1932

Abstract

Exoplanets with substantial hydrogen/helium atmospheres have been discovered in abundance, many residing extremely close to their parent stars. The extreme irradiation levels that these atmospheres experience cause them to undergo hydrodynamic atmospheric escape. Ongoing atmospheric escape has been observed to be occurring in a few nearby exoplanet systems through transit spectroscopy both for hot Jupiters and for lower-mass super-Earths and mini-Neptunes. Detailed hydrodynamic calculations that incorporate radiative transfer and ionization chemistry are now common in one-dimensional models, and multidimensional calculations that incorporate magnetic fields and interactions with the interstellar environment are cutting edge. However, comparison between simulations and observations remains very limited. While hot Jupiters experience atmospheric escape, the mass-loss rates are not high enough to affect their evolution. However, for lower-mass planets, atmospheric escape drives and controls their evolution, sculpting the exoplanet population that we observe today.

  • ▪  Observations of some exoplanets have detected atmospheric escape driven by hydrodynamic outflows, causing the exoplanets to lose mass over time.
  • ▪  Hydrodynamic simulations of atmospheric escape are approaching the sophistication required to compare them directly to observations.
  • ▪  Atmospheric escape sculpts sharp features into the exoplanet population that we can observe today; these features have recently been detected.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060246
2019-05-30
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060246.html?itemId=/content/journals/10.1146/annurev-earth-053018-060246&mimeType=html&fmt=ahah

Literature Cited

  1. Adams FC 2011. Magnetically controlled outflows from hot Jupiters. Astrophys. J. 730:27
    [Google Scholar]
  2. Alexander RD, Wynn GA, Mohammed H, Nichols JD, Ercolano B 2016. Magnetospheres of hot Jupiters: hydrodynamic models and ultraviolet absorption. Mon. Not. R. Astron. Soc. 456:2766–78
    [Google Scholar]
  3. Arakcheev AS, Zhilkin AG, Kaigorodov PV, Bisikalo DV, Kosovichev AG 2017. Reduction of mass loss by the hot Jupiter WASP-12b due to its magnetic field. Astron. Rep. 61:932–41
    [Google Scholar]
  4. Baraffe I, Alibert Y, Chabrier G, Benz W 2006. Birth and fate of hot-Neptune planets. Astron. Astrophys. 450:1221–29
    [Google Scholar]
  5. Baraffe I, Chabrier G, Barman TS, Selsis F, Allard F, Hauschildt PH 2005. Hot-Jupiters and hot-Neptunes: a common origin?. Astron. Astrophys. 436:L47–51
    [Google Scholar]
  6. Baraffe I, Selsis F, Chabrier G, Barman TS, Allard F et al. 2004. The effect of evaporation on the evolution of close-in giant planets. Astron. Astrophys. 419:L13–16
    [Google Scholar]
  7. Bear E, Soker N 2011. Evaporation of Jupiter-like planets orbiting extreme horizontal branch stars. Mon. Not. R. Astron. Soc. 414:1788–92
    [Google Scholar]
  8. Beaugé C, Nesvorný D 2013. Emerging trends in a period-radius distribution of close-in planets. Astrophys. J. 763:12
    [Google Scholar]
  9. Ben-Jaffel L, Ballester GE 2013. Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b. Astron. Astrophys. 553:A52
    [Google Scholar]
  10. Beth A, Garnier P, Toublanc D, Dandouras I, Mazelle C 2016. Theory for planetary exospheres: III. Radiation pressure effect on the Circular Restricted Three Body Problem and its implication on planetary atmospheres. Icarus 280:415–23
    [Google Scholar]
  11. Bisikalo D, Kaygorodov P, Ionov D, Shematovich V, Lammer H, Fossati L 2013. Three-dimensional gas dynamic simulation of the interaction between the exoplanet WASP-12b and its host star. Astrophys. J. 764:19
    [Google Scholar]
