1932

Abstract

Supraglacial meltwater channels that flow on the surfaces of glaciers, ice sheets, and ice shelves connect ice surface climatology with subglacial processes, ice dynamics, and eustatic sea level changes. Their important role in transferring water and heat across and into ice is currently absent from models of surface mass balance and runoff contributions to global sea level rise. Furthermore, relatively little is known about the genesis, evolution, hydrology, hydraulics, and morphology of supraglacial rivers, and a first synthesis and review of published research on these unusual features is lacking. To that end, we review their () known geographical distribution; () formation, morphology, and sediment transport processes; () hydrology and hydraulics; and () impact on ice sheet surface energy balance, heat exchange, basal conditions, and ice shelf stability. We conclude with a synthesis of key knowledge gaps and provide recommendations for future research.

  • ▪  Supraglacial streams and rivers transfer water and heat on glaciers, connecting climate with subglacial hydrology, ice sliding, and global sea level.
  • ▪  Ice surface melting may expand under a warming climate, darkening the ice surface and further increasing melt.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060212
2019-05-30
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060212.html?itemId=/content/journals/10.1146/annurev-earth-053018-060212&mimeType=html&fmt=ahah

Literature Cited

  1. Ahlmann HW 1922. Glaciers in Jotunheim and their physiography. Geogr. Ann. 4:1–57
    [Google Scholar]
  2. Ahlmann HW 1923. Physico-geographical researches in the Horung Massive, Jotunheim: the recrystallization of snow into firn and the glaciation of the latter. Geogr. Ann. 5:51–58
    [Google Scholar]
  3. Ahlmann HW, Rosenbaum L 1933. Scientific results of the Swedish-Norwegian Arctic Expedition in the summer of 1931, Parts I–III. Geogr. Ann. 15:1–68
    [Google Scholar]
  4. Allen GH, Pavelsky TM 2015. Patterns of river width and surface area newly revealed by the satellite-derived North American River Width (NARWidth) dataset. Geophys. Res. Lett. 42:395–402
    [Google Scholar]
  5. Allen GH, Pavelsky TM 2018. Global extent of rivers and streams. Science 361:585–88
    [Google Scholar]
  6. Andrews LC, Catania GA, Hoffman MJ, Gulley JD, Lüthi MP et al. 2014. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature 514:80–83
    [Google Scholar]
  7. Arnold NS, Banwell AF, Willis IC 2014. High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet. Cryosphere 8:41149–60
    [Google Scholar]
  8. Arnold NS, Rees WG, Hodson AJ, Kohler J 2006. Topographic controls on the surface energy balance of a high Arctic valley glacier. J. Geophys. Res. 111:F02011
    [Google Scholar]
  9. Arnold NS, Richards K, Willis I, Sharp M 1998. Initial results from a distributed, physically based model of glacier hydrology. Hydrol. Process. 12:2191–219
    [Google Scholar]
  10. Banwell AF, Arnold NS, Willis IC, Tedesco M, Ahlstrøm AP 2012. Modeling supraglacial water routing and lake filling on the Greenland Ice Sheet. J. Geophys. Res. 117:F04012
    [Google Scholar]
  11. Banwell AF, Hewitt I, Willis I, Arnold N 2016. Moulin density controls drainage development beneath the Greenland ice sheet. J. Geophys. Res. Earth Surf. 121:122248–69
    [Google Scholar]
  12. Banwell AF, MacAyeal DR, Sergienko OV 2013a. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett. 40:225872–76
    [Google Scholar]
  13. Banwell AF, Willis IC, Arnold NS 2013b. Modeling subglacial water routing at Paakitsoq, W Greenland. J. Geophys. Res. Earth Surf. 118:31282–95
    [Google Scholar]
  14. Barr W 2015. Alfred de Quervain's Swiss Greenland expeditions, 1909 and 1912. Polar Rec 51:4366–85
    [Google Scholar]
  15. Bartholomew ID, Nienow P, Sole A, Douglas M, Cowton T et al. 2011a. Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys. Res. Lett. 38:L08502
    [Google Scholar]
  16. Bartholomew ID, Nienow P, Sole A, Mair D, Cowton T et al. 2011b. Seasonal variations in Greenland Ice Sheet motion: inland extent and behaviour at higher elevations. Earth Planet. Sci. Lett. 307:3–4271–78
    [Google Scholar]
  17. Behrens H, Bergmann H, Moser H, Ambach W, Jochum O 1971. On the water channels of the internal drainage system of the Hintereisferner, Ötztal Alps, Austria. J. Glaciol. 14:72375–82
    [Google Scholar]
  18. Bell RE, Chu W, Kingslake J, Das I, Tedesco M et al. 2017. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 544:7650344–48
    [Google Scholar]
  19. Benson CS 1960. Stratigraphic studies in the snow and firn of the Greenland ice sheet PhD Diss. Calif. Inst. Technol. Pasadena:
  20. Bingham RG, Nienow PW, Sharp MJ, Boon S 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. J. Glaciol. 51:17215–24
    [Google Scholar]
