1932

Abstract

Two decades of intensive research have demonstrated that early Mars (2 Gyr) had an active sedimentary cycle, including well-preserved stratigraphic records, understandable within a source-to-sink framework with remarkable fidelity. This early cycle exhibits first-order similarities to (e.g., facies relationships, groundwater diagenesis, recycling) and first-order differences from (e.g., greater aeolian versus subaqueous processes, basaltic versus granitic provenance, absence of plate tectonics) Earth's record. Mars’ sedimentary record preserves evidence for progressive desiccation and oxidation of the surface over time, but simple models for the nature and evolution of paleoenvironments (e.g., acid Mars, early warm and wet versus late cold and dry) have given way to the view that, similar to Earth, different climate regimes on Mars coexisted on regional scales and evolved on variable timescales, and redox chemistry played a pivotal role. A major accomplishment of Mars exploration has been to demonstrate that surface and subsurface sedimentary environments were both habitable and capable of preserving any biological record.

  • ▪  Mars has an ancient sedimentary rock record with many similarities to but also many differences from Earth's sedimentary rock record.
  • ▪  Mars’ ancient sedimentary cycle shows a general evolution toward more desiccated and oxidized surficial conditions.
  • ▪  Climatic regimes of early Mars were relatively clement but with regional variations leading to different sedimentary mineral assemblages.
  • ▪  Surface and subsurface sedimentary environments on early Mars were habitable and capable of preserving any biological record that may have existed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060332
2019-05-30
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060332.html?itemId=/content/journals/10.1146/annurev-earth-053018-060332&mimeType=html&fmt=ahah

Literature Cited

  1. Allen JRL 1970. Physical Processes of Sedimentation Amsterdam: Elsevier
    [Google Scholar]
  2. Allen PA 2008. From landscapes into geological history. Nature 451:274–76
    [Google Scholar]
  3. Arnórsson S, Gunnarsson I, Stefánsson A, Andrédóttir A, Sveinbjörnsdóttir E 2002. Major element chemistry of surface- and ground-waters in basaltic terrain, N-Iceland: I. Primary mineral saturation. Geochim. Cosmochim. Acta 66:4015–46
    [Google Scholar]
  4. Banham SG, Gupta S, Rubin DM, Watkins JA, Sumner DY et al. 2018. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale Crater, Mars. Sedimentology 65:993–1042
    [Google Scholar]
  5. Berner RA 1968. Rate of concretion growth. Geochim. Cosmochim. Acta 32:477–83
    [Google Scholar]
  6. Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R et al. 2006. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–4
    [Google Scholar]
  7. Bishop JL, Parente M, Weitz CM, Noe Dobrea EZ, Roach LH et al. 2009. Mineralogy of Juventae Chasma: sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. J. Geophys. Res. Planets 114:E00D09
    [Google Scholar]
  8. Brantley SL, Goldhaber MB, Ragnarsdottir KV 2007. Crossing disciplines and scales to understand the critical zone. Elements 3:307–14
    [Google Scholar]
  9. Breuer D, Spohn T 2003. Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. J. Geophys. Res. Planets 108:E75072
    [Google Scholar]
  10. Bridges JC, Grady M 1999. A halite-siderite-anhydrite-chlorapatite assemblage in Nakhla: mineralogical evidence for evaporites on Mars. Meteor. Planet. Sci. 34:407–15
    [Google Scholar]