  12. Borucki WJ, Koch DG, Basri G, Batalha N, Brown TM et al. 2011. Characteristics of planetary candidates observed by Kepler: II. Analysis of the first four months of data. Astrophys. J. 736:19
    [Google Scholar]
  13. Bourrier V, Ehrenreich D, Lecavelier des Etangs A 2015. Radiative braking in the extended exosphere of GJ 436 b. Astron. Astrophys. 582:A65
    [Google Scholar]
  14. Bourrier V, Lecavelier des Etangs A 2013. 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions. Astron. Astrophys. 557:A124
    [Google Scholar]
  15. Bourrier V, Lecavelier des Etangs A, Ehrenreich D, Tanaka YA, Vidotto AA 2016. An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b. Astron. Astrophys. 591:A121
    [Google Scholar]
  16. Bourrier V, Lecavelier des Etangs A, Vidal-Madjar A 2014. Modeling magnesium escape from HD 209458b atmosphere. Astron. Astrophys. 565:A105
    [Google Scholar]
  17. Burrows A, Lunine J 1995. Astronomical questions of origin and survival. Nature 378:333
    [Google Scholar]
  18. Carroll-Nellenback J, Frank A, Liu B, Quillen AC, Blackman EG, Dobbs-Dixon I 2017. Hot planetary winds near a star: dynamics, wind-wind interactions, and observational signatures. Mon. Not. R. Astron. Soc. 466:2458–73
    [Google Scholar]
  19. Carter JA, Agol E, Chaplin WJ, Basu S, Bedding TR et al. 2012. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities. Science 337:556–59
    [Google Scholar]
  20. Chadney JM, Galand M, Unruh YC, Koskinen TT, Sanz-Forcada J 2015. XUV-driven mass loss from extrasolar giant planets orbiting active stars. Icarus 250:357–67
    [Google Scholar]
  21. Charbonneau D, Brown TM, Latham DW, Mayor M 2000. Detection of planetary transits across a sun-like star. Astrophys. J. Lett. 529:L45–48
    [Google Scholar]
  22. Chen H, Rogers LA 2016. Evolutionary analysis of gaseous sub-Neptune-mass planets with MESA. Astrophys. J. 831:180
    [Google Scholar]
  23. Cumming A, Butler RP, Marcy GW, Vogt SS, Wright JT, Fischer DA 2008. The Keck Planet Search: detectability and the minimum mass and orbital period distribution of extrasolar planets. Publ. Astron. Soc. Pac. 120:531
    [Google Scholar]
  24. Daley-Yates S, Stevens IR 2017. Interacting fields and flows: magnetic hot Jupiters. Astron. Nachr. 338:881–84
    [Google Scholar]
  25. Debrecht A, Carroll-Nellenback J, Frank A, Fossati L, Blackman EG, Dobbs-Dixon I 2018. Generation of a circumstellar gas disc by hot Jupiter WASP-12b. Mon. Not. R. Astron. Soc. 478:2592–98
    [Google Scholar]
  26. Drake GW 1971. Theory of relativistic magnetic dipole transitions: lifetime of the metastable 23S state of the heliumlike ions. Phys. Rev. A 3:908–15
    [Google Scholar]
  27. Dressing CD, Charbonneau D 2013. The occurrence rate of small planets around small stars. Astrophys. J. 767:95
    [Google Scholar]
  28. Dressing CD, Charbonneau D, Dumusque X, Gettel S, Pepe F et al. 2015. The mass of Kepler-93b and the composition of terrestrial planets. Astrophys. J. 800:135
    [Google Scholar]
  29. Ehrenreich D, Bourrier V, Wheatley PJ, Lecavelier des Etangs A, Hébrard G et al. 2015. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522:459–61
    [Google Scholar]
  30. Erkaev NV, Kulikov YN, Lammer H, Selsis F, Langmayr D et al. 2007. Roche lobe effects on the atmospheric loss from “Hot Jupiters.”. Astron. Astrophys. 472:329–34
    [Google Scholar]
  31. Erkaev NV, Lammer H, Odert P, Kislyakova KG, Johnstone CP et al. 2016. EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Mon. Not. R. Astron. Soc. 460:1300–9
    [Google Scholar]
  32. Erkaev NV, Lammer H, Odert P, Kulikov YN, Kislyakova KG et al. 2013. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape. Astrobiology 13:1011–29
    [Google Scholar]
