1932

Abstract

The North China Craton (NCC) was originally formed by the amalgamation of the eastern and western blocks along an orogenic belt at ∼1.9 Ga. After cratonization, the NCC was essentially stable until the Mesozoic, when intense felsic magmatism and related mineralization, deformation, pull-apart basins, and exhumation of the deep crust widely occurred, indicative of destruction or decratonization. Accompanying this destruction was significant removal of the cratonic keel and lithospheric transformation, whereby the thick (∼200 km) and refractory Archean lithosphere mantle was replaced by a thin (<80 km) juvenile one. The decratonization of the NCC was driven by flat slab subduction, followed by a rollback of the paleo-Pacific plate during the late Mesozoic. A global synthesis indicates that cratons are mainly destroyed by oceanic subduction, although mantle plumes might also trigger lithospheric thinning through thermal erosion. Widespread crust-derived felsic magmatism and large-scale ductile deformation can be regarded as petrological and structural indicators of craton destruction.

  • ▪  A craton, a kind of ancient continental block on Earth, was formed mostly in the early Precambrian (>1.8 Ga).
  • ▪  A craton is characterized by a rigid lithospheric root, which provides longevity and stability during its evolutionary history.
  • ▪  Some cratons, such as the North China Craton, can be destroyed by losing their stability, manifested by magmatism, deformation, earthquake, etc.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060342
2019-05-30
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060342.html?itemId=/content/journals/10.1146/annurev-earth-053018-060342&mimeType=html&fmt=ahah

Literature Cited

  1. Beck SL, Zandt G 2002. The nature of orogenic crust in the central Andes. J. Geophys. Res. 107:B102230
    [Google Scholar]
  2. Bleeker W 2003. The late Archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134
    [Google Scholar]
  3. Carlson RW, Irving AJ, Hearn BCJr 1999. Chemical and isotopic systematics of peridotite xenoliths from the Williams kimberlite, Montana: clues to processes of lithosphere formation, modification and destruction. Proceedings of the VIIth International Kimberlite Conference JJ Gurney, JL Gurney, MD Pascoe, SH Richardson 90–98 Cape Town: Red Roof Design
    [Google Scholar]
  4. Carlson RW, Irving AJ, Schulze DJ, Hearn BCJr 2004. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen. Lithos 77:453–72
    [Google Scholar]
  5. Carlson RW, Pearson DG, James DE 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43:RG1001
    [Google Scholar]
  6. Chan KT 1956. Examples of “activizing region” in the Chinese Platform with special reference to the “Cathaysia” problem. Acta Geol. Sin. 36:239–71
    [Google Scholar]
  7. Chan KT 1959. The third crustal tectonic unit-Diwa. Chin. Sci. Bull. 3:94–95
    [Google Scholar]
  8. Chen L, Wang T, Zhao L, Zheng TY 2008. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton. Earth Planet. Sci. Lett. 267:56–68
    [Google Scholar]
  9. Chi JS, Lu FX 1996. Kimberlites and the Features of Paleozoic Lithospheric Mantle in North China Craton Beijing: Science Press (In Chinese)
    [Google Scholar]
  10. Chopin C 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib. Mineral. Petrol. 86:107–18
    [Google Scholar]
  11. Coney PJ, Reynolds SJ 1977. Cordilleran Benioff zones. Nature 270:403–6
    [Google Scholar]
  12. Copeland P, Currie CA, Lawton TF, Murphy MA 2017. Location, location, location: the variable lifespan of the Laramide orogeny. Geology 45:223–26
    [Google Scholar]
  13. Courtillot V, Besse J, Vandamme D, Montigny R, Jaeger JJ, Cappetta H 1986. Deccan flood basalts at the Cretaceous/Tertiary boundary?. Earth Planet. Sci. Lett. 80:361–74
    [Google Scholar]
  14. Courtillot V, Kravchinsky VA, Quidelleur X, Renne PR, Gladkochub DP 2010. Preliminary dating of the Viluy traps (Eastern Siberia): eruption at the time of Late Devonian extinction events?. Earth Planet. Sci. Lett. 300:239–45
    [Google Scholar]
  15. Dai LQ, Zheng YF, Zhao ZF 2016. Termination time of peak decratonization in North China: geochemical evidence from mafic igneous rocks. Lithos 240:327–36