  11. Bridges NT, Muhs DR 2012. Duststones on Mars: source, transport, deposition, and erosion. Sedimentary Geology of Mars JP Grotzinger, RE Milliken 169–82 Tulsa, OK: SEPM
    [Google Scholar]
  12. Bullock MA, Moore JM 2004. Aqueous alteration of Mars-analog rocks under an acidic atmosphere. Geophys. Res. Lett. 31:L14701
    [Google Scholar]
  13. Burns RG 1987. Ferric sulfates on Mars. J. Geophys. Res. 92:E570–74
    [Google Scholar]
  14. Campbell IE, Taylor SR 1983. No water, no granites—no oceans, no continents. Geophys. Res. Lett. 10:1061–64
    [Google Scholar]
  15. Carr MH 1996. Water on Mars Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  16. Carr MH 2006. The Surface of Mars Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  17. Carr MH, Head JW 2010. Geologic history of Mars. Earth Planet. Sci. Lett. 294:185–201
    [Google Scholar]
  18. Carr MH, Head JW 2015. Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys. Res. Lett. 42:726–32
    [Google Scholar]
  19. Cino CD, Dehouck E, McLennan SM 2017. Geochemical constraints on the presence of clay minerals in the Burns formation, Meridini Planum, Mars. Icarus 284:137–50
    [Google Scholar]
  20. Citron RI, Manga M, Hemingway DJ 2018. Timing of oceans on Mars from shoreline deformation. Nature 555:643–46
    [Google Scholar]
  21. Cockell CS, Catling DC, Davis WL, Snook K, Kepner RL et al. 2000. The ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146:343–59
    [Google Scholar]
  22. Davila AF, Schulze-Makuch D 2016. The last possible outposts for life on Mars. Astrobiology 16:159–68
    [Google Scholar]
  23. Dehouck E, McLennan SM, Meslin P-Y, Cousin A 2014. Constraints on abundance, composition and nature of X-ray amorphous components of soils and rocks at Gale Crater, Mars. J. Geophys. Res. Planets 119:2640–57
    [Google Scholar]
  24. Di Achille G, Hynek BM 2010. Ancient ocean on Mars supported by global distribution of deltas and valley. Nat. Geosci. 3:459–63
    [Google Scholar]
  25. DiBiase RA, Limaye AB, Scheingross JS, Fischer WW, Lamb MP 2013. Deltaic deposits at Aeolis Dorse: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res. Planets 118:1285–302
    [Google Scholar]
  26. Dickinson W, Suczek CA 1979. Plate tectonics and sandstone composition. Am. Assoc. Petrol. Geol. Bull. 63:2164–82
    [Google Scholar]
  27. Dobrea EZN, Bishop JL, McKeown NK, Fu R, Rossi CM et al. 2010. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: constraints on geological origin. J. Geophys. Res. Planets 115:E00D19
    [Google Scholar]
  28. Dromart G, Quantin C, Broucke O 2007. Stratigraphic architectures spotted in southern Melas Chasma, Valles Marineris, Mars. Geology 35:363–66
    [Google Scholar]
  29. Ehlmann BL, Edwards CS 2014. Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42:291–315
    [Google Scholar]
  30. Ehlmann BL, Mustard JF, Murchie SL, Bibring JP 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature 479:53–60
    [Google Scholar]
  31. Ehlmann BL, Mustard JF, Swayze GA, Clark RN, Bishop JL et al. 2009. Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. Planets 114:E00D08
    [Google Scholar]
  32. Eigenbrode JL, Summons RE, Steele A, Freissinet C, Millan M et al. 2018. Organic matter preserved in 3-billion-year-old mudstones at Gale Crater, Mars. Science 360:1096–100
    [Google Scholar]
  33. Fairén AG, Dohm JM 2004. Age and origin of the lowlands of Mars. Icarus 168:277–84
    [Google Scholar]
  34. Fairén AG, Dohm JM, Baker VR, Amils R 2004. Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431:423–26
    [Google Scholar]
  35. Farley KA, Malespin C, Mahaffy P, Grotzinger J, Vasconcelos P et al. 2014. In situ radiometric and exposure age dating of the Martian surface. Science 343:1247166