  21. Birnie RV, Gordon JE 1980. Drainage systems associated with snow melt, South Shetland Islands, Antarctica. Geogr. Ann. Ser. A Phys. Geogr. 62:1–257–62
    [Google Scholar]
  22. Bøggild CE, Brandt RE, Brown KJ, Warren SG 2010. The ablation zone in northeast Greenland: ice types, albedos and impurities. J. Glaciol. 56:195101–13
    [Google Scholar]
  23. Bonnema MG, Sikder S, Hossain F, Durand M, Gleason CJ, Bjerklie DM 2016. Benchmarking wide swath altimetry-based river discharge estimation algorithms for the Ganges river system. Water Resour. Res. 52:42439–61
    [Google Scholar]
  24. Braudrick CA, Dietrich WE, Leverich GT, Sklar LS 2009. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. PNAS 106:4016936–41
    [Google Scholar]
  25. Brykala D 1998a. Evolution of supraglacial drainage on Waldemar Glacier (Spitsbergen) in the period 1936–1998. Polish Polar Studies: 25th International Polar Symposium247–61 Warsaw: Inst. Geofiz. Polskiej Akad. Nauk
    [Google Scholar]
  26. Brykala D 1998b. Short-term changes of flow intensity and hydraulic geometry of the supraglacial stream on the Waldemar Glacier (NW Spitsbergen). Quaternary Paleogeography and Changes of the Polar Environment: Polar Session. IV Conference of Polish Geomorphologists, Lublin, 3–6 June 199825–39 Lublin, Pol.: Maria Curie-Skłodowska Univ. Press
    [Google Scholar]
  27. Brykala D 1999. Hydraulic geometry of a supraglacial stream on the Waldemar Glacier (Spitsbergen) in the summer of 1997. Pol. Polar Stud. 26:51–64
    [Google Scholar]
  28. Burkimsher M 1983. Investigations of glacier hydrological systems using dye tracer techniques: observations at Pasterzengletscher, Austria. J. Glaciol. 29:103403–16
    [Google Scholar]
  29. Carver S, Sear D, Valentine E 1994. An observation of roll waves in a supraglacial meltwater channel, Harlech Gletscher, East Greenland. J. Glaciol. 40:13475–78
    [Google Scholar]
  30. Catania GA, Neumann TA 2010. Persistent englacial drainage features in the Greenland Ice Sheet. Geophys. Res. Lett. 37:L02501
    [Google Scholar]
  31. Cathles LM, Abbot DS, Bassis JN, MacAyeal DR 2011. Modeling surface-roughness/solar-ablation feedback: application to small-scale surface channels and crevasses of the Greenland ice sheet. Ann. Glaciol. 52:5999–108
    [Google Scholar]
  32. Chandler DM, Wadham JL, Lis GP, Cowton T, Sole A et al. 2013. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 6:3195–98
    [Google Scholar]
  33. Chapman FS 1932. Northern Lights: The Official Account of the British Arctic Air-Route Expedition London: Chatto and Windus
  34. Charalampidis C, van As D, Colgan WT, Fausto RS, Macferrin M, Machguth H 2016. Thermal tracing of retained meltwater in the lower accumulation area of the Southwestern Greenland ice sheet. Ann. Glaciol. 57:721–10
    [Google Scholar]
  35. Chow VTE 1959. Open-Channel Hydraulics New York: McGraw-Hill
  36. Chu VW 2014. Greenland ice sheet hydrology: a review. Prog. Phys. Geogr. 38:119–54
    [Google Scholar]
  37. Chu W, Creyts TT, Bell RE 2016a. Rerouting of subglacial water flow between neighboring glaciers in West Greenland. J. Geophys. Res. Earth Surf. 121:925–38
    [Google Scholar]
  38. Chu W, Schroeder DM, Seroussi H, Creyts TT, Palmer SJ, Bell RE 2016b. Extensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophys. Res. Lett. 43:2412484–92
    [Google Scholar]
  39. Church M 2006. Bed material transport and the morphology of alluvial river channels. Annu. Rev. Earth Planet. Sci. 34:325–54
    [Google Scholar]
  40. Clarke GKC 2003. Hydraulics of subglacial outburst floods: new insights from the Spring-Hutter formulation. J. Glaciol. 49:165299–313
    [Google Scholar]
  41. Clason CC, Mair DWF, Nienow PW, Bartholomew ID, Sole A et al. 2015. Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland. Cryosphere 9:1123–38
    [Google Scholar]
  42. Colgan W, Sommers A, Rajaram H, Abdalati W, Frahm J 2015. Considering thermal-viscous collapse of the Greenland ice sheet. Earth's Future 3:252–67
    [Google Scholar]
  43. Colgan W, Steffen K, McLamb WS, Abdalati W, Rajaram H et al. 2011. An increase in crevasse extent, West Greenland: hydrologic implications. Geophys. Res. Lett. 38:L18502
    [Google Scholar]
  44. Cooley SW, Smith LC, Ryan JC, Pitcher LH, Pavelsky TM 2019. Arctic-Boreal lake dynamics revealed using CubeSat imagery. Geophys. Res. Lett. In press. https://doi.org/10.1029/2018GL081584
    [Crossref] [Google Scholar]
  45. Cooley SW, Smith LC, Stepan L, Mascaro J 2017. Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery. Remote Sens 9:121306
    [Google Scholar]
  46. Cooper MG, Smith LC, Rennermalm AK, Miège C, Pitcher LH et al. 2018. Near surface meltwater storage in low-density bare ice of the Greenland ice sheet ablation zone. Cryosphere 12:955–70
    [Google Scholar]
  47. Cowton T, Nienow P, Sole A, Wadham J, Lis G et al. 2013. Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier. J. Geophys. Res. Earth Surf. 118:129–41
    [Google Scholar]