  33. Fossati L, France K, Koskinen T, Juvan IG, Haswell CA, Lendl M 2015. Far-UV spectroscopy of the planet-hosting star WASP-13: high-energy irradiance, distance, age, planetary mass-loss rate, and circumstellar environment. Astrophys. J. 815:118
    [Google Scholar]
  34. Fossati L, Koskinen T, France K, Cubillos PE, Haswell CA et al. 2018. Suppressed far-UV stellar activity and low planetary mass loss in the WASP-18 system. Astron. J. 155:113
    [Google Scholar]
  35. Fressin F, Torres G, Charbonneau D, Bryson ST, Christiansen J et al. 2013. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766:81
    [Google Scholar]
  36. Fulton BJ, Petigura EA, Howard AW, Isaacson H, Marcy GW et al. 2017. The California-Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154:109
    [Google Scholar]
  37. Galli A, Wurz P, Bochsler P, Barabash S, Grigoriev A et al. 2008. First observation of energetic neutral atoms in the Venus environment. Planet. Space Sci. 56:807–11
    [Google Scholar]
  38. García Muñoz A 2007. Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55:1426–55
    [Google Scholar]
  39. Gillon M, Jehin E, Lederer SM, Delrez L, de Wit J et al. 2016. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533:221–24
    [Google Scholar]
  40. Ginzburg S, Schlichting HE, Sari R 2018. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476:759–65
    [Google Scholar]
  41. Gross SH 1972. On the exospheric temperature of hydrogen-dominated planetary atmospheres. J. Atmos. Sci. 29:214–18
    [Google Scholar]
  42. Güdel M 2004. X-ray astronomy of stellar coronae. Astron. Astrophys. Rev. 12:71–237
    [Google Scholar]
  43. Hadden S, Lithwick Y 2014. Densities and eccentricities of 139 Kepler planets from transit time variations. Astrophys. J. 787:80
    [Google Scholar]
  44. Hansen M, Oh SP 2006. Lyman α radiative transfer in a multiphase medium. Mon. Not. R. Astron. Soc. 367:979–1002
    [Google Scholar]
  45. Holmström M, Ekenbäck A, Selsis F, Penz T, Lammer H, Wurz P 2008. Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b. Nature 451:970–72
    [Google Scholar]
  46. Howard AW, Marcy GW, Bryson ST, Jenkins JM, Rowe JF et al. 2012. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. 201:15
    [Google Scholar]
  47. Howard AW, Marcy GW, Johnson JA, Fischer DA, Wright JT et al. 2010. The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330:653
    [Google Scholar]
  48. Howe AR, Burrows A 2015. Evolutionary models of super-Earths and mini-Neptunes incorporating cooling and mass loss. Astrophys. J. 808:150
    [Google Scholar]
  49. Hubbard WB, Hattori MF, Burrows A, Hubeny I, Sudarsky D 2007. Effects of mass loss for highly-irradiated giant planets. Icarus 187:358–64
    [Google Scholar]
  50. Ionov DE, Pavlyuchenkov YN, Shematovich VI 2018. Survival of a planet in short-period Neptunian desert under effect of photoevaporation. Mon. Not. R. Astron. Soc. 476:5639–44
    [Google Scholar]
  51. Ionov DE, Shematovich VI 2015. Hydrogen-dominated upper atmosphere of an exoplanet: heating by stellar radiation from soft X-rays to extreme ultraviolet. Solar Syst. Res. 49:339–45
    [Google Scholar]
  52. Ionov DE, Shematovich VI, Pavlyuchenkov YN 2017. Influence of photoelectrons on the structure and dynamics of the upper atmosphere of a hot Jupiter. Astron. Rep. 61:387–92
    [Google Scholar]
  53. Jackson AP, Davis TA, Wheatley PJ 2012. The coronal X-ray-age relation and its implications for the evaporation of exoplanets. Mon. Not. R. Astron. Soc. 422:2024–43
    [Google Scholar]
  54. Jackson B, Miller N, Barnes R, Raymond SN, Fortney JJ, Greenberg R 2010. The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b. Mon. Not. R. Astron. Soc. 407:910–22
    [Google Scholar]