    [Google Scholar]
  36. Fassett CL, Head JW 2008. Valley network-fed, open-basin lakes on Mars: distributions and implications for Noachian surface and subsurface hydrology. Icarus 198:37–56
    [Google Scholar]
  37. Fedo CM, McGlynn IO, McSween HY Jr 2015. Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: implications for interpreting Martian soils. Earth Planet. Sci. Lett. 423:67–77
    [Google Scholar]
  38. Freissinet C, Glavin DP, Mahaffy PR, Miller KE, Eignebrode JL et al. 2015. Organic molecules in the Sheepbed mudstone, Gale Crater, Mars. J. Geophys. Res. Planets 120:495–514
    [Google Scholar]
  39. Gellert R, Rieder R, Brückner J, Clark B, Driebus G et al. 2006. The alpha-particle X-ray spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res. Planets 111:E02S05
    [Google Scholar]
  40. Glotch TD, Bandfield JL, Christensen PR, Calvin WM, McLennan SM et al. 2006. Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. J. Geophys. Res. Planets 111:E12S03
    [Google Scholar]
  41. Glotch TD, Rogers AD 2007. Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars. J. Geophys. Res. Planets 112:E06001
    [Google Scholar]
  42. Golombek MP, Warner NH, Ganti V, Lamb MP, Parker TJ et al. 2014. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res. Planets 119:2522–47
    [Google Scholar]
  43. Grant JA, Wilson SA, Mangold N, Calef F, Grotzinger JP et al. 2014. The timing of alluvial activity in Gale Crater, Mars. Geophys. Res. Lett. 41:1142–48
    [Google Scholar]
  44. Grant WD 2004. Life at low water activity. Phil. Trans. R. Soc. Lond. B359:1249–67
    [Google Scholar]
  45. Grotzinger JP, Arvidson RE, Bell JF III, Calvin W, Clarke BC et al. 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240:11–72
    [Google Scholar]
  46. Grotzinger JP, Beaty D, Dromart G, Gupta S, Harris M et al. 2011. Mars sedimentary geology: key concepts and outstanding questions. Astrobiology 11:77–87
    [Google Scholar]
  47. Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J et al. 2015. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350:aac7575
    [Google Scholar]
  48. Grotzinger JP, Hayes AG, Lamb MP, McLennan SM 2013. Sedimentary processes on Earth, Mars, Titan, and Venus. Comparative Climatology of Terrestrial Planets SJ Macwell, AA Simon-Miller, JW Harder, MA Bullock 439–72 Tucson, AZ: Univ. Arizona Press
    [Google Scholar]
  49. Grotzinger JP, Milliken RE 2012. The sedimentary record of Mars: distributions, origins, and global stratigraphy. Sedimentary Geology of Mars JP Grotzinger, RE Milliken 1–48 Tulsa, OK: SEPM
    [Google Scholar]
  50. Grotzinger JP, Sumner DY, Kah LC, Stack K, Gupta S et al. 2014. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343:1242777
    [Google Scholar]
  51. Halevy I, Zuber MT, Schrag DP 2007. A sulfur dioxide climate feedback on early Mars. Science 318:1903–7
    [Google Scholar]
  52. Haltigin T, Lange C, Mugnuolo R, Smith C 2018. iMARS Phase 2: a draft mission architecture and science management plan for the return of samples from Mars Phase 2 Report of the International Mars Architecture for the Return of Samples (iMARS) Working Group. Astrobiology 18:S1S1–125
    [Google Scholar]
  53. Haskin LA, Wang A, Jolliff BL, McSween HY, Clark BC et al. 2003. Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev Crater. Nature 436:66–69
    [Google Scholar]
  54. Hazen RM, Papineau D, Leeker WB, Downs RT, Ferry JM et al. 2008. Mineral evolution. Am. Mineral. 93:1693–720
    [Google Scholar]
  55. Horvath DG, Andrews-Hanna JC 2017. Reconstructing the past climate at Gale Crater, Mars, from hydrological modeling of late-stage lakes. Geophys. Res. Lett. 44:8196–204
