  27. Clarke A, Fraser KPP 2004. Why does metabolism scale with temperature. ? Funct. Ecol. 18:243–51
    [Google Scholar]
  28. Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ et al. 2015. Ocean acidification and the Permo-Triassic mass extinction. Science 348:229–32
    [Google Scholar]
  29. Clarkson MO, Stirling CH, Jenkyns HC, Dickson AJ, Porcelli D et al. 2018. Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. PNAS 115:2918–23
    [Google Scholar]
  30. Coffin MF, Eldholm O 1994. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32:1–36
    [Google Scholar]
  31. Collard M, Dery A, Dehairs F, Dubois P 2014. Euechinoidea and Cidaroidea respond differently to ocean acidification. Comp. Biochem. Physiol. A 174:45–55
    [Google Scholar]
  32. Collard M, Laitat K, Moulin L, Catarino AI, Grosjean P, Dubois P 2013. Buffer capacity of the coelomic fluid in echinoderms. Comp. Biochem. Physiol. A 166:199–206
    [Google Scholar]
  33. Collip JB 1920. The alkali reserve of marine fish and invertebrates: the excretion of carbon dioxide. J. Biol. Chem. 44:329–44
    [Google Scholar]
  34. Comeau S, Cornwall CE, De Carlo TM, Krieger E, McCulloch MT 2018. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Glob. Change Biol. 24:4857–68
    [Google Scholar]
  35. Corsetti FA, Ritterbush KA, Bottjer DJ, Greene SE, Ibarra Y et al. 2015. Investigating the paleoecological consequences of supercontinent breakup: Sponges clean up in the Early Jurassic. Sediment. Record 13:24–10
    [Google Scholar]
  36. Courtillot VE, Renne PR 2003. On the ages of flood basalt events. C. R. Geosci. 335:113–40
    [Google Scholar]
  37. Cross EL, Peck LS, Lamare MD, Harper EM 2016. No ocean acidification effects on shell growth and repair in the New Zealand brachiopod Calloria inconspicua (Sowerby, 1846). ICES J. Mar. Sci. 73:920–26
    [Google Scholar]
  38. Danise S, Twitchett RJ, Little CTS, Clémence M-E 2013. The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLOS ONE 8:e56255
    [Google Scholar]
  39. Davies JHFL, Marzoli A, Bertrand H, Youbi N, Ernesto M, Schaltegger U 2017. End-Triassic mass extinction started by intrusive CAMP activity. Nat. Commun. 8:15596
    [Google Scholar]
  40. de Nooijer LJ, Toyofuku T, Kitazato H 2009. Foraminifera promote calcification by elevating their intracellular pH. PNAS 106:15374–78
    [Google Scholar]
  41. Dera G, Neige P, Dommergues J-L, Brayard A 2011. Ammonite paleobiogeography during the Pliensbachian–Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Glob. Planet. Change 78:92–105
    [Google Scholar]
  42. Dessert C, Dupré B, Gaillardet J, François LM, Allègre CJ 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202:257–73
    [Google Scholar]
  43. Deutsch C, Ferrel A, Seibel B, Portner H-O, Huey RB 2015. Climate change tightens a metabolic constraint on marine habitats. Science 348:1132–35
    [Google Scholar]
  44. Diaz RJ, Rosenberg R 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–29
    [Google Scholar]
  45. Dickson AJ, Cohen AS, Coe AL 2012. Seawater oxygenation during the Paleocene-Eocene Thermal Maximum. Geology 40:639–42
    [Google Scholar]
  46. Dickson AJ, Cohen AS, Coe AL, Davies M, Shcherbinina EA, Gavrilov YO 2015. Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438:300–7
    [Google Scholar]
  47. Dillon ME, Wang G, Huey RB 2010. Global metabolic impacts of recent climate warming. Nature 467:704–6
    [Google Scholar]
  48. Du Vivier ADC, Jacobson AD, Lehn GO, Selby D, Hurtgen MT, Sageman BB 2015. Ca isotope stratigraphy across the Cenomanian–Turonian OAE 2: links between volcanism, seawater geochemistry, and the carbonate fractionation factor. Earth Planet. Sci. Lett. 416:121–31
    [Google Scholar]
  49. Edmonds M, Wallace PJ 2017. Volatiles and exsolved vapor in volcanic systems. Elements 13:29–34
    [Google Scholar]
  50. Erba E 1994. Nannofossils and superplumes: the Early Aptian “nannoconid crisis. .” Paleoceanography 9:483–501
    [Google Scholar]
  51. Fabry VJ, Seibel BA, Feely RA, Orr JC 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65:414–32
    [Google Scholar]
  52. Fischer V, Bardet N, Benson RBJ, Arkhangelsky MS, Friedman M 2016. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nat. Commun. 7:10825
    [Google Scholar]
  53. Fischer V, Cappetta H, Vincent P, Garcia G, Goolaerts S et al. 2014. Ichthyosaurs from the French Rhaetian indicate a severe turnover across the Triassic–Jurassic boundary. Naturwissenschaften 101:1027–40