  48. Cuffey K, Paterson WSB 2010. The Physics of Glaciers Burlington, MA: Elsevier. , 4th ed..
  49. Das SB, Joughin I, Behn MD, Howat IM, King MA et al. 2008. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 320:5877778–81
    [Google Scholar]
  50. David TW, Priestley E 1914. British Antarctic Expedition, 1907–9, Under the Command of Sir E.H. Shackleton, c.v.o. Reports on the Scientific Investigations, Geology Vol. 1: Glaciology, Physiography, Stratigraphy and Tectonic Geology of South Victoria Land London: William Heinemann
  51. de Fleurian B, Morlighem M, Seroussi H, Rignot E, van den Broeke MR et al. 2016. A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland. J. Geophys. Res. Earth Surf. 121:101834–48
    [Google Scholar]
  52. DeConto RM, Pollard D 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531:7596591–97
    [Google Scholar]
  53. Dewart G 1966. Moulins on Kaskawulsh Glacier, Yukon Territory. J. Glaciol. 6:44320–21
    [Google Scholar]
  54. Dowdeswell JA 1982. Supraglacial re-sedimentation from melt-water streams on to snow overlying glacier ice, Sylgjujökull, West Vatnajökull, Iceland. J. Glaciol. 28:99365–75
    [Google Scholar]
  55. Dozier J 1974. Channel adjustment in supraglacial streams. Icefield Ranges Research Project Scientific Results VC Bushnell, MG Marcus 4189–205 New York: Am. Geogr. Soc.
    [Google Scholar]
  56. Dozier J 1976. An examination of the variance minimization tendencies of a supraglacial stream. J. Hydrol. 31:3–4359–80
    [Google Scholar]
  57. Durand M, Gleason CJ, Garambois PA, Bjerklie D, Smith LC et al. 2016. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res. 52:64527–49
    [Google Scholar]
  58. Dutton A, Carlson AE, Long AJ, Milne GA, Clark PU et al. 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349:6244aaa4019
    [Google Scholar]
  59. Echelmeyer K, Harrison WD 1990. Jakobshavns Isbræ, West Greenland: seasonal variations in velocity—or lack thereof. J. Glaciol. 36:12282–88
    [Google Scholar]
  60. Ewing KJ 1970. Supraglacial streams of the Kaskawulsh Glacier. Icefield Ranges Research Project, Scientific Results VC Bushnell, RH Ragle 3153–62 New York: Am. Geogr. Soc.
    [Google Scholar]
  61. Ferguson RI 1973. Sinuosity of supraglacial streams. Geol. Soc. Am. Bull. 84:1251–56
    [Google Scholar]
  62. Flett V, Maurice L, Finlayson A, Black AR, MacDonald AM et al. 2017. Meltwater flow through a rapidly deglaciating glacier and foreland catchment system: Virkisjökull, SE Iceland. Hydrol. Res. 48:61666–81
    [Google Scholar]
  63. Flowers GE 2018. Hydrology and the future of the Greenland Ice Sheet. Nat. Commun. 9:12729
    [Google Scholar]
  64. Fortner SK, Tranter M, Fountain A, Lyons WB, Welch KA 2005. The geochemistry of supraglacial streams of Canada Glacier, Taylor Valley (Antarctica), and their evolution into proglacial waters. Aquat. Geochem. 11:4391–412
    [Google Scholar]
  65. Fountain AG, Walder JS 1998. Water flow through temperate glaciers. Rev. Geophys. 36:3299–328
    [Google Scholar]
  66. Germain SLS, Moorman BJ 2016. The development of a pulsating supraglacial stream. Ann. Glaciol. 57:7231–38
    [Google Scholar]
  67. Gleason CJ, Smith LC 2014. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. PNAS 111:134788–91
    [Google Scholar]
  68. Gleason CJ, Smith LC, Chu VW, Legleiter CJ, Pitcher LH et al. 2016. Characterizing supraglacial meltwater channel hydraulics on the Greenland Ice Sheet from in situ observations. Earth Surf. Process. Landf. 41:142111–22
    [Google Scholar]
  69. Gleason CJ, Smith LC, Lee J 2014. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: sensitivity to river form and optimization parameters. Water Resour. Res. 50:129604–19
    [Google Scholar]
  70. Gleason CJ, Wang J 2015. Theoretical basis for at-many-stations hydraulic geometry. Geophys. Res. Lett. 42:177107–14
    [Google Scholar]
  71. Glen AR 1941. A Sub-Arctic glacier cap: the West Ice of North East Land. Geogr. J. 98:265–76
    [Google Scholar]
  72. Greenwood SL, Clason CC, Helanow C, Margold M 2016. Theoretical, contemporary observational and palaeo-perspectives on ice sheet hydrology: processes and products. Earth-Sci. Rev. 155:1–27
    [Google Scholar]
  73. Greuell W 2000. Melt-water accumulation on the surface of the Greenland ice sheet: effect on albedo and mass balance. Geogr. Ann. Ser. A Phys. Geogr. 82:4489–98
    [Google Scholar]
  74. Hagemann MW, Gleason CJ, Durand MT 2017. BAM: Bayesian AMHG-Manning inference of discharge using remotely sensed stream width, slope, and height. Water Resour. Res. 53:119692–707
    [Google Scholar]
  75. Hagen JO, Liestøl O, Roland E, Jørgensen T 1993. Glacier Atlas of Svalbard and Jan Mayen Oslo: Norsk Polarinstitutt