    [Google Scholar]
  16. Davis GA, Zheng YD, Wang C, Darby BJ, Zhang CH, Gehrels GE 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, Northern China. Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation MS Hendrix, GA Davis 171–97 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  17. Davies GF 1994. Thermomechanical erosion of the lithosphere by mantle plumes. J. Geophys. Res. 99:15709–22
    [Google Scholar]
  18. De Wit MJ, Roering C, Hart RJ, Armstrong RA, De Ronde CEJ et al. 1992. Formation of an Archaean continent. Nature 357:553–62
    [Google Scholar]
  19. Denis C, Alard O, Demouchy S 2015. Water content and hydrogen behaviour during metasomatism in the uppermost mantle beneath Ray Pic volcano (Massif Central, France). Lithos 236–237:256–74
    [Google Scholar]
  20. Dessai AG, Markwick A, Vaselli O, Downes H 2004. Granulite and pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos 78:263–90
    [Google Scholar]
  21. Dickinson WR 2004. Evolution of the North American Cordillera. Annu. Rev. Earth Planet. Sci. 32:13–45
    [Google Scholar]
  22. Dong SW, Zhang YQ, Zhang FQ, Cui JJ, Chen XH et al. 2015. Late Jurassic–Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: a synthesis of the Yanshan Revolution. J. Asian Earth Sci. 114:750–70
    [Google Scholar]
  23. Dumitru TA, Gans PB, Foster DA, Miller EL 1991. Refrigeration of the western Cordilleran lithosphere during Laramide shallow-angle subduction. Geology 19:1145–48
    [Google Scholar]
  24. Ernst RE, Buchan KL 2003. Recognizing mantle plumes in the geological record. Annu. Rev. Earth Planet. Sci. 31:469–523
    [Google Scholar]
  25. Foley SF 2008. Rejuvenation and erosion of the cratonic lithosphere. Nat. Geosci. 1:503–10
    [Google Scholar]
  26. Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS 2002. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett. 198:307–22
    [Google Scholar]
  27. Gao S, Rudnick RL, Xu WL, Yuan HL, Liu YS et al. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 270:41–53
    [Google Scholar]
  28. Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS et al. 2004. Recycling lower continental crust in the North China craton. Nature 432:892–97
    [Google Scholar]
  29. Gao S, Zhang BR, Jin ZM, Kern H, Luo TC, Zhao ZD 1998. How mafic is the lower continental crust. ? Earth Planet. Sci. Lett. 161:101–17
    [Google Scholar]
  30. Gibson SA, Thompson RN, Day JA 2006. Timescales and mechanisms of plume-lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province. Earth Planet. Sci. Lett. 251:1–17
    [Google Scholar]
  31. Griffin WL, Kobussen AF, Babu EV, O'Reilly SY, Norris R, Sengupta P 2009. A translithospheric suture in the vanished 1-Ga lithospheric root of South India: evidence from contrasting lithosphere sections in the Dharwar Craton. Lithos 112:Suppl. 21109–19
    [Google Scholar]
  32. Griffin WL, O'Reilly SY, Abe N, Aulbach S, Davies RM et al. 2003. The origin and evolution of Archean lithospheric mantle. Precambrian Res 127:19–41
    [Google Scholar]
  33. Griffin WL, Ryan CG, Kaminsky FV, O'Reilly SY, Natapov LM et al. 1999. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310:1–35
    [Google Scholar]
  34. Griffin WL, Zhang AD, O'Reilly SY, Ryan CG 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. Mantle Dynamics and Plate Interactions in East Asia MFJ Flower, SL Chung, CH Lo, TY Lee 107–26 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  35. Gutscher MA, Maury R, Eissen JP, Bourdon E 2000. Can slab melting be caused by flat subduction. ? Geology 28:535–38
    [Google Scholar]
  36. Hao YT, Xia QK, Li QW, Chen H, Feng M 2014. Partial melting control of water contents in the Cenozoic lithospheric mantle of the Cathaysia block of South China. Chem. Geol. 380:7–19
    [Google Scholar]
  37. Hao YT, Xia QK, Tian ZZ, Liu J 2016. Mantle metasomatism did not modify the initial H2O content in peridotite xenoliths from the Tianchang basalts of eastern China. Lithos 260:315–27
    [Google Scholar]
  38. Hawkesworth CJ, Cawood PA, Dhuime B, Kemp TIS 2017. Earth's continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45:169–98