    [Google Scholar]
  54. Forster A, Schouten S, Moriya K, Wilson PA, Sinninghe Damsté JS 2007. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: sea surface temperature records from the equatorial Atlantic. Paleoceanography 22:PA1219
    [Google Scholar]
  55. Foster LC, Schmidt DN, Thomas E, Arndt S, Ridgwell A 2013. Surviving rapid climate change in the deep sea during the Paleogene hyperthermals. PNAS 110:9273–76
    [Google Scholar]
  56. Frieling J, Gebhardt H, Huber M, Adekeye OA, Akande SO et al. 2017. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum. Sci. Adv. 3:e1600891
    [Google Scholar]
  57. Gibbs SJ, Bown PR, Ridgwell A, Young JR, Poulton AJ, O'Dea SA 2016. Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change. Geology 44:59–62
    [Google Scholar]
  58. Gibbs SJ, Bown PR, Sessa JA, Bralower TJ, Wilson PA 2006. Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum. Science 314:1770–73
    [Google Scholar]
  59. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25:325–31
    [Google Scholar]
  60. Grasby SE, Shen W, Yin R, Gleason JD, Blum JD et al. 2017. Isotopic signatures of mercury contamination in latest Permian oceans. Geology 45:55–58
    [Google Scholar]
  61. Greene SE, Bottjer DJ, Corsetti FA, Berelson WM, Zonneveld J-P 2012a. A subseafloor carbonate factory across the Triassic-Jurassic transition. Geology 40:1043–46
    [Google Scholar]
  62. Greene SE, Martindale RC, Ritterbush KA, Bottjer DJ, Corsetti FA, Berelson WM 2012b. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth-Sci. Rev. 113:72–93
    [Google Scholar]
  63. Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ et al. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706–9
    [Google Scholar]
  64. Gunderson AR, Stillman JH 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282:20150401
    [Google Scholar]
  65. Gutjahr M, Ridgwell A, Sexton PF, Anagnostou E, Pearson PN et al. 2017. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature 548:573–77
    [Google Scholar]
  66. Harries PJ, Little CT 1999. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154:39–66
    [Google Scholar]
  67. Hautmann M, Benton MJ, Tomašových A 2008. Catastrophic ocean acidification at the Triassic-Jurassic boundary. Neues Jahrb. Geol. Paläontol. 249:119–27
    [Google Scholar]
  68. Heinemann A, Fietzke J, Melzner F, Böhm F, Thomsen J et al. 2012. Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: acid-base status, trace elements and δ11B. Geochem. Geophys. Geosystems 13:Q01005
    [Google Scholar]
  69. Hoffmann R, Richter DK, Neuser RD, Jöns N, Linzmeier BJ et al. 2016. Evidence for a composite organic–inorganic fabric of belemnite rostra: implications for palaeoceanography and palaeoecology. Sediment. Geol. 341:203–15
    [Google Scholar]
  70. Hofmann GE, Todgham AE 2010. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72:127–45
    [Google Scholar]
  71. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ et al. 2012. The geological record of ocean acidification. Science 335:1058–63
    [Google Scholar]
  72. Huang C, Hesselbo SP 2014. Pacing of the Toarcian Oceanic Anoxic Event (Early Jurassic) from astronomical correlation of marine sections. Gondwana Res 25:1348–56
    [Google Scholar]
  73. Jagoutz O, Macdonald FA, Royden L 2016. Low-latitude arc–continent collision as a driver for global cooling. PNAS 113:4935–40
    [Google Scholar]
  74. Jenkyns HC 2010. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosystems 11:Q03004
    [Google Scholar]
  75. Jones MT, Jerram DA, Svensen HH, Grove C 2016. The effects of large igneous provinces on the global carbon and sulphur cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441:4–21
    [Google Scholar]
  76. Jost AB, Bachan A, van de Schootbrugge B, Brown ST, DePaolo DJ, Payne JL 2017a. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones. Geochem. Geophys. Geosystems 18:113–24
    [Google Scholar]
  77. Jost AB, Bachan A, van de Schootbrugge B, Lau KV, Weaver KL et al. 2017b. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction. Geochem. Geophys. Geosystems 18:3093–108
    [Google Scholar]
  78. Jutfelt F, Norin T, Ern R, Overgaard J, Wang T et al. 2018. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp. Biol. 221:jeb169615
    [Google Scholar]