    [Google Scholar]
  56. Hurowitz JA, Fischer WW 2014. Contrasting styles of water-rock interaction at the Mars Exploration Rover landing sites. Geochim. Cosmochim. Acta 127:25–38
    [Google Scholar]
  57. Hurowitz JA, Fischer WW, Tosca NJ, Milliken RE 2010. Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3:323–26
    [Google Scholar]
  58. Hurowitz JA, Grotzinger JP, Fischer WW, McLennan SM, Milliken RE et al. 2017. Redox stratification of an ancient lake in Gale Crater, Mars. Science 356:eaah6849
    [Google Scholar]
  59. Hurowitz JA, McLennan SM 2007. A ∼3.5 Ga record of water-limited, acidic weathering conditions on Mars. Earth Planet. Sci. Lett. 260:432–43
    [Google Scholar]
  60. Hurowitz JA, McLennan SM, Tosca NJ, Arvidson RE, Michalski JR et al. 2006. In situ and experimental evidence for acidic weathering on Mars. J. Geophys. Res. Planets 111:E02S19
    [Google Scholar]
  61. Hutton J 1795. Theory of the Earth II Edinburgh, Scotl: Creech http://www.gutenberg.org/ebooks/14179
    [Google Scholar]
  62. Ingersoll RV 1988. Tectonics and sedimentary basins. Geol. Soc. Am. Bull. 100:1704–19
    [Google Scholar]
  63. Jakosky BM, Slipski M, Benna M, Mahaffy P, Elrod M et al. 2017. Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science 355:1408–10
    [Google Scholar]
  64. Johnson CM, McLennan SM, McSween HY, Summons RF 2013. Smaller, better, more: five decades of advances in geochemistry. The Web of Geological Sciences: Advances, Impacts, and Interactions ME Bickford 1–44 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  65. Johnsson MJ 1993. The system controlling the composition of clastic sediments. Processes Controlling the Composition of Clastic Sediments MJ Johnsson, A Basu 1–19 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  66. King PL, McLennan SM 2010. Sulfur on Mars. Elements 6:107–12
    [Google Scholar]
  67. Klingelhöfer G, Morris RV, Bernhardt B, Schröder C, Rodionov DS et al. 2004. Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer. Science 306:1740–45
    [Google Scholar]
  68. Knoll AH, Carr M, Clark B, Des Marais D, Farmer J et al. 2005. An astrobiological perspective on Meridiani Planum. Earth Planet. Sci. Lett. 20:179–89
    [Google Scholar]
  69. Knoll AH, Grotzinger J 2006. Water on Mars and the prospect for Martian life. Elements 2:169–73
    [Google Scholar]
  70. Krynine PD 1942. Differential sedimentation and its products during one complete geosynclinal cycle. Proceedings of the First Pan American Congress of Mining Engineering and Geology, Part 1 2537–60 Santiago, Chile: Chil. Inst. Min. Eng.
    [Google Scholar]
  71. Lamb MP, Grotzinger JP, Southard JB, Tosca NJ 2012. Were aqueous ripples on Mars formed by flowing brines?. Sedimentary Geology of Mars JP Grotzinger, RE Milliken 139–50 Tulsa, OK: SEPM
    [Google Scholar]
  72. Larsen IJ, Montgomery DR, Greenberg HM 2015. The contribution of mountains to global denudation. Geology 42:527–30
    [Google Scholar]
  73. Le Deit L, Mangold N, Forni O, Cousin A, Lasue J et al. 2015. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam onboard Curiosity. J. Geophys. Res. Planets 121:784–804
    [Google Scholar]
  74. Lewis KW, Aharonson O, Grotzinger JP, Squyres SW, Bell JF et al. 2008. Structure and stratigraphy of Home Plate from the Spirit Mars Exploration Rover. J. Geophys. Res. Planets 113:E12S36
    [Google Scholar]
  75. Lillis RJ, Robbins S, Manga M, Halekas JS, Frey HV 2013. Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. Planets 118:1488–511
    [Google Scholar]