    [Google Scholar]
  39. Howarth GH, Barry PH, Pernet-Fisher JF, Baziotis IP, Pokhilenko NP et al. 2014. Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184–187:209–24
    [Google Scholar]
  40. Hu JS, Liu LJ, Faccenda M, Zhou Q, Fischer KM et al. 2018. Modification of the western Gondwana craton by plume-lithosphere interaction. Nat. Geosci. 11:203–10
    [Google Scholar]
  41. Huang TK 1959. New researches on geotectonic subdivisions of eastern China and their characteristics. Acta Geol. Sin. 39:115–34
    [Google Scholar]
  42. Humphreys ED, Schmandt B, Bezada MJ, Perry-Houts J 2015. Recent craton growth by slab stacking beneath Wyoming. Earth Planet. Sci. Lett. 429:170–80
    [Google Scholar]
  43. Jordan TH 1978. Composition and development of the continental tectosphere. Nature 274:544–48
    [Google Scholar]
  44. Karmalkar NR, Duraiswami RA, Chalapathi Rao NV, Paul DK 2009. Mantle-derived mafic-ultramafic xenoliths and the nature of Indian sub-continental lithosphere. J. Geol. Soc. India 73:657–79
    [Google Scholar]
  45. Kay RW, Kay SM 1993. Delamination and delamination magmatism. Tectonophysics 219:177–89
    [Google Scholar]
  46. Kimura JI, Sakuyama T, Miyazaki T, Vaglarov BS, Fukao Y, Stern RJ 2018. Plume-stagnant slab-lithosphere interactions: origin of the late Cenozoic intra-plate basalts on the East Eurasia margin. Lithos 300–301:227–49
    [Google Scholar]
  47. Kusky TM, Windley BF, Wang L, Wang ZS, Li XY, Zhu PM 2014. Flat slab subduction, trench suction, and craton destruction: comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics 630:208–21
    [Google Scholar]
  48. Lee CT, Luffi P, Chin EJ 2011. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39:59–90
    [Google Scholar]
  49. Lenardic A, Moresi LN, Mühlhaus H 2003. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res. 108:B62303
    [Google Scholar]
  50. Li XY, Zhu PM, Kusky TM, Gu Y, Peng SB et al. 2015. Has the Yangtze Craton lost its root? A comparison between the North China and Yangtze cratons. Tectonophysics 655:1–14
    [Google Scholar]
  51. Liao J, Wang Q, Gerya T, Ballmer MD 2017. Modeling craton destruction by hydration-induced weakening of the upper mantle. J. Geophy. Res. Solid Earth 122:7449–66
    [Google Scholar]
  52. Liégeois JP, Abdelsalam MG, Ennih N, Ouabadi A 2013. Metacraton: nature, genesis and behavior. Gondwana Res 23:220–37
    [Google Scholar]
  53. Ling MX, Li Y, Ding Y, Teng FZ, Yang XY et al. 2013. Destruction of the North China Craton induced by ridge subductions. J. Geol. 121:197–213
    [Google Scholar]
  54. Liu CZ, Liu ZC, Wu FY, Chu ZY 2012. Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: geochemical and Re–Os isotopic results from Ningyuan mantle xenoliths. Chem. Geol. 291:186–98
    [Google Scholar]
  55. Liu DY, Nutman AP, Compston W, Wu JS, Shen QH 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20:339–42
    [Google Scholar]
  56. Liu JG, Rudnick RL, Walker RJ, Gao S, Wu FY et al. 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: an example from the North China Craton. Geochim. Cosmochim. Acta 75:3881–902
    [Google Scholar]
  57. Liu LJ, Gurnis M, Seton M, Saleeby J, Müller RD, Jackson J 2010. The role of oceanic plateau subduction in the Laramide orogeny. Nat. Geosci. 3:353–57
    [Google Scholar]
  58. Ma L, Jiang SY, Hofmann AW, Dai BZ, Hou ML et al. 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: a consequence of rapid lithospheric thinning beneath the North China Craton. ? Geochim. Cosmochim. Acta 124:250–71
    [Google Scholar]
  59. Ma L, Jiang SY, Hofmann AW, Xu YG, Dai BZ, Hou ML 2016. Rapid lithospheric thinning of the North China Craton: new evidence from Cretaceous mafic dikes in the Jiaodong Peninsula. Chem. Geol. 432:1–15
    [Google Scholar]
  60. McKenzie DP, Parker RL 1967. The North Pacific: an example of tectonics on a sphere. Nature 216:1276–80
    [Google Scholar]
  61. Menzies MA, Fan WM, Zhang M 1993. Palaeozoic and Cenozoic lithoprobe and the loss of >120 km of Archean lithosphere, Sino-Korean craton, China. Magmatic Processes and Plate Tectonics HM Prichard, T Alabaster, NBW Harris, CR Neary 71–81 London: Geol. Soc.
