1932

Abstract

Noble gases have played a key role in our understanding of the origin of Earth's volatiles, mantle structure, and long-term degassing of the mantle. Here we synthesize new insights into these topics gained from high-precision noble gas data. Our analysis reveals new constraints on the origin of the terrestrial atmosphere, the presence of nebular neon but chondritic krypton and xenon in the mantle, and a memory of multiple giant impacts during accretion. Furthermore, the reservoir supplying primordial noble gases to plumes appears to be distinct from the mid-ocean ridge basalt (MORB) reservoir since at least 4.45 Ga. While differences between the MORB mantle and plume mantle cannot be explained solely by recycling of atmospheric volatiles, injection and incorporation of atmospheric-derived noble gases into both mantle reservoirs occurred over Earth history. In the MORB mantle, the atmospheric-derived noble gases are observed to be heterogeneously distributed, reflecting inefficient mixing even within the vigorously convecting MORB mantle.

  • ▪  Primordial noble gases in the atmosphere were largely derived from planetesimals delivered after the Moon-forming giant impact.
  • ▪  Heterogeneities dating back to Earth's accretion are preserved in the present-day mantle.
  • ▪  Mid-ocean ridge basalts and plume xenon isotopic ratios cannot be related by differential degassing or differential incorporation of recycled atmospheric volatiles.
  • ▪  Differences in mid-ocean ridge basalts and plume radiogenic helium, neon, and argon ratios can be explained through the lens of differential long-term degassing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060238
2019-05-30
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060238.html?itemId=/content/journals/10.1146/annurev-earth-053018-060238&mimeType=html&fmt=ahah

Literature Cited

  1. Albarède F 2009. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461:1227–33
    [Google Scholar]
  2. Alexander CMO'D 2017. The origin of inner Solar System water. Philos. Trans. R. Soc. A 375:20150384
    [Google Scholar]
  3. Alexander CMO'D, Bowden R, Fodgel ML, Howard KT, Herd CDK, Nittler LR 2012. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721–23
    [Google Scholar]
  4. Alexander CMO'D, Cody GD, De Gregorio BT, Nittler LR, Stroud RM 2017. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth's C and N. Chem. Erde Geochem. 77:227–56
    [Google Scholar]
  5. Allègre CJ, Staudacher T, Sarda P 1987. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81:127–50
    [Google Scholar]
  6. Allègre CJ, Staudacher T, Sarda P, Kurz M 1983. Constraints on evolution of Earth's mantle from rare gas systematics. Nature 303:762–66
    [Google Scholar]
  7. Altwegg K, Balsiger H, Bar-Nun A, Berthelier JJ, Bieler A et al. 2015. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347:1261952
    [Google Scholar]
  8. Armytage RM, Jephcoat AP, Bouhifd MA, Porcelli D 2013. Metal–silicate partitioning of iodine at high pressures and temperatures: implications for the Earth's core and 129*Xe budgets. Earth Planet. Sci. Lett. 373:140–49
    [Google Scholar]
  9. Avice G, Marty B 2014. The iodine–plutonium–xenon age of the Moon–Earth system revisited. Philos. Trans. R. Soc. A 372:20130260
    [Google Scholar]
  10. Avice G, Marty B, Burgess R 2017. The origin and degassing history of the Earth's atmosphere revealed by Archean xenon. Nat. Commun. 8:15455
    [Google Scholar]
  11. Azbel IY, Tolstikhin I 1993. Accretion and early degassing of the Earth: constraints from Pu-U-I-Xe isotopic systematics. Meteoritics 28:609–21
    [Google Scholar]
  12. Ballentine CJ, Marty B, Sherwood LB, Cassidy M 2005. Neon isotopes constrain convection and volatile origin in the Earth's mantle. Nature 433:33–38
    [Google Scholar]
  13. Bar-Nun A, Notesco G, Owen T 2007. Trapping of N2, CO and Ar in amorphous ice—application to comets. Icarus 190:655–59