  55. Jeans JH 1925. The Dynamical Theory of Gases Cambridge, UK: Cambridge Univ. Press. 4th ed.
    [Google Scholar]
  56. Jin S, Mordasini C 2018. Compositional imprints in density–distance–time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. Astrophys. J. 853:163
    [Google Scholar]
  57. Jin S, Mordasini C, Parmentier V, van Boekel R, Henning T, Ji J 2014. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation. Astrophys. J. 795:65
    [Google Scholar]
  58. Johnson JA, Petigura EA, Fulton BJ, Marcy GW, Howard AW et al. 2017. The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. Astron. J. 154:108
    [Google Scholar]
  59. Jontof-Hutter D, Ford EB, Rowe JF, Lissauer JJ, Fabrycky DC et al. 2016. Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M with diverse densities and incident fluxes. Astrophys. J. 820:39
    [Google Scholar]
  60. Khodachenko ML, Shaikhislamov IF, Lammer H, Prokopov PA 2015. Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. II. Effects of planetary magnetic field; structuring of inner magnetosphere. Astrophys. J. 813:50
    [Google Scholar]
  61. Kippenhahn R, Weigert A, Weiss A 2012. Stellar Structure and Evolution Berlin: Springer
    [Google Scholar]
  62. Koskinen TT, Aylward AD, Miller S 2007. A stability limit for the atmospheres of giant extrasolar planets. Nature 450:845–48
    [Google Scholar]
  63. Kreidberg L, Oklopčić A 2018. Non-detection of a helium exosphere for the hot Jupiter WASP-12b. Res. Notes Am. Astron. Soc. 2:44
    [Google Scholar]
  64. Kulow JR, France K, Linsky J, Loyd ROP 2014. Lyα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786:132
    [Google Scholar]
  65. Kurokawa H, Nakamoto T 2014. Mass-loss evolution of close-in exoplanets: evaporation of hot Jupiters and the effect on population. Astrophys. J. 783:54
    [Google Scholar]
  66. Lamers HJGLM, Cassinelli JP 1999. Introduction to Stellar Winds. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  67. Lammer H, Erkaev NV, Fossati L, Juvan I, Odert P et al. 2016. Identifying the “true” radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. Mon. Not. R. Astron. Soc. 461:L62–66
    [Google Scholar]
  68. Lammer H, Erkaev NV, Odert P, Kislyakova KG, Leitzinger M, Khodachenko ML 2013. Probing the blow-off criteria of hydrogen-rich “super-Earths.”. Mon. Not. R. Astron. Soc. 430:1247–56
    [Google Scholar]
  69. Lammer H, Kasting JF, Chassefière E, Johnson RE, Kulikov YN, Tian F 2008. Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139:399–436
    [Google Scholar]
  70. Lammer H, Selsis F, Ribas I, Guinan EF, Bauer SJ, Weiss WW 2003. Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. Astrophys. J. Lett. 598:L121–24
    [Google Scholar]
  71. Lammer H, Stökl A, Erkaev NV, Dorfi EA, Odert P et al. 2014. Origin and loss of nebula-captured hydrogen envelopes from “sub”- to “super-Earths” in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439:3225–38
    [Google Scholar]
  72. Lavie B, Ehrenreich D, Bourrier V, Lecavelier des Etangs A, Vidal-Madjar A et al. 2017. The long egress of GJ 436b's giant exosphere. Astron. Astrophys. 605:L7
    [Google Scholar]
  73. Lecavelier des Etangs A 2007. A diagram to determine the evaporation status of extrasolar planets. Astron. Astrophys. 461:1185–93
    [Google Scholar]
  74. Lecavelier des Etangs A, Ehrenreich D, Vidal-Madjar A, Ballester GE, Désert JM et al. 2010. Evaporation of the planet HD 189733b observed in H I Lyman-α. Astron. Astrophys. 514:A72