  76. Hambrey MJ 1977. Supraglacial drainage and its relationship to structure, with particular reference to Charles Rabots Bre, Okstindan, Norway. Nor. Geogr. Tidsskr.–Nor. J. Geogr. 31:269–77
    [Google Scholar]
  77. Hammer KM, Smith ND 1983. Sediment production and transport in a proglacial stream: Hilda Glacier, Alberta, Canada. Boreas 12:291–106
    [Google Scholar]
  78. Harrington JA, Humphrey NF, Harper JT 2015. Temperature distribution and thermal anomalies along a flowline of the Greenland ice sheet. Ann. Glaciol. 56:7098–104
    [Google Scholar]
  79. Hock R, Iken A, Wangler A 1999. Tracer experiments and borehole observations in the overdeepening of Aletschgletscher, Switzerland. Ann. Glaciol. 28:253–60
    [Google Scholar]
  80. Hodgkins R 1997. Glacier hydrology in Svalbard, Norwegian High Arctic. Quat. Sci. Rev. 16:9957–73
    [Google Scholar]
  81. Hodgkins R 2001. Seasonal evolution of meltwater generation, storage and discharge at a non-temperate glacier in Svalbard. Hydrol. Process. 15:3441–60
    [Google Scholar]
  82. Hodson A, Anesio AM, Ng F, Watson R, Quirk J et al. 2007. A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire arctic supraglacial ecosystem. J. Geophys. Res. 112:G04S36
    [Google Scholar]
  83. Holmes G 1955. Morphology and hydrology of the Mint Julep area, southwest Greenland. Project Mint Julep: Investigation of Smooth Ice Areas of the Greenland Ice Cap, 1953; Part II: Special Scientific Reports Maxwell Air Force Base, AL: Arct. Desert Tropic Inf. Cent., Res. Stud. Inst., Air Univ.
    [Google Scholar]
  84. Hooke RL 1989. Englacial and subglacial hydrology: a qualitative review. Arct. Alp. Res. 21:3221–33
    [Google Scholar]
  85. Howat IM, de la Peña S, van Angelen JH, Lenaerts JTM, van den Broeke MR 2013. Brief communication “expansion of meltwater lakes on the Greenland Ice Sheet. .” Cryosphere 7:201–4
    [Google Scholar]
  86. Hubbard B, Nienow P 1997. Alpine subglacial hydrology. Quat. Sci. Rev. 16:9939–55
    [Google Scholar]
  87. Hugget RJ 2007. Fundamentals of Geomorphology 11 London: Routledge Taylor & Francis Group. , 2nd ed..
  88. Ignéczi Á, Sole AJ, Livingstone SJ, Leeson AA, Fettweis X et al. 2016. Northeast sector of the Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century. Geophys. Res. Lett. 43:189729–38
    [Google Scholar]
  89. Iken A 1972. Measurements of water pressure in moulins as part of a movement study of the White Glacier, Axel Heiberg Island, Northwest Territories, Canada. J. Glaciol. 11:6153–58
    [Google Scholar]
  90. Iken A, Bindschadler RA 1986. Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol. 32:110101–19
    [Google Scholar]
  91. Irvine-Fynn TDL, Hodson AJ, Moorman BJ, Vatne G, Hubbard AL 2011. Polythermal glacier hydrology: a review. Rev. Geophys. 49:4RG4002
    [Google Scholar]
  92. Isenko E, Mavlyudov B 2002. On the intensity of ice melting in supraglacial and englacial channels. Bull. Glaciol. Res. 19:93–99
    [Google Scholar]
  93. Isenko E, Naruse R, Mavlyudov B 2005. Water temperature in englacial and supraglacial channels: change along the flow and contribution to ice melting on the channel wall. Cold Reg. Sci. Technol. 42:153–62
    [Google Scholar]
  94. Jarosch AH, Gudmundsson MT 2012. A numerical model for meltwater channel evolution in glaciers. Cryosphere 6:2493–503
    [Google Scholar]
  95. Jarvis GT, Clarke GK 1974. Thermal effects of crevassing on Steele Glacier, Yukon Territory, Canada. J. Glaciol. 13:68243–54
    [Google Scholar]
  96. Karlstrom L, Gajjar P, Manga M 2013. Meander formation in supraglacial streams. J. Geophys. Res. Earth Surf. 118:31897–907
    [Google Scholar]
  97. Karlstrom L, Yang K 2016. Fluvial supraglacial landscape evolution on the Greenland Ice Sheet. Geophys. Res. Lett. 43:62683–92
    [Google Scholar]
  98. Karlstrom L, Zok A, Manga M 2014. Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia. Cryosphere 8:2537–46
    [Google Scholar]
  99. King L, Hassan MA, Yang K, Flowers G 2016. Flow routing for delineating supraglacial meltwater channel networks. Remote Sens 8:12988
    [Google Scholar]
  100. Kingslake J, Ely JC, Das I, Bell RE 2017. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544:7650349–52
    [Google Scholar]
  101. Kingslake J, Ng F, Sole A 2015. Modelling channelized surface drainage of supraglacial lakes. J. Glaciol. 61:225185–99
    [Google Scholar]
  102. Knighton AD 1972. Meandering habit of supraglacial streams. Bull. Geol. Soc. Am. 83:1201–4
    [Google Scholar]
  103. Knighton AD 1981. Channel form and flow characteristics of supraglacial streams, Austre Okstindbreen, Norway. Arct. Alp. Res. 13:3295–306
    [Google Scholar]