    [Google Scholar]
  14. Becker TW, Kellogg JB, O'Connell RJ 1999. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett. 171:351–65
    [Google Scholar]
  15. Bockelée-Morvan D, Gautier D, Lis DC, Young K, Keene J et al. 1998. Deuterated water in comet C 1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133:147–62
    [Google Scholar]
  16. Bouhifd MA, Jephcoat AP, Heber VS, Kelley SP 2013. Helium in Earth's early core. Nat. Geosci. 6:982–86
    [Google Scholar]
  17. Brooker RA, Du Z, Blundy JD, Kelley SP, Allan NL et al. 2003. The ‘zero charge’ partitioning behaviour of noble gases during mantle melting. Nature 423:738–41
    [Google Scholar]
  18. Burnard P, Harrison D, Turner G, Nesbitt RW 2003. Degassing and contamination of noble gases in Mid-Atlantic Ridge basalts. Geochem. Geophys. Geosyst. 4:1002
    [Google Scholar]
  19. Caffee MW, Hudson GB, Velsko C, Huss GR, Alexander EC Jr., Chivas AR 1999. Primordial noble gases from Earth's mantle: identification of a primitive volatile component. Science 285:2115–18
    [Google Scholar]
  20. Caracausi A, Avice G, Burnard PG, Furi E, Marty B 2016. Chondritic xenon in the Earth's mantle. Nature 533:82–85
    [Google Scholar]
  21. Class C, Goldstein SL 2005. Evolution of helium isotopes in the Earth's mantle. Nature 425:1107–12
    [Google Scholar]
  22. Colin A, Burnard P, Marty B 2013. Mechanisms of magma degassing at mid-oceanic ridges and the local volatile composition (4He–40Ar*–CO2) of the mantle by laser ablation analysis of individual MORB vesicles. Earth Planet. Sci. Lett. 261:183–94
    [Google Scholar]
  23. Colin A, Moreira M, Gautheron C, Burnard P 2015. Constraints on the noble gas composition of the deep mantle by bubble-by-bubble analysis of a volcanic glass sample from Iceland. Chem. Geol. 417:173–83
    [Google Scholar]
  24. Coltice N, Moreira M, Hernlund J, Labrosse S 2011. Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet. Sci. Lett. 308:193–99
    [Google Scholar]
  25. Dauphas N 2003. The dual origin of the terrestrial atmosphere. Icarus 165:326–39
    [Google Scholar]
  26. Dauphas N, Morbidelli A 2014. The atmosphere—history. Treatise on Geochemistry 6 DE Canfield, J Farquhar, JF Kasting 1–35 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  27. Dauphas N, Pourmand A 2011. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–92
    [Google Scholar]
  28. Davies GF 2010. Noble gases in the dynamic mantle. Geochem. Geophys. Geosyst. 11:Q03005
    [Google Scholar]
  29. Elkins-Tanton LT 2008. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271:181–91
    [Google Scholar]
  30. Erkaev NV, Lammer H, Elkins-Tanton LT, Stokl A, Odert P et al. 2014. Escape of the martian protoatmosphere and initial water inventory. Planet. Space Sci. 98:106–19
    [Google Scholar]
  31. Farley KA, Natland JH, Craig H 1992. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett. 111:183–99
    [Google Scholar]
  32. Fisher DE 1983. Rare gases from the undepleted mantle?. Nature 305:298–300
    [Google Scholar]
  33. French SW, Romanowicz B 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature 525:95–99
    [Google Scholar]
  34. Fukao Y, Obayashi M 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118:5920–38
    [Google Scholar]
  35. Genda H, Abe Y 2005. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433:842–44
    [Google Scholar]
  36. Gonnermann HM, Mukhopadhyay S 2009. Preserving noble gases in a convecting mantle. Nature 459:560–63
    [Google Scholar]
  37. Graham DW 2002. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. Rev. Mineral. Geochem. 47:247–318
    [Google Scholar]
  38. Graham DW, Jenkins WJ, Schilling JG, Thompson G, Kurz MD, Humphris SE 1992. Helium isotope geochemistry of midocean ridge basalts from the South Atlantic. Earth Planet. Sci. Lett. 110:133–47