  79. Kaiho K, Hasegawa T 1994. End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 111:29–43
    [Google Scholar]
  80. Kelly MW, Hofmann GE 2013. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27:980–90
    [Google Scholar]
  81. Kemp DB, Eichenseer K, Kiessling W 2015. Maximum rates of climate change are systematically underestimated in the geological record. Nat. Commun. 6:9890
    [Google Scholar]
  82. Kershaw S 2017. Palaeogeographic variation in the Permian–Triassic boundary microbialites: a discussion of microbial and ocean processes after the end-Permian mass extinction. J. Palaeogeogr. 6:97–107
    [Google Scholar]
  83. Kiessling W, Aberhan M, Brenneis B, Wagner PJ 2007. Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244:201–22
    [Google Scholar]
  84. Kiessling W, Simpson C 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17:56–67
    [Google Scholar]
  85. Knight KB, Nomade S, Renne PR, Marzoli A, Bertrand H, Youbi N 2004. The Central Atlantic Magmatic Province at the Triassic–Jurassic boundary: paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism. Earth Planet. Sci. Lett. 228:1143–60
    [Google Scholar]
  86. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW 2007. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256:295–313
    [Google Scholar]
  87. Komar N, Zeebe RE 2016. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography 31:115–30
    [Google Scholar]
  88. Korte C, Hesselbo SP, Jenkyns HC, Rickaby REM, Spotl C 2009. Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. J. Geol. Soc. 166:431–45
    [Google Scholar]
  89. Korte C, Kozur HW 2010. Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J. Asian Earth Sci. 39:215–35
    [Google Scholar]
  90. Kump LR, Arthur MA 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161:181–98
    [Google Scholar]
  91. Kuroda J, Ogawa N, Tanimizu M, Coffin M, Tokuyama H et al. 2007. Contemporaneous massive subaerial volcanism and late Cretaceous Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 256:211–23
    [Google Scholar]
  92. Lamborg C, Bowman K, Hammerschmidt C, Gilmour C, Munson K et al. 2014. Mercury in the Anthropocene ocean. Oceanography 27:76–87
    [Google Scholar]
  93. Lathuilière B, Marchal D 2009. Extinction, survival and recovery of corals from the Triassic to Middle Jurassic time. Terra Nova 21:57–66
    [Google Scholar]
  94. Lenoir J, Svenning J-C 2015. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38:15–28
    [Google Scholar]
  95. Lohbeck KT, Riebesell U, Reusch TBH 2014. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Proc. R. Soc. B 281:20140003
    [Google Scholar]
  96. Malinverno A, Erba E, Herbert TD 2010. Orbital tuning as an inverse problem: chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE. Paleoceanography 25:PA2203
    [Google Scholar]
  97. Martindale RC, Foster WJ, Velledits F 2019. The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513:100–15
    [Google Scholar]
  98. Maxwell EE, Vincent P 2016. Effects of the early Toarcian Oceanic Anoxic Event on ichthyosaur body size and faunal composition in the Southwest German Basin. Paleobiology 42:117–26
    [Google Scholar]
  99. McElwain JC 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–90
    [Google Scholar]
  100. McElwain JC, Wade-Murphy J, Hesselbo SP 2005. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435:479–82
    [Google Scholar]
  101. McInerney FA, Wing SL 2011. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39:489–516
    [Google Scholar]
  102. McLean DM 1980. Terminal Cretaceous catastrophe. Nature 287:760
    [Google Scholar]
  103. McRoberts CA, Newton CR 1995. Selective extinction among end-Triassic European bivalves. Geology 23:102–4
    [Google Scholar]
  104. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M et al. 2009. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny. ? Biogeosciences 6:2313–31
    [Google Scholar]
  105. Meyer KM, Kump LR, Ridgwell A 2008. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36:747–50
    [Google Scholar]
  106. Michaelidis B, Ouzounis C, Paleras A, Pörtner H 2005. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. Ser 293:109–18
    [Google Scholar]
  107. Munday PL 2014. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep 6:99
    [Google Scholar]
  108. Naafs BDA, Pancost RD 2016. Sea-surface temperature evolution across Aptian Oceanic Anoxic Event 1a. Geology 44:959–62
    [Google Scholar]