  104. Knighton AD 1985. Channel form adjustment in supraglacial streams, Austre Okstindbreen, Norway. Arct. Alp. Res. 17:4451–66
    [Google Scholar]
  105. Knighton D 1998. Fluvial Forms and Processes: A New Perspective London: Arnold
  106. Koenig LS, Lampkin DJ, Montgomery LN, Hamilton SL, Turrin JB et al. 2015. Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet. Cryosphere 9:41333–42
    [Google Scholar]
  107. Kohler J 1995. Determining the extent of pressurized flow beneath Storglaciaren, Sweden, using results of tracer experiments and measurements of input and output discharge. J. Glaciol. 41:138217–31
    [Google Scholar]
  108. Kostrzewski A, Zwolinski Z 1995. Hydraulic geometry of a supraglacial stream, Ragnarbreen, Spitsbergen. Quaest. Geogr.4165–76
    [Google Scholar]
  109. Krimmel RM, Tangborn WV, Meier MF 1972. Water flow through a temperate glacier. The Role of Snow and Ice in Hydrology Symposium, Proceedings 1401–16 Banff: UNESCO-WMO-IASH/UNESCO-OMM-AISH
    [Google Scholar]
  110. KSS. 1934. Review: the Swedish-Norwegian arctic expedition, 1931. Geogr. J. 83:5420–25
    [Google Scholar]
  111. Lampkin DJ, VanderBerg J 2014. Supraglacial melt channel networks in the Jakobshavn Isbræ region during the 2007 melt season. Hydrol. Process. 28:256038–53
    [Google Scholar]
  112. Lawson DE 1993. Glaciohydrologic and Glaciohydraulic Effects on Runoff and Sediment Yield in Glacierized Basins Hanover: NH: US Army Corps Eng. Cold Reg. Res. Eng. Lab.
  113. Leeson AA, Shepherd A, Briggs K, Howat I, Fettweis X et al. 2015. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nat. Clim. Change 5:151–55
    [Google Scholar]
  114. Legleiter CJ, Tedesco M, Smith LC, Behar AE, Overstreet BT 2014. Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images. Cryosphere 8:215–28
    [Google Scholar]
  115. Leopold LB, Maddock TJ 1953. The hydraulic geometry of stream channels and some physiographic implications US Geol. Surv. Prof. Pap. 252 Dep. Interior Washington, DC:
  116. Leopold LB, Wolman MG 1960. River meanders. Bull. Geol. Soc. Am. 71:6769–93
    [Google Scholar]
  117. Liestøl O 1993. Glaciers of Europe—Glaciers of Svalbard, Norway. Satellite Image Atlas of Glaciers of the World RS Williams Jr., JG Ferrigno E127–51 Washington, DC: US Gov. Print. Off.
    [Google Scholar]
  118. Lindsay M 1935. The British Trans-Greenland Expedition, 1934. Geogr. J. 85:5393–408
    [Google Scholar]
  119. Lindskog E 1928. The drainage, especially that of the Styggedal Glacier. Geogr. Ann. 10:308–39
    [Google Scholar]
  120. Locker AR 1951. Operation Skyline Rep. 6th Air Rescue Squadron, Northeast Air Command, US Air Force
  121. Lüthi MP, Ryser C, Andrews LC, Catania GA, Funk M et al. 2015. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming. Cryosphere 9:1245–53
    [Google Scholar]
  122. MacDonald AM, Black AR, Ó Dochartaigh BE, Everest J, Darling WG et al. 2016. Using stable isotopes and continuous meltwater river monitoring to investigate the hydrology of a rapidly retreating Icelandic outlet glacier. Ann. Glaciol. 57:72151–58
    [Google Scholar]
  123. Macdonald GJ, Banwell AF, Macayeal DR 2018. Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland. Ann. Glaciol. 59:7656–65
    [Google Scholar]
  124. Machguth H, MacFerrin M, van As D, Box JE, Charalampidis C et al. 2016. Greenland meltwater storage in firn limited by near-surface ice formation. Nat. Clim. Change 6:4390–95
    [Google Scholar]
  125. Mantelli E, Camporeale C, Ridolfi L 2015. Supraglacial channel inception: modeling and processes. Water Resour. Res. 51:97044–63
    [Google Scholar]
  126. Marston RA 1983. Supraglacial stream dynamics on the Juneau Icefield. Ann. Assoc. Am. Geogr. 73:4597–608
    [Google Scholar]
  127. McGrath D, Colgan W, Steffen K, Lauffenburger P, Balog J 2011. Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq ablation region, Greenland ice sheet. J. Glaciol. 57:205954–64
    [Google Scholar]
  128. Mernild SH, Hasholt B, Liston GE 2006. Water flow through Mittivakkat Glacier, Ammassalik Island, SE Greenland. J. Geog. 106:125–44
    [Google Scholar]
  129. Mernild SH, Hasholt B, Liston GE 2008. Climatic control on river discharge simulations, Zackenberg River drainage basin, northeast Greenland. Hydrol. Process. 22:121932–48
    [Google Scholar]
  130. Mernild SH, Liston GE, van den Broeke M 2012. Simulated internal storage buildup, release, and runoff from Greenland Ice Sheet at Kangerlussuaq, West Greenland. Arct. Antarct. Alp. Res. 44:183–94
    [Google Scholar]
  131. Müller F, Iken A 1973. Velocity fluctuations and water regime of Arctic valley glaciers. Symposium on the Hydrology of Glaciers165–82 London: Int. Assoc. Sci. Hydrol.