    [Google Scholar]
  39. Halliday AN 2013. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105:146–71
    [Google Scholar]
  40. Hanyu T, Dunai TJ, Davies GR, Kaneoka I, Nohda S, Uto K 2001. Noble gas study of the Reunion hotspot: evidence for distinct less-degassed mantle sources. Earth Planet. Sci. Lett. 193:83–98
    [Google Scholar]
  41. Harper CL, Jacobsen SB 1996. Noble gases and Earth's accretion. Science 273:1814–18
    [Google Scholar]
  42. Harrison D, Burnard P, Turner G 1999. Noble gas behaviour and composition in the mantle: constraints from the Iceland Plume. Earth Planet. Sci. Lett. 171:199–207
    [Google Scholar]
  43. Heber VS, Baur H, Bochsler P, McKeegan KD, Neugebauer M et al. 2012. Isotopic mass fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis mission. Astrophys. J. 759:121
    [Google Scholar]
  44. Heber VS, Brooker RA, Kelley SP, Wood BJ 2007. Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta 71:1041–61
    [Google Scholar]
  45. Hennecke EW, Manuel OK 1975. Noble gases in an Hawaiian xenolith. Nature 257:778–80
    [Google Scholar]
  46. Hilton DR, Grönvold K, Macpherson CG, Castillo PR 1999. Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes. Earth Planet. Sci. Lett. 173:53–60
    [Google Scholar]
  47. Hilton DR, Macpherson CG, Elliott TR 2000. Helium isotope ratios in mafic phenocrysts and geothermal fluids from La Palma, the Canary Islands (Spain): implications for HIMU mantle sources. Geochim. Cosmochim. Acta 64:2119–32
    [Google Scholar]
  48. Hirschmann MM 2016. Constraints on the early delivery and fractionation of Earth's major volatiles from C/H, C/N and C/S ratios. Am. Mineral. 101:540–53
    [Google Scholar]
  49. Hiyagon H, Ozima M, Marty B, Zashu S, Sakai H 1992. Noble gases in submarine glasses from mid-oceanic ridges and Loihi seamount: constraints on the early history of the Earth. Geochim. Cosmochim. Acta 56:1301–16
    [Google Scholar]
  50. Holland G, Ballentine CJ 2006. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441:186–91
    [Google Scholar]
  51. Holland G, Cassidy M, Ballentine CJ 2009. Meteorite Kr in Earth's mantle suggests a late accretionary source for the atmosphere. Science 326:1522–25
    [Google Scholar]
  52. Honda M, McDougall I 1998. Primordial helium and neon in the Earth—a speculation on early degassing. Geophys. Res. Lett. 25:1951–54
    [Google Scholar]
  53. Honda M, McDougall I, Patterson DB, Doulgeris A, Clague DA 1991. Possible solar noble-gas component in Hawaiian basalts. Nature 349:149–51
    [Google Scholar]
  54. Honda M, McDougall I, Patterson DB, Doulgeris A, Clague DA 1993. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii—a solar component in the Earth. Geochim. Cosmochim. Acta 57:859–74
    [Google Scholar]
  55. Huang S, Lee C-TA, Yin Q-Z 2014. Missing lead and high 3He/4He in ancient sulfides associated with continental crust formation. Sci. Rep. 4:5314
    [Google Scholar]
  56. Hudson GB, Kennedy BM, Podosek FA, Hohenberg CM 1989. The early solar system abundance of 244Pu as inferred from the St. Severin chondrite. Proceedings of the 19th Lunar Planetary Science Conference547–57 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  57. Jackson CRM, Bennett NR, Du Z, Cottrell E, Fei Y 2018. Early episodes of high-pressure core formation preserved in plume mantle. Nature 593:491–95
    [Google Scholar]
  58. Jackson CRM, Parman SW, Kelley SP, Cooper RF 2013. Constraints on light noble gas partitioning at the conditions of spinel-peridotite melting. Earth Planet. Sci. Lett. 384:178–87
    [Google Scholar]
  59. Jackson MG, Carlson RW 2011. An ancient recipe for flood-basalt genesis. Nature 476:316–19
    [Google Scholar]
  60. Jackson MG, Carlson RW, Kurz MD, Kempton PD, Francis D, Blusztajn J 2010. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466:853–56
    [Google Scholar]