  76. Malin MC, Edgett KS 2000. Sedimentary rocks of early Mars. Science 290:1927–37
    [Google Scholar]
  77. Mangold N, Schmidt ME, Fisk MR, Forni O, McLennan SM et al. 2017. Classification scheme for sedimentary and igneous rocks in Gale Crater, Mars. Icarus 284:1–17
    [Google Scholar]
  78. Mangold N, Thompson LM, Forni LM, Williams AJ, Fabre J et al. 2015. Composition of conglomerates analyzed by the Curiosity rover: implications for Gale Crater crust and sediment sources. J. Geophys. Res. Planets 121:353–87
    [Google Scholar]
  79. McGlynn IO, Fedo CM, McSween HY Jr 2011. Origin of basaltic soils at Gusev Crater, Mars, by aeolian modification of impact-generated sediment. J. Geophys. Res. Planets 116:E00F22
    [Google Scholar]
  80. McLennan SM 2003. Sedimentary silica on Mars. Geology 31:315–18
    [Google Scholar]
  81. McLennan SM 2012. Geochemistry of sedimentary processes on Mars. Sedimentary Geology of Mars JP Grotzinger, RE Milliken 119–38 Tulsa, OK: SEPM
    [Google Scholar]
  82. McLennan SM, Anderson RB, Bell JF III, Bridges JC, Calef F III et al. 2014. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale Crater, Mars. Science 343:1244734
    [Google Scholar]
  83. McLennan SM, Bell JF III, Calvin WM, Christensen PR, Clark BC et al. 2005. Provenance and diagenesis of the evaporate-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240:95–121
    [Google Scholar]
  84. McLennan SM, Grotzinger JP 2008. The sedimentary rock cycle of Mars. The Martian Surface: Composition, Mineralogy, and Physical Properties JF Bell III 541–77 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  85. McLennan SM, Hemming S, McDaniel DK, Hanson GN 1993. Geochemical approaches to sedimentation, provenance and tectonics. Processes Controlling the Composition of Clastic Sediments MJ Johnsson, A Basu 21–40 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  86. McLennan SM, Sephton MA, Allen C, Allwood AC, Barbieri R et al. 2012. Planning for Mars returned sample science: final report of the MSR End-to-End International Science Analysis Group (E2E-iSAG). Astrobiology 12:175–230
    [Google Scholar]
  87. McSween HY 2015. Petrology on Mars. Am. Mineral. 100:2380–95
    [Google Scholar]
  88. McSween HY, Keil K 2000. Mixing relationships in the Martian regolith and the composition of globally homogeneous dust. Geochim. Cosmochim. Acta 64:2155–66
    [Google Scholar]
  89. McSween HY, Taylor JG, Wyatt MB 2009. Elemental composition of the Martian crust. Science 324:736–39
    [Google Scholar]
  90. Melosh HJ 2011. Planetary Surface Processes Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  91. Metz JM, Grotzinger JP, Mohrig D, Milliken R, Prather B et al. 2009. Sublacustrine depositional fans in southwest Melas Chasma. J. Geophys. Res. Planets 114:E10002
    [Google Scholar]
  92. Michalski JR, Niles PB, Cuadros J, Baldridge AM 2013. Multiple working hypotheses for the formation of compositional stratigraphy on Mars: insights from the Mawrth Vallis region. Icarus 226:816–40
    [Google Scholar]
  93. Michalski JR, Onstott TC, Mojzsis SJ, Mustard J, Chan WHS et al. 2018. The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11:21–26
    [Google Scholar]
  94. Milliken RE, Fischer WW, Hurowitz JA 2009. Missing salts on early Mars. Geophys. Res. Lett. 36:L11202
    [Google Scholar]
  95. Milliken RE, Grotzinger JP, Thomson BJ 2010. Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37:L04201
    [Google Scholar]
  96. Ming DW, Archer PD Jr., Glavin DP, Eigenbrode JL, Franz HB et al. 2014. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 343:1245267
    [Google Scholar]