    [Google Scholar]
  132. Munneke PK, Luckman AJ, Bevan SL, Smeets CJPP, Gilbert E et al. 2018. Intense winter surface melt on an Antarctic ice shelf. Geophys. Res. Lett. 45:7615–23
    [Google Scholar]
  133. Munro SD 2010. Runoff response time of a loosely defined supraglacial microbasin. Hydrol. Earth Syst. Sci. Discuss. 7:1569–87
    [Google Scholar]
  134. Munro SD 2011. Delays of supraglacial runoff from differently defined microbasin areas on the Peyto Glacier. Hydrol. Process. 25:192983–94
    [Google Scholar]
  135. Nansen F 1906. The First Crossing of Greenland London: Longmans Green & Co.
  136. Nobles LH 1960. Glaciological investigations, Nunatarssuaq ice ramp, northwestern Greenland Tech. Rep. 66 US Army Snow, Ice Permafr. Res. Establ., Corps Eng. Wilmette, IL:
  137. Onesti LJ 1985. Meteorological conditions that initiate slushflows in the Central Brooks Range, Alaska. Ann. Glaciol. 6:23–25
    [Google Scholar]
  138. Onesti LJ, Hestnes E 1989. Slush-flow questionnaire. Ann. Glaciol. 13:226–30
    [Google Scholar]
  139. Orheim O, Lucchitta BK 1987. Snow and ice studies by Thematic Mapper and Multispectral Scanner Landsat images. Ann. Glaciol. 9:109–18
    [Google Scholar]
  140. Overeem I, Hudson B, Welty E, Mikkelsen A, Bamber J et al. 2015. River inundation suggests ice-sheet runoff retention. J. Glaciol. 61:228776–88
    [Google Scholar]
  141. Palmer S, Shepherd A, Nienow P, Joughin I 2011. Seasonal speedup of the Greenland ice sheet linked to routing of surface water. Earth Planet. Sci. Lett. 302:3–4423–28
    [Google Scholar]
  142. Parker G 1975. Meandering of supraglacial melt streams. Water Resour. Res. 11:4551–52
    [Google Scholar]
  143. Pekel J-F, Cottam A, Gorelick N, Belward AS 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540:7633418–22
    [Google Scholar]
  144. Pelto M 2018. Nioghalvfjerdsbræ 70 km+ long supraglacial stream, Greenland's longest. ? AGU Blogosphere, From a Glacier's Perspective June 27. https://blogs.agu.org/fromaglaciersperspective/2018/06/27/nioghalvfjerdsbrae-70-km-long-supraglacial-stream-greenlands-longest/
  145. Phillips HA 1998. Surface meltstreams on the Amery Ice Shelf, East Antarctica. Ann. Glaciol. 27:177–81
    [Google Scholar]
  146. Phillips T, Leyk S, Rajaram H, Colgan W, Abdalati W et al. 2011. Modeling moulin distribution on Sermeq Avannarleq glacier using ASTER and WorldView imagery and fuzzy set theory. Remote Sens. Environ. 115:92292–301
    [Google Scholar]
  147. Phillips T, Rajaram H, Colgan W, Steffen K, Abdalati W 2013. Evaluation of cryo-hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, West Greenland. J. Geophys. Res. Earth Surf. 118:31241–56
    [Google Scholar]
  148. Phillips T, Rajaram H, Steffen K 2010. Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett. 37:20L20503
    [Google Scholar]
  149. Poinar K, Joughin I, Das SB, Behn MD, Lenaerts JTM, van den Broeke MR 2015. Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophys. Res. Lett. 42:61800–7
    [Google Scholar]
  150. Rack W, Rott H 2004. Pattern of retreat and disintegration of the Larsen B Ice Shelf, Antarctic Peninsula. Ann. Glaciol. 39:505–10
    [Google Scholar]
  151. Raymond CF, Nolan M 2000. Drainage of a glacial lake through an ice spillway. Debris-Covered Glaciers: Proceedings of an International Workshop Held in Seattle, WA, USA, September 13–15, 2000 M Nakawo, A Fountain, CF Raymond 199–210 Oxfordshire, UK: IAHS Press
    [Google Scholar]
  152. Rennermalm AK, Moustafa SE, Mioduszewski J, Chu VW, Forster RR et al. 2013a. Understanding Greenland ice sheet hydrology using an integrated multi-scale approach. Environ. Res. Lett. 8:015017
    [Google Scholar]
  153. Rennermalm AK, Smith LC, Chu VW, Forster RR, van den Broeke M et al. 2013b. Evidence of meltwater retention within the Greenland ice sheet. Cryosphere 7:1443–45
    [Google Scholar]
  154. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38:L05503
    [Google Scholar]
  155. Rippin DM, Pomfret A, King N 2015. High resolution mapping of supra-glacial drainage pathways reveals link between micro-channel drainage density, surface roughness and surface reflectance. Earth Surf. Process. Landf. 40:101279–90
    [Google Scholar]
  156. Roscoe JH 1952. Contributions to the study of Antarctic surface features by photogeographical methods PhD Diss., Univ Maryland, College Park:
  157. Ryan JC, Hubbard A, Box JE, Brough S, Cameron K et al. 2017a. Derivation of high spatial resolution albedo from UAV digital imagery: application over the Greenland Ice Sheet. Front. Earth Sci. 5:40
    [Google Scholar]
  158. Ryan JC, Hubbard A, Irvine-Fynn TD, Doyle SH, Cook JM et al. 2017b. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet. ? Geophys. Res. Lett. 44:126218–25