  61. Jackson MG, Jellinek AM 2013. Major and trace element composition of the high 3He/4He mantle: implications for the composition of a nonchonditic Earth. Geochem. Geophys. Geosyst 14:2954–76
    [Google Scholar]
  62. Jacobson SA, Morbidelli A 2014. Lunar and terrestrial planet formation in the Grand Tack scenario. Philos. Trans. R. Soc. A 372:20130174
    [Google Scholar]
  63. Jacobson SA, Morbidelli A, Raymond SN, O'Brien DP, Walsh KJ 2014. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature 508:84–87
    [Google Scholar]
  64. Jehin E, Manfroid J, Hutsemekers D, Arpigny C, Zucconi JM 2009. Isotopic ratios in comets: status and perspectives. Earth Moon Planets 105:167–80
    [Google Scholar]
  65. Jephcoat AP 1998. Rare-gas solids in the Earth's deep interior. Nature 393:355–58
    [Google Scholar]
  66. Kaneoka I, Takaoka N 1978. Excess 129Xe and high 3He/4He ratios in olivine phenocrysts of Kapuho lava and xenolithic dunites from Hawaii. Earth Planet. Sci. Lett. 39:382–86
    [Google Scholar]
  67. Kárason H, Van Der Hilst RD 2000. Constraints on mantle convection from seismic tomography. Geophys. Monogr. 121:277–88
    [Google Scholar]
  68. Kendrick MA, Honda M, Pettke T, Scambelluri M, Phillips D, Giuliani A 2013. Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet. Sci. Lett. 365:86–96
    [Google Scholar]
  69. Kendrick MA, Scambelluri M, Honda M, Phillips D 2011. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat. Geosci. 4:807–12
    [Google Scholar]
  70. Kunz J, Staudacher T, Allègre CJ 1998. Plutonium-fission xenon found in Earth's mantle. Science 280:877–80
    [Google Scholar]
  71. Kurz MD, Curtice J, Fornari D, Geist D, Moreira M 2009. Primitive neon from the center of the Galápagos hotspot. Earth Planet. Sci. Lett. 286:23–34
    [Google Scholar]
  72. Kurz MD, Geist D 1999. Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochim. Cosmochim. Acta 63:4139–56
    [Google Scholar]
  73. Kurz MD, Jenkins WJ, Hart SR 1982a. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297:43–47
    [Google Scholar]
  74. Kurz MD, Jenkins WJ, Hart SR, Clague D 1983. Helium isotopic variations in volcanic rocks from Loihi Seamount and the island of Hawaii. Earth Planet. Sci. Lett. 66:388–406
    [Google Scholar]
  75. Kurz MD, Jenkins WJ, Schilling JG, Hart SR 1982b. Helium isotopic variations in the mantle beneath the central North Atlantic Ocean. Earth Planet. Sci. Lett. 58:1–14
    [Google Scholar]
  76. Kustowski B, Ekström G, Dziewoński AM 2008. Anisotropic shear-wave velocity structure of the Earth's mantle: a global model. J. Geophys. Res. 113:B6B06306
    [Google Scholar]
  77. Labrosse S, Hernlund JW, Coltice N 2007. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450:866–69
    [Google Scholar]
  78. Lee C-TA, Luffi P, Hoink T, Li J, Dasgupta R, Hernlund J 2010. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463:930–33
    [Google Scholar]
  79. Lewis RS, Srinivasan B, Anders E 1975. Host phase of a strange xenon component in Allende. Science 190:1251–62
    [Google Scholar]
  80. Lodders K, Fegley B Jr 1998. The Planetary Scientist's Companion New York: Oxford Univ. Press
    [Google Scholar]
  81. Manfroid J, Jehin E, Hutsemékers D, Cochran A, Zucconi JM et al. 2009. The CN isotopic ratios in comets. Astron. Astrophys. 503:961–66
    [Google Scholar]
  82. Marty B 1989. Neon and xenon isotopes in MORB: implications for the earth-atmosphere evolution. Earth Planet. Sci. Lett. 94:45–56
    [Google Scholar]
  83. Marty B 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313:56–66
    [Google Scholar]
  84. Marty B, Altwegg K, Balsiger H, Bar-Nun A, Bekaert DV et al. 2017. Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere. Science 356:1069–72
    [Google Scholar]
  85. Marty B, Avice G, Yuji S, Altwegg K, Balsiger H et al. 2016. Origin of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441:91–102