  109. Nguyen KDT, Morley SA, Lai C-H, Clark MS, Tan KS et al. 2011. Upper temperature limits of tropical marine ectotherms: global warming implications. PLOS ONE 6:e29340
    [Google Scholar]
  110. Ostrander CM, Owens JD, Nielsen SG 2017. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ∼94 Ma). Sci. Adv. 3:e1701020
    [Google Scholar]
  111. Pan T-CF, Applebaum SL, Manahan DT 2015. Experimental ocean acidification alters the allocation of metabolic energy. PNAS 112:4696–701
    [Google Scholar]
  112. Payne JL, Bush AM, Chang ET, Heim NA, Knope ML, Pruss SB 2016. Extinction intensity, selectivity and their combined macroevolutionary influence in the fossil record. Biol. Lett. 12:20160202
    [Google Scholar]
  113. Payne JL, Clapham ME 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?. Annu. Rev. Earth Planet. Sci. 40:89–111
    [Google Scholar]
  114. Peck LS, Morley SA, Clark MS 2010. Poor acclimation capacities in Antarctic marine ectotherms. Mar. Biol. 157:2051–59
    [Google Scholar]
  115. Peck LS, Webb KE, Bailey DM 2004. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18:625–30
    [Google Scholar]
  116. Penman DE 2016. Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum. Geology 44:731–34
    [Google Scholar]
  117. Penman DE, Hönisch B, Zeebe RE, Thomas E, Zachos JC 2014. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29:357–69
    [Google Scholar]
  118. Penman DE, Turner SK, Sexton PF, Norris RD, Dickson AJ et al. 2016. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene–Eocene Thermal Maximum. Nat. Geosci. 9:575–80
    [Google Scholar]
  119. Percival LME, Cohen AS, Davies MK, Dickson AJ, Hesselbo SP et al. 2016. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change. Geology 44:759–62
    [Google Scholar]
  120. Percival LME, Witt MLI, Mather TA, Hermoso M, Jenkyns HC et al. 2015. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: a link to the Karoo–Ferrar Large Igneous Province. Earth Planet. Sci. Lett. 428:267–80
    [Google Scholar]
  121. Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD et al. 2013. Evolutionary change during experimental ocean acidification. PNAS 110:6937–42
    [Google Scholar]
  122. Petsios E, Bottjer DJ 2016. Quantitative analysis of the ecological dominance of benthic disaster taxa in the aftermath of the end-Permian mass extinction. Paleobiology 42:380–93
    [Google Scholar]
  123. Pietsch C, Mata SA, Bottjer DJ 2014. High temperature and low oxygen perturbations drive contrasting benthic recovery dynamics following the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399:98–113
    [Google Scholar]
  124. Pogge von Strandmann PAE, Jenkyns HC, Woodfine RG 2013. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat. Geosci. 6:668–72
    [Google Scholar]
  125. Pörtner H-O 1995. Coordination of metabolism, acid‐base regulation and haemocyanin function in cephalopods. Mar. Freshw. Behav. Physiol. 25:131–48
    [Google Scholar]
  126. Pörtner H-O, Bock C, Mark FC 2017. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220:2685–96
    [Google Scholar]
  127. Pörtner H-O, Langenbuch M, Michaelidis B 2005. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J. Geophys. Res. 110:C9C09S10
    [Google Scholar]
  128. Racki G, Rakociński M, Marynowski L, Wignall PB 2018. Mercury enrichments and the Frasnian-Famennian biotic crisis: a volcanic trigger proved. ? Geology 46:543–46
    [Google Scholar]
  129. Raffi I, Backman J, Zachos JC, Sluijs A 2009. The response of calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic. Mar. Micropaleontol. 70:201–12
    [Google Scholar]
  130. Reddin CJ, Kocsis ÁT, Kiessling W 2018. Marine invertebrate migrations trace climate change over 450 million years. Glob. Ecol. Biogeogr. 27:704–13
    [Google Scholar]
  131. Renne PR, Sprain CJ, Richards MA, Self S, Vanderkluysen L, Pande K 2015. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350:76–78
    [Google Scholar]
  132. Richter K, Haslbeck M, Buchner J 2010. The heat shock response: life on the verge of death. Mol. Cell 40:253–66
    [Google Scholar]
  133. Ridgwell A, Zeebe R 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234:299–315
    [Google Scholar]
  134. Ries JB 2011. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim. Cosmochim. Acta 75:4053–64
    [Google Scholar]
  135. Ries JB, Cohen AL, McCorkle DC 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–34