    [Google Scholar]
  159. Ryan JC, Hubbard A, Stibal M, Box JE, Dark Snow Proj. Team. 2016. Attribution of Greenland's ablating ice surfaces on ice sheet albedo using unmanned aerial systems. Cryosphere Discuss https://doi.org/10.5194/tc-2016-204
  160. Ryan JC, Hubbard A, Stibal M, Irvine-Fynn TD, Cook J et al. 2018. Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nat. Commun. 9:1065
    [Google Scholar]
  161. SanClements MD, Smith HJ, Foreman CM, Tedesco M, Chin YP et al. 2017. Biogeophysical properties of an expansive Antarctic supraglacial stream. Antarct. Sci. 29:133–44
    [Google Scholar]
  162. Sasgen I, van den Broeke M, Bamber JL, Rignot E, Sørensen LS et al. 2012. Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett. 333–34:293–303
    [Google Scholar]
  163. Scambos TA, Bohlander JA, Shuman CA, Skvarca P 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31:182001–4
    [Google Scholar]
  164. Scambos TA, Fricker HA, Liu CC, Bohlander J, Fastook J et al. 2009. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett. 280:1–451–60
    [Google Scholar]
  165. Scambos TA, Hulbe CL, Fahnestock M, Bohlander J 2000. The link between climate warming and ice shelf breakups in the Antarctic Peninsula. J. Glaciol. 46:154516–30
    [Google Scholar]
  166. Schoof C 2010. Ice-sheet acceleration driven by melt supply variability. Nature 468:7325803–6
    [Google Scholar]
  167. Scott D, Hood E, Nassry M 2010. In-stream uptake and retention of C, N, and P in a supraglacial stream. Ann. Glaciol. 51:5680–86
    [Google Scholar]
  168. Seaberg SZ, Seaberg JZ, Hooke RL, Wiberg DW 1988. Character of the englacial and subglacial drainage system in the lower part of the ablation area of Storglaciären, Sweden, as revealed by dye-trace studies. J. Glaciol. 34:117228–31
    [Google Scholar]
  169. Selmes N, Murray T, James TD 2011. Fast draining lakes on the Greenland Ice Sheet. Geophys. Res. Lett. 38:L15501
    [Google Scholar]
  170. Sharp RP 1947. The Wolf Creek Glaciers, St. Elias Range, Yukon Territory. Geogr. Rev. 37:126–52
    [Google Scholar]
  171. Smith LC, Chu VW, Yang K, Gleason CJ, Pitcher LH et al. 2015. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland Ice Sheet. PNAS 112:41001–6
    [Google Scholar]
  172. Smith LC, Yang K, Pitcher LH, Overstreet BT, Chu VW et al. 2017. Direct measurements of meltwater runoff on the Greenland Ice Sheet surface. PNAS 114:50201707743
    [Google Scholar]
  173. Stanley AD 1972. Observations of the surge of Steele Glacier. Icefield Ranges Research Project Scientific Results 3 VC Bushnell, RH Ragle 61–69 New York: Am. Geogr. Soc. Arct. Inst. N. Am.
    [Google Scholar]
  174. Stenborg T 1968. Glacier drainage connected with ice structures. Geogr. Ann. Ser. A Phys. Geogr. 50:125–53
    [Google Scholar]
  175. Stenborg T 1969. Studies of the internal drainage of glaciers. Geogr. Ann. Ser. A Phys. Geogr. 51:1/213–41
    [Google Scholar]
  176. Stibal M, Šabacká M, Žárský J 2012. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5:11771–74
    [Google Scholar]
  177. Sturm M, Cosgrove DM 1990. An unusual jökulhlaup involving potholes on Black Rapids Glacier, Alaska Range, Alaska, U.S.A. J. Glaciol. 36:122125–26
    [Google Scholar]
  178. Sugiyama S, Sakakibara D, Matsuno S, Yamaguchi S, Matoba S, Aoki T 2014. Initial field observations on Qaanaaq ice cap, northwestern Greenland. Ann. Glaciol. 55:6625–33
    [Google Scholar]
  179. Swithinbank C 1988. Satellite image atlas of glaciers of the world: Antarctica US Geol. Surv. Prof. Pap. 1386-B US Dep. Interior Washington, DC:
  180. Takeuchi N 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationships between light absorbency and the property of organic matter contained in the cryoconite. Ann. Glaciol. 34:409–14
    [Google Scholar]
  181. Tedesco M, Steiner N 2011. In-situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft. Cryosphere 5:2445–52
    [Google Scholar]
  182. Tedesco M, Willis IC, Hoffman MJ, Banwell AF, Alexander P, Arnold NS 2013. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environ. Res. Lett. 8:3034007
    [Google Scholar]
  183. Thomsen HH 1986. Photogrammetric and satellite mapping of the margin of the inland ice, West Greenland. Ann. Glaciol. 8:164–67
    [Google Scholar]
  184. Thomsen HH, Thorning L, Braithwaite RJ 1988. Glacier-hydrological conditions on the Inland Ice north-east of Jakobshavn/Ilulissat, West Greenland Rep. 138 Grønlands Geol. Unders. Denmark:
  185. Thomsen HH, Thorning L, Olesen OB 1989. Applied glacier research for planning hydro-electric power, Ilulissat/Jakobshavn, West Greenland. Ann. Glaciol. 13:257–61