    [Google Scholar]
  75. Lecavelier des Etangs A, Vidal-Madjar A, McConnell JC, Hébrard G 2004. Atmospheric escape from hot Jupiters. Astron. Astrophys. 418:L1–4
    [Google Scholar]
  76. Léger A, Rouan D, Schneider J, Barge P, Fridlund M et al. 2009. Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius. Astron. Astrophys. 506:287–302
    [Google Scholar]
  77. Lopez ED, Fortney JJ 2013. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776:2
    [Google Scholar]
  78. Lopez ED, Fortney JJ, Miller N 2012. How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond. Astrophys. J. 761:59
    [Google Scholar]
  79. Lopez ED, Rice K 2016. Predictions for the period dependence of the transition between rocky super-Earths and gaseous sub-Neptunes and implications for . arXiv:1610.09390 [astro-ph.EP]
  80. Lundkvist MS, Kjeldsen H, Albrecht S, Davies GR, Basu S et al. 2016. Hot super-Earths stripped by their host stars. Nat. Commun. 7:11201
    [Google Scholar]
  81. Matsakos T, Königl A 2016. On the origin of the sub-Jovian desert in the orbital-period-planetary-mass plane. Astrophys. J. Lett. 820:L8
    [Google Scholar]
  82. Matsakos T, Uribe A, Königl A 2015. Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. Astron. Astrophys. 578:A6
    [Google Scholar]
  83. Mayor M, Queloz D 1995. A Jupiter-mass companion to a solar-type star. Nature 378:355–59
    [Google Scholar]
  84. Mazeh T, Holczer T, Faigler S 2016. Dearth of short-period Neptunian exoplanets: a desert in period-mass and period-radius planes. Astron. Astrophys. 589:A75
    [Google Scholar]
  85. Melo C, Santos NC, Pont F, Guillot T, Israelian G et al. 2006. On the age of stars harboring transiting planets. Astron. Astrophys. 460:251–56
    [Google Scholar]
  86. Morton TD, Bryson ST, Coughlin JL, Rowe JF, Ravichandran G et al. 2016. False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. Astrophys. J. 822:86
    [Google Scholar]
  87. Murray-Clay RA, Chiang EI, Murray N 2009. Atmospheric escape from hot Jupiters. Astrophys. J. 693:23–42
    [Google Scholar]
  88. Oklopčić A, Hirata CM 2018. A new window into escaping exoplanet atmospheres: 10830 Å line of helium. Astrophys. J. Lett. 855:L11
    [Google Scholar]
  89. Öpik EJ 1963. Selective escape of gases. Geophys. J. 7:490–506
    [Google Scholar]
  90. Osterbrock DE, Ferland GJ 2006. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Sausalito, CA: Univ. Sci. Books
    [Google Scholar]
  91. Owen JE, Adams FC 2014. Magnetically controlled mass-loss from extrasolar planets in close orbits. Mon. Not. R. Astron. Soc. 444:3761–79
    [Google Scholar]
  92. Owen JE, Alvarez MA 2016. UV driven evaporation of close-in planets: energy-limited, recombination-limited, and photon-limited flows. Astrophys. J. 816:34
    [Google Scholar]
  93. Owen JE, Jackson AP 2012. Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425:2931–47
    [Google Scholar]
  94. Owen JE, Lai D 2018. Photoevaporation and high-eccentricity migration created the sub-Jovian desert. Mon. Not. R. Astron. Soc. 479:5012–21
    [Google Scholar]
  95. Owen JE, Murray-Clay R 2018. Metallicity-dependent signatures in the Kepler planets. Mon. Not. R. Astron. Soc. 480:2206–16
    [Google Scholar]
  96. Owen JE, Wu Y 2013. Kepler planets: a tale of evaporation. Astrophys. J. 775:105
    [Google Scholar]