    [Google Scholar]
  136. Romano C, Jenks JF, Jattiot R, Scheyer TM, Bylund KG, Bucher H 2017. Marine Early Triassic Actinopterygii from Elko County (Nevada, USA): implications for the Smithian equatorial vertebrate eclipse. J. Paleontol. 91:1025–46
    [Google Scholar]
  137. Ross PM, Parker L, Byrne M 2016. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J. Mar. Sci. 73:537–49
    [Google Scholar]
  138. Rothman DH 2017. Thresholds of catastrophe in the Earth system. Sci. Adv. 3:9e1700906
    [Google Scholar]
  139. Ruhl M, Bonis NR, Reichart G-J, Damste JSS, Kurschner WM 2011. Atmospheric carbon injection linked to End-Triassic mass extinction. Science 333:430–34
    [Google Scholar]
  140. Sanei H, Grasby SE, Beauchamp B 2012. Latest Permian mercury anomalies. Geology 40:63–66
    [Google Scholar]
  141. Scaife JD, Ruhl M, Dickson AJ, Mather TA, Jenkyns HC et al. 2017. Sedimentary mercury enrichments as a marker for submarine large igneous province volcanism? Evidence from the mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous). Geochem. Geophys. Geosystems 18:4253–75
    [Google Scholar]
  142. Schaller MF, Wright JD, Kent DV 2011. Atmospheric pCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331:1404–9
    [Google Scholar]
  143. Schlanger SO, Jenkyns HC 1976. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnb. 55:179–84
    [Google Scholar]
  144. Schmidt A, Skeffington RA, Thordarson T, Self S, Forster PM et al. 2016. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9:77–82
    [Google Scholar]
  145. Schobben M, Joachimski MM, Korn D, Leda L, Korte C 2014. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res 26:675–83
    [Google Scholar]
  146. Schobben M, van de Velde S, Gliwa J, Leda L, Korn D et al. 2017. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation. Clim. Past 13:1635–59
    [Google Scholar]
  147. Schoene B, Samperton KM, Eddy MP, Keller G, Adatte T et al. 2015. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347:182–84
    [Google Scholar]
  148. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–18
    [Google Scholar]
  149. Seibel BA 2011. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J. Exp. Biol. 214:326–36
    [Google Scholar]
  150. Self S, Schmidt A, Mather TA 2014. Emplacement characteristics, time scales, and volcanic gas release rates of continental flood basalt eruptions on Earth. Volcanism, Impacts, and Mass Extinctions: Causes and Effects G Keller, AC Kerr 319–37 Geol. Soc. Am. Spec. Pap. 505 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  151. Self S, Thordarson T, Widdowson M 2005. Gas fluxes from flood basalt eruptions. Elements 1:283–87
    [Google Scholar]
  152. Sibert E, Norris R, Cuevas J, Graves L 2016. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proc. R. Soc. B 283:20160189
    [Google Scholar]
  153. Silva-Tamayo JC, Lau KV, Jost AB, Payne JL, Wignall PB et al. 2018. Global perturbation of the marine calcium cycle during the Permian-Triassic transition. GSA Bull 130:1323–38
    [Google Scholar]
  154. Sluijs A, van Roij L, Harrington GJ, Schouten S, Sessa JA et al. 2014. Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. Clim. Past 10:1421–39
    [Google Scholar]
  155. Sokolova IM 2013. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53:597–608
    [Google Scholar]
  156. Sokolova IM, Lannig G 2008. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37:181–201
    [Google Scholar]
  157. Song H, Wignall PB, Chu D, Tong J, Sun Y et al. 2015. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Sci. Rep. 4:4132
    [Google Scholar]
  158. Spalding C, Finnegan S, Fischer WW 2017. Energetic costs of calcification under ocean acidification. Glob. Biogeochem. Cycles 31:866–77
    [Google Scholar]
  159. Speijer RP, Scheibner C, Stassen P, Morsi A-MM 2012. Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM). Austrian J. Earth Sci. 105:6–16
    [Google Scholar]
  160. Stapp LS, Parker LM, O'Connor WA, Bock C, Ross PM et al. 2018. Sensitivity to ocean acidification differs between populations of the Sydney rock oyster: role of filtration and ion-regulatory capacities. Mar. Environ. Res. 135:103–13
    [Google Scholar]
  161. Storey M, Duncan RA, Swisher CC 2007. Paleocene-Eocene Thermal Maximum and the opening of the northeast Atlantic. Science 316:587–89
    [Google Scholar]