    [Google Scholar]
  186. Tranter M, Brown G, Raiswell R, Sharp M, Gurnell A 1993. A conceptual model of solute acquisition by Alpine glacial meltwaters. J. Glaciol. 39:133573–81
    [Google Scholar]
  187. US Army Corps Eng. (USACE). 1947. Investigation of construction and maintenance of airdromes on ice, 1947–1948: report of Corps of Engineers observers on Project Snowman of Atlantic Division, ATC Tech. Rep. 15 US Army Corps Eng. N. Engl. Div. Boston, MA:
  188. US Army Corps Eng. (USACE). 1953. Project Mint Julep: Investigation of a Smooth Ice Area of the Greenland Ice Cap Arct. Constr. Frost Eff. Lab., US Eng. Res. Dev. Cent. Boston, MA:
  189. van As D, Andersen ML, Petersen D, Fettweis X, van Angelen JH et al. 2014. Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960–2012). J. Glaciol. 60:220314–22
    [Google Scholar]
  190. van As D, Mikkelsen AB, Nielsen MH, Box JE, Liljedahl LC et al. 2017. Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release. Cryosphere 11:31371–86
    [Google Scholar]
  191. van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E et al. 2009. Partitioning recent Greenland mass loss. Science 326:5955984–86
    [Google Scholar]
  192. van den Broeke M, Smeets P, Ettema J, van der Veen C, van de Wal R, Oerlemans J 2008. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere 2:2179–89
    [Google Scholar]
  193. Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G et al. 2013. Observations: cryosphere. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.317–82 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  194. Whitehead K, Moorman BJ, Hugenholtz CH 2013. Brief communication: low-cost, on-demand aerial photogrammetry for glaciological measurement. Cryosphere 7:61879–84
    [Google Scholar]
  195. Willis IC, Arnold NS, Brock BW 2002. Effect of snowpack removal on energy balance, melt and runoff in a small supraglacial catchment. Hydrol. Process. 16:142721–49
    [Google Scholar]
  196. Willis IC, Sharp MJ, Richards KS 1990. Configuration of the drainage system of Midtdalsbreen, Norway, as indicated by dye-tracing experiments. J. Glaciol. 36:12289–101
    [Google Scholar]
  197. Winther J-G, Elvehøy H, Bøggild CE, Sand K, Liston G 1996. Melting, runoff and the formation of frozen lakes in a mixed snow and blue-ice field in Dronning Maud Land, Antarctica. J. Glaciol. 42:141271–78
    [Google Scholar]
  198. Xiao-bo W 2018. Diurnal and seasonal variation of glacier meltwater hydrochemistry in Qiyi glacierized catchment in Qilian Mountains, Northwest China: implication for chemical weathering. J. Mt. Sci. 15:51035–45
    [Google Scholar]
  199. Xu Z, Schrama E, van der Wal W, van den Broeke M, Enderlin EM 2015. Improved GRACE regional mass balance estimates of the Greenland Ice Sheet cross-validated with the input-output method. Cryosphere Discuss 9:54661–99
    [Google Scholar]
  200. Yang K, Karlstrom L, Smith LC, Li M 2016a. Automated high-resolution satellite image registration using supraglacial rivers on the Greenland Ice Sheet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10:3845–56
    [Google Scholar]
  201. Yang K, Li M 2014. Greenland Ice Sheet surface melt: a review. Sci. Cold Arid Reg. 6:299–106
    [Google Scholar]
  202. Yang K, Smith LC 2013. Supraglacial streams on the Greenland Ice Sheet delineated from combined spectral-shape information in high-resolution satellite imagery. IEEE Geosci. Remote Sens. Lett. 10:4801–5
    [Google Scholar]
  203. Yang K, Smith LC 2016. Internally drained catchments dominate supraglacial hydrology of the southwest Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121:101891–910
    [Google Scholar]
  204. Yang K, Smith LC, Chu VW, Gleason CJ, Li M 2015. A caution on the use of surface digital elevation models to simulate supraglacial hydrology of the Greenland ice sheet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8:115212–24
    [Google Scholar]
  205. Yang K, Smith LC, Chu VW, Pitcher LH, Gleason CJ et al. 2016b. Fluvial morphometry of supraglacial river networks on the southwest Greenland Ice Sheet. GIScience Remote Sens 53:4459–82
    [Google Scholar]
  206. Yang K, Smith LC, Karlstrom L, Cooper MG, Tedesco M et al. 2018. Supraglacial meltwater routing through internally drained catchments on the Greenland Ice Sheet surface. Cryosphere 12:3791–811
    [Google Scholar]
  207. Zeller J 1967. Meandering channels in Switzerland. Symposium on River Morphology174–86 London: Int. Assoc. Sci. Hydrol.
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060212
Loading
/content/journals/10.1146/annurev-earth-053018-060212
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error