  97. Owen JE, Wu Y 2017. The evaporation valley in the Kepler planets. Astrophys. J. 847:29
    [Google Scholar]
  98. Parker EN 1958. Dynamics of the interplanetary gas and magnetic fields.. Astrophys. J. 128:664
    [Google Scholar]
  99. Parker EN 1960. The hydrodynamic theory of solar corpuscular radiation and stellar winds.. Astrophys. J. 132:821
    [Google Scholar]
  100. Parker EN 1964. Dynamical properties of stellar coronas and stellar winds. I. Integration of the momentum equation. Astrophys. J. 139:72
    [Google Scholar]
  101. Petigura EA, Howard AW, Marcy GW, Johnson JA, Isaacson H et al. 2017. The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. Astron. J. 154:107
    [Google Scholar]
  102. Poppenhaeger K, Schmitt JHMM, Wolk SJ 2013. Transit observations of the hot Jupiter HD 189733b at X-ray wavelengths. Astrophys. J. 773:62
    [Google Scholar]
  103. Ribas I, Guinan EF, Güdel M, Audard M 2005. Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622:680–94
    [Google Scholar]
  104. Rogers LA, Seager S 2010a. A framework for quantifying the degeneracies of exoplanet interior compositions. Astrophys. J. 712:974–91
    [Google Scholar]
  105. Rogers LA, Seager S 2010b. Three possible origins for the gas layer on GJ 1214b. Astrophys. J. 716:1208–16
    [Google Scholar]
  106. Schneiter EM, Esquivel A, Villarreal D'Angelo CS, Velázquez PF, Raga AC, Costa A 2016. Photoionization of planetary winds: case study HD 209458b. Mon. Not. R. Astron. Soc. 457:1666–74
    [Google Scholar]
  107. Schneiter EM, Velázquez PF, Esquivel A, Raga AC, Blanco-Cano X 2007. Three-dimensional hydrodynamical simulation of the exoplanet HD 209458b. Astrophys. J. Lett. 671:L57–60
    [Google Scholar]
  108. Seager S, Sasselov DD 2000. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537:916–21
    [Google Scholar]
  109. Shematovich VI, Ionov DE, Lammer H 2014. Heating efficiency in hydrogen-dominated upper atmospheres. Astron. Astrophys. 571:A94
    [Google Scholar]
  110. Spake JJ, Sing DK, Evans TM, Oklopčić A, Bourrier V et al. 2018. Helium in the eroding atmosphere of an exoplanet. Nature 557:68–70
    [Google Scholar]
  111. Stone JM, Proga D 2009. Anisotropic winds from close-in extrasolar planets. Astrophys. J. 694:205–13
    [Google Scholar]
  112. Szabó GM, Kiss LL 2011. A short-period censor of sub-Jupiter mass exoplanets with low density. Astrophys. J. Lett. 727:L44
    [Google Scholar]
  113. Thompson SE, Coughlin JL, Hoffman K, Mullally F, Christiansen JL et al. 2018. Planetary candidates observed by Kepler. VIII. A fully automated catalog with measured completeness and reliability based on Data Release 25. Astrophys. J. Suppl. 235:38
    [Google Scholar]
  114. Tian F 2015. Atmospheric escape from solar system terrestrial planets and exoplanets. Annu. Rev. Earth Planet. Sci. 43:459–76
    [Google Scholar]
  115. Tian F, Toon OB, Pavlov AA, De Sterck H 2005. Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophys. J. 621:1049–60
    [Google Scholar]
  116. Trammell GB, Arras P, Li ZY 2011. Hot Jupiter magnetospheres. Astrophys. J. 728:152
    [Google Scholar]
  117. Trammell GB, Li ZY, Arras P 2014. Magnetohydrodynamic simulations of hot Jupiter upper atmospheres. Astrophys. J. 788:161
    [Google Scholar]
  118. Tremblin P, Chiang E 2013. Colliding planetary and stellar winds: charge exchange and transit spectroscopy in neutral hydrogen. Mon. Not. R. Astron. Soc. 428:2565–76
    [Google Scholar]