    [Google Scholar]
  86. Mazor E, Heymann D, Anders E 1970. Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34:781–824
    [Google Scholar]
  87. McDonough WF, Sun SS 1995. The composition of the Earth. Chem. Geol. 120:223–53
    [Google Scholar]
  88. Meech KJ, Pittichova J, Bar-Nun A, Notesco G, Laufer D et al. 2009. Activity of comets at large heliocentric distances pre-perihelion. Icarus 201:719–39
    [Google Scholar]
  89. Meier R, Owen TC, Jewitt DC, Matthews HE, Senay M et al. 1998. Deuterium in comet C/1995 O1 (Hale-Bopp): detection of DCN. Science 279:1707–10
    [Google Scholar]
  90. Mizuno H, Nakazawa K, Hayashi C 1980. Dissolution of the primordial rare gases into the molten Earth's material. Earth Planet. Sci. Lett. 50:202–10
    [Google Scholar]
  91. Morbidelli A, Lunine JI, O'Brien DP, Raymond SN, Walsh KJ 2012. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40:251–75
    [Google Scholar]
  92. Morbidelli A, Wood B 2015. Late accretion and the late veneer. The Early Earth: Accretion and Differentiation J Badro, M Walters 159–83 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  93. Moreira M 2013. Noble gas constraints on the origin and evolution of Earth's volatiles. Geochem. Perspect. 2:229–403
    [Google Scholar]
  94. Moreira M, Allègre CJ 1998. Helium-neon systematics and the structure of the mantle. Chem. Geol. 147:53–59
    [Google Scholar]
  95. Moreira M, Charnoz S 2016. The origin of the neon isotopes in chondrites and on Earth. Earth Planet. Sci. Lett. 433:249–56
    [Google Scholar]
  96. Moreira M, Doucelance R, Kurz MD, Dupre B, Allègre CJ 1999. Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet. Sci. Lett. 169:189–205
    [Google Scholar]
  97. Moreira M, Kunz J, Allègre C 1998. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279:1178–81
    [Google Scholar]
  98. Mosenfelder JL, Asimow PD, Frost DJ, Rubie DC, Ahrens TJ 2009. The MgSiO3 system at high pressure: thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. J. Geophys. Res. 114:B1B01203
    [Google Scholar]
  99. Mukhopadhyay S 2012. Early differentiation and volatile accretion recorded in deep mantle neon and xenon. Nature 486:101–4
    [Google Scholar]
  100. Mukhopadhyay S, Parai R, Tucker J, Middelton JL, Langmuir CH 2015. Early and long-term mantle processing rates derived from xenon isotopes Paper presented at the American Geophysical Union Fall Meeting, San Francisco, CA, Dec. 14–15
    [Google Scholar]
  101. Nakajima M, Stevenson DJ 2015. Melting and mixing states of the Earth's mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427:286–95
    [Google Scholar]
  102. Notesco G, Bar-Nun A, Owen T 2003. Gas trapping in water ice at very low deposition rates and implications for comets. Icarus 162:183–89
    [Google Scholar]
  103. O'Brien DP, Morbidelli A, Levison HF 2006. Terrestrial planet formation with strong dynamical friction. Icarus 184:39–58
    [Google Scholar]
  104. Ott U 2014. Planetary and pre-solar noble gases in meteorites. Chem. Erde 74:519–44
    [Google Scholar]
  105. Ozima M, Podosek FA 2002. Noble Gas Geochemistry Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  106. Pahlevan K, Stevenson DJ 2007. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262:438–49
    [Google Scholar]
  107. Parai R, Mukhopadhyay S 2015. The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochem. Geophys. Geosyst. 16:719–35
    [Google Scholar]
  108. Parai R, Mukhopadhyay S, Standish JJ 2012. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet. Sci. Lett. 359:227–39
    [Google Scholar]
  109. Parman SW, Kurz MD, Hart SR, Grove TL 2005. Helium solubility in olivine and implications for high 3He/4He in ocean island basalts. Nature 437:1140–43
    [Google Scholar]
  110. Pepin RO 1991. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92:2–79
    [Google Scholar]