  97. Ming DW, Morris RV, Clark BC 2008. Aqueous alteration on Mars. The Martian Surface: Composition, Mineralogy, and Physical Properties JF Bell III 519–40 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  98. Mittlefehldt DW, Gellert R, van Bommel S, Ming DW, Yen AS et al. 2018. Diverse lithologies and alteration events on the rim of Noachian-aged Endeavour crater, Meridiani Planum, Mars: in situ compositional evidence. J. Geophys. Res. Planets 123:1255–306
    [Google Scholar]
  99. Moore JM, Howard AD 2005. Large alluvial fans on Mars. J. Geophys. Res. Planets 110:E04005
    [Google Scholar]
  100. Morris RV, Klingelhöfer G, Schröder C, Fleischer I, Ming DW et al. 2008. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: results from the Mössbauer instrument on the Spirit Mars Exploration Rover. J. Geophys. Res. Planets 113:E12S42
    [Google Scholar]
  101. Morris RV, Klingelhöfer G, Schröder C, Rodionov DS, Yen A et al. 2006. Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. Planets 111:E12S15
    [Google Scholar]
  102. Morris RV, Vaniman DT, Blake DF, Gellert R, Chipera SJ et al. 2016. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale Crater. PNAS 113:7071–76
    [Google Scholar]
  103. Morrison SM, Downs RT, Blake DF, Vaniman DT, Ming DW et al. 2018. Crystal chemistry of Martian minerals from Bradbury Landing through Naukluft Plateau, Gale Crater, Mars. Am. Mineral. 103:857–71
    [Google Scholar]
  104. Nachon M, Clegg SM, Mangold N, Schröder S, Kah LC et al. 2014. Calcium sulfate veins characterized by ChemCam/Curiosity at Gale Crater, Mars. J. Geophys. Res. Planets 119:1991–2016
    [Google Scholar]
  105. Nesbitt HW 2003. Petrogenesis of siliciclastic sediments and sedimentary rocks. Geochemistry of Sediments and Sedimentary Rocks, GeoText 4 DR Lentz 39–51 St. John's, Nfld.: Geol. Assoc. Can.
    [Google Scholar]
  106. Nesbitt HW, Young GM 1996. Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 43:341–58
    [Google Scholar]
  107. Noel A, Bishop JL, Al-Samir M, Gross C, Flahaut J et al. 2015. Mineralogy, morphology and stratigraphy of the light-toned interior layered deposits at Juventae Chasma. Icarus 251:315–31
    [Google Scholar]
  108. Oelkers EH, Schott J, eds. 2009. Thermodynamics and Kinetics of Water-Rock Interaction Chantilly, VA: Mineral. Soc. Am.
    [Google Scholar]
  109. Okubo CH, McEwen AS 2007. Fracture-controlled paleo-fluid flow in Candor Chasma, Mars. Science 315:983–85
    [Google Scholar]
  110. Okubo CH, Schultz RA, Chan MA, Komatsu G 2009. Deformation band clusters on Mars and implications for subsurface fluid flow. Geol. Soc. Am. Bull. 121:474–82
    [Google Scholar]
  111. Palucis MC, Dietrich WE, Hayes AG, William RME, Gupta S et al. 2014. The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars. J. Geophys. Res. Planets 119:705–28
    [Google Scholar]
  112. Parker TJ, Gorsline DS, Saunders RS, Pieri D, Schneeberger DM 1993. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98:11061–78
    [Google Scholar]
  113. Perron JT, Mitrovica JX, Manga M, Matsuyama I, Richards MA 2007. Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447:840–43
    [Google Scholar]
  114. Pokrovsky OS, Schott J 2000. Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12. Geochim. Cosmochim. Acta 64:3313–25
    [Google Scholar]
  115. Poulet F, Carter J, Bishop JL, Loizeau D, Murchie SM 2014. Mineral abundances at the final four Curiosity study sites and implications for their formation. Icarus 231:65–76
    [Google Scholar]
  116. Raiswell R, Canfield DE 2012. The iron biogeochemical cycle past and present. Geochem. Perspect. 1:11–220
    [Google Scholar]