  119. Tripathi A, Kratter KM, Murray-Clay RA, Krumholz MR 2015. Simulated photoevaporative mass loss from hot Jupiters in 3D. Astrophys. J. 808:173
    [Google Scholar]
  120. Tu L, Johnstone CP, Güdel M, Lammer H 2015. The extreme ultraviolet and X-ray sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577:L3
    [Google Scholar]
  121. Valencia D, Ikoma M, Guillot T, Nettelmann N 2010. Composition and fate of short-period super-Earths: the case of CoRoT-7b. Astron. Astrophys. 516:A20
    [Google Scholar]
  122. Van Eylen V, Agentoft C, Lundkvist MS, Kjeldsen H, Owen JE et al. 2018. An asteroseismic view of the radius valley: stripped cores, not born rocky. Mon. Not. R. Astron. Soc. 479:4786–95
    [Google Scholar]
  123. van Lieshout R, Rappaport S 2018. Disintegrating rocky exoplanets. Handbook of Exoplanets HJ Deeg, JA Belmonte Berlin: Springer
    [Google Scholar]
  124. Verner DA, Yakovlev DG 1995. Analytic FITS for partial photoionization cross sections. . Astron. Astrophys. Suppl. 109:125–33
    [Google Scholar]
  125. Vidal-Madjar A, Désert JM, Lecavelier des Etangs A, Hébrard G, Ballester GE et al. 2004. Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. Astrophys. J. Lett. 604:L69–72
    [Google Scholar]
  126. Vidal-Madjar A, Lecavelier des Etangs A, Désert JM, Ballester GE, Ferlet R et al. 2003. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422:143–46
    [Google Scholar]
  127. Villarreal D'Angelo C, Esquivel A, Schneiter M, Sgró MA 2018. Magnetized winds and their influence in the escaping upper atmosphere of HD 209458b. Mon. Not. R. Astron. Soc. 479:3115–25
    [Google Scholar]
  128. Volkov AN, Johnson RE, Tucker OJ, Erwin JT 2011a. Thermally driven atmospheric escape: transition from hydrodynamic to Jeans escape. Astrophys. J. Lett. 729:L24
    [Google Scholar]
  129. Volkov AN, Tucker OJ, Erwin JT, Johnson RE 2011b. Kinetic simulations of thermal escape from a single component atmosphere. Phys. Fluids 23:066601
    [Google Scholar]
  130. Waite JH, Cravens TE, Kozyra J, Nagy AF, Atreya SK, Chen RH 1983. Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. J. Geophys. Res. 88:A86143–63
    [Google Scholar]
  131. Watson AJ, Donahue TM, Walker JCG 1981. The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48:150–66
    [Google Scholar]
  132. Weiss LM, Marcy GW 2014. The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. Astrophys. J. Lett. 783:L6
    [Google Scholar]
  133. Winn JN, Sanchis-Ojeda R, Rogers L, Petigura EA, Howard AW et al. 2017. Absence of a metallicity effect for ultra-short-period planets. Astron. J. 154:60
    [Google Scholar]
  134. Wu Y, Lithwick Y 2013. Density and eccentricity of Kepler planets. Astrophys. J. 772:74
    [Google Scholar]
  135. Yelle RV 2004. Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170:167–79
    [Google Scholar]
  136. Yelle RV, Lammer H, Ip WH 2008. Aeronomy of extra-solar giant planets. Space Sci. Rev. 139:437–51
    [Google Scholar]
  137. Youdin AN 2011. The exoplanet census: a general method applied to Kepler. Astrophys. J. 742:38
    [Google Scholar]
  138. Zeng L, Jacobsen SB, Sasselov DD, Vanderburg A 2018. Survival function analysis of planet orbit distribution and occurrence rate estimate. arXiv:1801.03994 [astro-ph.EP]
/content/journals/10.1146/annurev-earth-053018-060246
Loading
/content/journals/10.1146/annurev-earth-053018-060246
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error