  111. Pepin RO, Phinney D 1976. The formation interval of the Earth. Abstr. Lunar Planet. Sci. Conf. 7:682–84
    [Google Scholar]
  112. Pepin RO, Porcelli D 2002. Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47:191–246
    [Google Scholar]
  113. Pepin RO, Porcelli D 2006. Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett. 250:470–85
    [Google Scholar]
  114. Peron S, Moreira M, Agranier A 2018. Origin of light noble gases (He, Ne, and Ar) on Earth: a review. Geochem. Geophys. Geosyst. 19:979–96
    [Google Scholar]
  115. Peron S, Moreira M, Colin A, Arbaret L, Putlitz B, Kurz MD 2016. Neon isotopic composition of the mantle constrained by single vesicle analyses. Earth Planet. Sci. Lett. 449:145–54
    [Google Scholar]
  116. Peron S, Moreira M, Putlitz B, Kurz MD 2017. Solar wind implantation supplied light volatiles during the first stage of Earth accretion. Geochem. Perspect. Lett. 3:151–59
    [Google Scholar]
  117. Pető M, Mukhopadhyay S, Kelley KA 2013. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet. Sci. Lett. 369–370:13–23
    [Google Scholar]
  118. Porcelli D, Wasserburg G 1995. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59:4921–37
    [Google Scholar]
  119. Porcelli D, Wollun D, Cassen P 2001. Deep Earth rare gases: initial inventories, capture from the solar nebula, and losses during Moon formation. Earth Planet. Sci. Lett. 193:237–51
    [Google Scholar]
  120. Poreda RJ, Farley KA 1992. Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett. 113:129–44
    [Google Scholar]
  121. Pujol M, Marty B, Burgess R 2011. Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet. Sci. Lett. 308:298–30
    [Google Scholar]
  122. Raquin A, Moreira M 2009. Atmospheric 38Ar/36Ar in the mantle: implications for the nature of the terrestrial parent bodies. Earth Planet. Sci. Lett. 287:551–58
    [Google Scholar]
  123. Raquin A, Moreira M, Guillon F 2008. He, Ne and Ar systematics in single vesicles: mantle isotopic ratios and origin of the air component in basaltic glasses. Earth Planet. Sci. Lett. 274:142–50
    [Google Scholar]
  124. Rubie DC, Jacobson SA, Morbidelli A, O'Brien DP, Young ED et al. 2015. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248:89–108
    [Google Scholar]
  125. Sarda P, Moreira M, Staudacher T 2000. Rare gas systematics on the southernmost Mid-Atlantic Ridge: constraints on the lower mantle and the Dupal source. J. Geophys. Res. 105:B35973–96
    [Google Scholar]
  126. Sarda P, Staudacher T, Allègre CJ 1988. Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91:73–88
    [Google Scholar]
  127. Schlichting HE, Mukhopadhyay S 2018. Atmospheric impact losses. Space Sci. Rev. 214:34
    [Google Scholar]
  128. Schlichting HE, Sari R, Yalinewich A 2015. Atmospheric mass loss during planet formation: the importance of planetesimals impacts. Icarus 247:81–94
    [Google Scholar]
  129. Schonbachler M, Carlson RW, Horan MF, Mock TD, Hauri EH 2010. Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328:884–87
    [Google Scholar]
  130. Sharp ZD 2017. Nebular ingassing as a source of volatiles to the terrestrial planets. Chem. Geol. 448:137–50
    [Google Scholar]
  131. Sharp ZD, Draper DS 2013. The chlorine abundance of Earth: implications for a habitable planet. Earth Planet. Sci. Lett. 369–370:71–77
    [Google Scholar]
  132. Shcheka SS, Keppler H 2012. The origin of the terrestrial noble-gas signature. Nature 490:531–34
    [Google Scholar]
  133. Solomatov V 2000. Fluid dynamics of magma oceans. Origin of the Earth and Moon R Canup, K Righter 323–38 Tucson, AZ: Univ. Arizona Press
    [Google Scholar]
  134. Šrámek O, Stevens L, McDonough WF, Mukhopadhyay S, Peterson RJ 2017. Subterranean production of neutrons, 39Ar and 21Ne: rates and uncertainties. Geochim. Cosmochim. Acta 196:370–87
    [Google Scholar]
  135. Staudacher T, Allègre CJ 1982. Terrestrial xenology. Earth Planet. Sci. Lett. 60:389–406