  117. Rampe EB, Ming DW, Blake DF, Bristow TF, Chipera SJ et al. 2017. Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale Crater, Mars. Earth Planet. Sci. Lett. 471:172–85
    [Google Scholar]
  118. Roach LH, Mustard JF, Lane MD, Bishop JL, Murchie SL 2010. Diagenetic haematite and sulfate assemblages in Valles Marineris. Icarus 207:659–74
    [Google Scholar]
  119. Ruff SW, Farmer JD 2016. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun. 7:13554
    [Google Scholar]
  120. Sautter V, Toplis MJ, Beck P, Mangold N, Wiens RC et al. 2016. Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data. Lithos 254–55:36–52
    [Google Scholar]
  121. Sautter V, Toplis MJ, Wiens RC, Cousin A, Fabre C et al. 2015. In situ evidence for continental crust on early Mars. Nat. Geosci. 8:605–9
    [Google Scholar]
  122. Schmidt ME, Campbell JL, Gellert R, Perrett GM, Treiman AH et al. 2014. Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: evidence for and significance of an alkali and volatile-rich igneous source. J. Geophys. Res. Planets 119:64–81
    [Google Scholar]
  123. Settle M 1979. Formation and deposition of volcanic sulfate aerosols on Mars. J. Geophys. Res. 84:8343–54
    [Google Scholar]
  124. Sharp RP 1973. Mars—fretted and chaotic terrains. J. Geophys. Res. 78:4073–83
    [Google Scholar]
  125. Siebach KL, Baker MB, Grotzinger JP, McLennan SM, Gellert R et al. 2017a. Sorting out compositional trends in sedimentary rocks of the Bradbury group (Aeolis Palus), Gale Crater, Mars. J. Geophys. Res. Planets 122:295–328
    [Google Scholar]
  126. Siebach KL, Grotzinger JP, Kah LC, Stack KM, Malin M et al. 2014. Subaqueous shrinkage cracks in the Sheepbed mudstone: implications for early fluid diagenesis, Gale Crater, Mars. J. Geophys. Res. Planets 119:1597–613
    [Google Scholar]
  127. Siebach KL, McLennan SM, Fedo CM 2017b. Geochemistry of the Stimson sandstone, Gale Crater, Mars Paper presented at the 48th Lunar and Planetary Science Conference The Woodlands, TX: March 20–24 (Abstr.)
    [Google Scholar]
  128. Sousa DZ, Salvador AF, Ramos J, Guedes AP, Barbosa S et al. 2013. Activity and viability of methanogens in anaerobic digestion of unsaturated and saturated long-chain fatty acids. Appl. Environ. Microbiol. 79:4238–45
    [Google Scholar]
  129. Southard JB, Boguchwal LA 1990. Bed configurations in steady unidirectional water flows. 3. Effects of temperature and gravity. J. Sediment. Petrol. 60:680–86
    [Google Scholar]
  130. Squyres SW, Aharonson O, Clark BC, Cohen BA, Crumpler L et al. 2007. Pyroclastic activity at Home Plate in Gusev crater, Mars. Science 316:738–42
    [Google Scholar]
  131. Squyres SW, Arvidson RE, Ruff S, Gellert R, Morris RV et al. 2008. Detection of silica-rich deposits on Mars. Science 320:1063–67
    [Google Scholar]
  132. Squyres SW, Grotzinger JP, Arvidson RE, Bell JF III, Christensen PR et al. 2004. In-situ evidence for an ancient aqueous environment on Mars. Science 306:1709–14
    [Google Scholar]
  133. Squyres SW, Knoll AH, Arvidson RE, Ashley JW, Bell JF et al. 2009. Exploration of Victoria crater by the Mars rover Opportunity. Science 324:1058–61
    [Google Scholar]
  134. Stack KM, Edwards CS, Grotzinger JP, Gupta S, Sumner DY et al. 2016. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale Crater, Mars. Icarus 280:3–21
    [Google Scholar]
  135. Stack KM, Grotzinger JP, Kah LC, Schmidt ME, Mangold N et al. 2014. Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale Crater, Mars. J. Geophys. Res. Planets 119:1637–64
    [Google Scholar]
  136. Stolper EM, Baker MB, Newcombe ME, Schmidt ME, Treiman AH et al. 2013. The petrochemistry of Jake_M: a Martian mugearite. Science 341:1239463