  162. Stumpp M, Trübenbach K, Brennecke D, Hu MY, Melzner F 2012. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquat. Toxicol. 110–111:194–207
    [Google Scholar]
  163. Suan G, Mattioli E, Pittet B, Mailliot S, Lécuyer C 2008. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23:PA1202
    [Google Scholar]
  164. Sun H, Xiao Y, Gao Y, Zhang G, Casey JF, Shen Y 2018. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary. PNAS 115:3782–87
    [Google Scholar]
  165. Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y et al. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–70
    [Google Scholar]
  166. Sunday JM, Bates AE, Dulvy NK 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278:1823–30
    [Google Scholar]
  167. Sunday JM, Bates AE, Dulvy NK 2012. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2:686–90
    [Google Scholar]
  168. Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH 2014. Evolution in an acidifying ocean. Trends Ecol. Evol. 29:117–25
    [Google Scholar]
  169. Svensen H, Planke S, Malthe-Sørenssen A, Jamtveit B, Myklebust R et al. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542–45
    [Google Scholar]
  170. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F et al. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277:490–500
    [Google Scholar]
  171. Thibodeau AM, Ritterbush K, Yager JA, West AJ, Ibarra Y et al. 2016. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nat. Commun. 7:11147
    [Google Scholar]
  172. Thomas E 2007. Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth?. Large Ecosystem Perturbations: Causes and Consequences S Monechi, R Coccioni, MR Rampino 1–23 Geol. Soc. Am. Spec. Pap 424 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  173. Thomsen J, Casties I, Pansch C, Körtzinger A, Melzner F 2013. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob. Change Biol. 19:1017–27
    [Google Scholar]
  174. Thorne PM, Ruta M, Benton MJ 2011. Resetting the evolution of marine reptiles at the Triassic-Jurassic boundary. PNAS 108:8339–44
    [Google Scholar]
  175. Tobin TS, Wilson GP, Eiler JM, Hartman JH 2014. Environmental change across a terrestrial Cretaceous-Paleogene boundary section in eastern Montana, USA, constrained by carbonate clumped isotope pa-leothermometry. Geology 42:351–54
    [Google Scholar]
  176. Trabucho Alexandre J, Tuenter E, Henstra GA, van der Zwan KJ, van de Wal RSW et al. 2010. The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs. Paleoceanography 25:PA4201
    [Google Scholar]
  177. Turgeon SC, Creaser RA 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454:323–26
    [Google Scholar]
  178. van de Schootbrugge B, Bachan A, Suan G, Richoz S, Payne JL 2013. Microbes, mud and methane: cause and consequence of recurrent Early Jurassic anoxia following the end-Triassic mass extinction. Palaeontology 56:685–709
    [Google Scholar]
  179. Vaquer-Sunyer R, Duarte CM 2011. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17:1788–97
    [Google Scholar]
  180. Vázquez P, Clapham ME 2017. Extinction selectivity among marine fishes during multistressor global change in the end-Permian and end-Triassic crises. Geology 45:395–98
    [Google Scholar]
  181. Vinagre C, Leal I, Mendonça V, Madeira D, Narciso L et al. 2016. Vulnerability to climate warming and acclimation capacity of tropical and temperate coastal organisms. Ecol. Indicat. 62:317–27
    [Google Scholar]
  182. Vörös A, Kocsis ÁT, Pálfy J 2016. Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457:233–41
    [Google Scholar]
  183. Whiteley NM 2011. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430:257–71
    [Google Scholar]
  184. Wignall PB, Hallam A 1992. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93:21–46
    [Google Scholar]
  185. Xu W, Ruhl M, Hesselbo SP, Riding JB, Jenkyns HC 2017. Orbital pacing of the Early Jurassic carbon cycle, black-shale formation and seabed methane seepage. Sedimentology 64:127–49
    [Google Scholar]
  186. Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA et al. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–15
    [Google Scholar]
  187. Zachos JC, Wara MW, Bohaty S, Delaney ML, Petrizzo MR et al. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 302:1551–54
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060136
Loading
/content/journals/10.1146/annurev-earth-053018-060136
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error