    [Google Scholar]
  136. Staudacher T, Allègre CJ 1988. Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet. Sci. Lett. 89:173–83
    [Google Scholar]
  137. Staudacher T, Sarda P, Allègre CJ 1986. New noble-gas data on glass samples from Loihi seamount and Hualalai and on dunite samples from Loihi and Reunion Island. Chem Geol 56:193–205
    [Google Scholar]
  138. Stuart FM, Lass-Evans S, Fitton JG, Ellam RM 2003. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424:57–59
    [Google Scholar]
  139. Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ 2010. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet. Sci. Lett. 294:163–72
    [Google Scholar]
  140. Tang H, Dauphas N 2014. The 60Fe-60Ni-chronology of core formation in Mars. Earth Planet. Sci. Lett. 390:264–74
    [Google Scholar]
  141. Thomas CW, Liu Q, Agee CB, Asimow PD, Lange RA 2012. Multi-technique equation of state for Fe2SiO4 melt and the density of Fe-bearing silicate melts from 0 to 161 GPa. J. Geophys. Res. 117:B10B10206
    [Google Scholar]
  142. Tolstikhin IN, Hofmann AW 2005. Early crust on top of the Earth's core. Phys. Earth Planet. Inter. 148:109–30
    [Google Scholar]
  143. Tolstikhin IN, Kramers JD, Hofmann AW 2006. A chemical Earth model with whole mantle convection: the importance of a core–mantle boundary layer (D″) and its early formation. Chem. Geol. 226:79–99
    [Google Scholar]
  144. Tolstikhin IN, O'Nions RK 1996. Some comments on isotopic structure of terrestrial xenon. Chem. Geol. 129:185–99
    [Google Scholar]
  145. Trieloff M, Kunz J 2005. Isotope systematics of noble gases in the Earth's mantle: possible sources of primordial isotopes and implications for mantle structure. Phys. Earth Planet. Inter. 148:13–38
    [Google Scholar]
  146. Trieloff M, Kunz J, Allègre CJ 2002. Noble gas systematics of the Réunion mantle plume source and the origin of primordial noble gases in Earth's mantle. Earth Planet. Sci. Lett. 200:297–313
    [Google Scholar]
  147. Trieloff M, Kunz J, Clague DA, Harrison D, Allègre CJ 2000. The nature of pristine noble gases in mantle plumes. Science 288:1036–38
    [Google Scholar]
  148. Tucker JM, Mukhopadhyay S 2014. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393:254–65
    [Google Scholar]
  149. Tucker JM, Mukhopadhyay S, Gonnermann HM 2018. Reconstructing mantle carbon and noble gas contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496:108–19
    [Google Scholar]
  150. Tucker JM, Mukhopadhyay S, Schilling JG 2012. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet. Sci. Lett 355:244–54
    [Google Scholar]
  151. van Keken PE, Ballentine CJ 1998. Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett 156:19–32
    [Google Scholar]
  152. van Keken PE, Ballentine CJ 1999. Dynamical models of mantle volatile evolution and the role of phase transitions and temperature‐dependent rheology. J. Geophys. Res. 104:B47137–51
    [Google Scholar]
  153. Walsh KJ, Morbidelli A, Raymond SN, O'Brien DP, Mandell AM 2011. A low mass for Mars from Jupiter's early gas-driven migration. Nature 475:206–9
    [Google Scholar]
  154. Wieler R 1994. “Q-gases” as “local” primordial noble gas component in primitive meteorites. Noble Gas Geochemistry and Cosmochemistry J Matsuda 31–41 Tokyo: Terra Sci. Publ.
    [Google Scholar]
  155. Wyatt MC 2008. Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46:339–83
    [Google Scholar]
  156. Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Télouk P, Albarède F 2001. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–52
    [Google Scholar]
  157. Yokochi R, Marty B 2004. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225:77–88
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060238
Loading
/content/journals/10.1146/annurev-earth-053018-060238
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error