    [Google Scholar]
  137. Taylor SR, McLennan SM 1985. The Continental Crust: Its Composition and Evolution Oxford, UK: Blackwell
    [Google Scholar]
  138. Taylor SR, McLennan SM 2009. Planetary Crusts: Their Composition, Origin and Evolution Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  139. Thomson BJ, Bridges NT, Milliken R, Baldridge A, Hook SJ et al. 2011. Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214:413–32
    [Google Scholar]
  140. Tosca NJ, Ahmed IAM, Tutolo BM, Ashpitel A, Hurowitz JA 2018. Magnetite authigenesis and the warming of early Mars. Nat. Geosci. 11:635–39
    [Google Scholar]
  141. Tosca NJ, Knoll AH 2009. Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet. Sci. Lett. 286:379–86
    [Google Scholar]
  142. Tosca NJ, Knoll AH, McLennan SM 2008a. Water activity and the challenge for life on early Mars. Science 320:1204–7
    [Google Scholar]
  143. Tosca NJ, McLennan SM 2006. Chemical divides and evaporate assemblages on Mars. Earth Planet. Sci. Lett. 241:21–31
    [Google Scholar]
  144. Tosca NJ, McLennan SM, Clark BC, Grotzinger JP, Hurowitz JA et al. 2005. Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett. 240:122–48
    [Google Scholar]
  145. Tosca NJ, McLennan SM, Dyar MD, Sklute EC, Michel FM 2008b. Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. J. Geophys. Res. Planets 113:E05005
    [Google Scholar]
  146. Tosca NJ, McLennan SM, Lindsley DH, Schoonen MAA 2004. Acid-sulfate weathering of Martian synthetic basalt: the acid fog model revisited. J. Geophys. Res. Planets 109:E05003
    [Google Scholar]
  147. Treiman AH, Bish DL, Vaniman DT, Chipera SJ, Blake DF et al. 2016. Mineralogy, provenance and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). J. Geophys. Res. Planets 121:75–106
    [Google Scholar]
  148. Udry A, Gazel E, McSween HY 2018. Formation of evolved rocks at Gale Crater by crystal fractionation and implications for Mars crustal composition. J. Geophys. Res. Planets. 123:1525–40
    [Google Scholar]
  149. Vaniman DT, Bish DL, Ming DW, Bristow TF, Morris RF et al. 2014. Mineralogy of a mudstone on Mars. Science 343:1244734
    [Google Scholar]
  150. Velbel MA 2012. Aqueous alteration in Martian meteorites: comparing mineral relations in igneous-rock weathering of Martian meteorites and in the sedimentary cycle of Mars. Sedimentary Geology of Mars JP Grotzinger, RE Milliken 97–117 Tulsa, OK: SEPM
    [Google Scholar]
  151. White AF, Brantley SL, eds. 1995. Chemical Weathering Rates of Silicate Minerals Chantilly, VA: Mineral. Soc. Am.
    [Google Scholar]
  152. Wilson L, Head JW 1994. Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys. 32:221–63
    [Google Scholar]
  153. Wood LJ 2006. Quantitative geomorphology of the Mars Eberswalde delta. Geol. Soc. Am. Bull. 118:557–66
    [Google Scholar]
  154. Wordsworth RD 2016. The climate of early Mars. Annu. Rev. Earth. Planet. Sci. 44:381–408
    [Google Scholar]
  155. Wordsworth RD, Kalugina Y, Lokshtanov S, Vigasin A, Ehlmann B et al. 2017. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44:665–71
    [Google Scholar]
  156. Wray JJ, Murchie SL, Bishop JL, Ehlmann BL, Milliken RE et al. 2016. Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res. Planets 121:652–77
    [Google Scholar]
  157. Zolotov MY, Mironenko MV 2007. Timing of acid weathering on Mars: a kinetic-thermodynamic assessment. J. Geophys. Res. Planets 112:E07006
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060332
Loading
/content/journals/10.1146/annurev-earth-053018-060332
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error