    [Google Scholar]
  62. Menzies MA, Xu YG, Zhang HF, Fan WM 2007. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96:1–21
    [Google Scholar]
  63. Meyer HOA, Zhang A, Milledge HJ, Mendelssohn MJ 1994. Diamonds and inclusions in diamonds from Chinese kimberlite. Proceedings of the Fifth International Kimberlite Conference 1 HOA Meyer, OH Leonardos 98–115 Rio de Janeiro: CPRM
    [Google Scholar]
  64. Molnar P, Tapponnier P 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science 189:419–26
    [Google Scholar]
  65. Morgan WJ 1968. Rises, trenches, great faults, and crustal blocks. J. Geophys. Res. 73:1959–82
    [Google Scholar]
  66. Pearson DG, Canil D, Shirey SB 2003. Mantle samples included in volcanic rocks: xenoliths and diamonds. The Mantle and Core, Vol. 2: Treatise on Geochemistry RW Carlson 171–276 London: Elsevier
    [Google Scholar]
  67. Poudjom Djomani YH, O'Reilly SY, Griffin WL, Morgan P 2001. The density structure of subcontinental lithosphere: constraints on delamination models. Earth Planet. Sci. Lett. 184:605–21
    [Google Scholar]
  68. Ramos VA, Folguera A 2009. Andean flat-slab subduction through time. Ancient Orogens and Modern Analogues JB Murphy, JD Keppie, AJ Hynes 31–54 London: Geol. Soc.
    [Google Scholar]
  69. Read G, Grutter H, Winter S, Luckman N, Gaunt F, Thompsen F 2004. Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quirico Basin, Minas Gerais State, Brazil. Lithos 77:803–18
    [Google Scholar]
  70. Renne PR, Zhang ZC, Richards MA, Black MT, Basu AR 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science 269:1413–16
    [Google Scholar]
  71. Rudnick RL 1995. Making continental crust. Nature 378:571–78
    [Google Scholar]
  72. Rudnick RL, Gao S, Ling WL, Liu YS, McDonough WF 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos 77:609–37
    [Google Scholar]
  73. Rudnick RL, Walker RJ 2009. Interpreting ages from Re–Os isotopes in peridotites. Lithos 112:Suppl. 21083–95
    [Google Scholar]
  74. Shalivahan, Bhattacharya BB, Chalapathi Rao NV, Maurya VP 2014. Thin lithosphere-asthenosphere boundary beneath Eastern Indian craton. Tectonophysics 612–613:128–33
    [Google Scholar]
  75. Snyder DB, Humphreys E, Pearson DG 2017. Construction and destruction of some North American cratons. Tectonophysics 694:464–85
    [Google Scholar]
  76. Tang YJ, Zhang HF, Ying JF, Su BX 2013. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth Sci. Rev. 118:45–68
    [Google Scholar]
  77. Tappe S, Foley SE, Stracke A, Romer RL, Kjarsgaard BA et al. 2007. Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet. Sci. Lett. 256:433–54
    [Google Scholar]
  78. Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature 466:352–55
    [Google Scholar]
  79. Wang HL, van Hunen J, Pearson DG 2015. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. Geochem. Geophys. Geosyst. 16:1156–71
    [Google Scholar]
  80. Wang HZ, Mo XX 1995. An outline of the tectonic evolution of China. Episodes 18:6–16
    [Google Scholar]
  81. Wang X, Zhu PM, Kusky TM, Zhao N, Li XY, Wang ZS 2016. Dynamic cause of marginal lithospheric thinning and implications for craton destruction: a comparison of the North China, Superior, and Yilgarn cratons. Can. J. Earth Sci. 53:1121–41
    [Google Scholar]
  82. Wang ZS, Kusky TM, Fu JM, Yuan YF, Zhu PM 2016. Review of lithospheric destruction in the North China, North Atlantic, and Tanzanian cratons. J. Geol. 124:699–721
    [Google Scholar]
  83. Wilde SA, Zhou XH, Nemchin AA, Sun M 2003. Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 31:817–20
    [Google Scholar]
  84. Wilson JT 1965. A new class of faults and their bearing on continental drift. Nature 207:343–47
    [Google Scholar]
  85. Wong WH 1927. The Mesozoic orogenic movement in eastern China. Bull. Geol. Soc. China 6:9–36
    [Google Scholar]
  86. Wu FY, Lin JQ, Wilde SA, Zhang XO, Yang JH 2005a. Nature and significance of the Early Cretaceous giant igneous event in Eastern China. Earth Planet. Sci. Lett. 233:103–19
    [Google Scholar]
  87. Wu FY, Walker RJ, Ren XW, Sun DY, Zhou XH 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem. Geol. 196:107–29
    [Google Scholar]
  88. Wu FY, Xu YG, Gao S, Zheng JP 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrol. Sin. 24:1145–74
    [Google Scholar]
  89. Wu FY, Xu YG, Zhu RX, Zhang GW 2014. Thinning and destruction of the cratonic lithosphere: a global perspective. Sci. China-Earth Sci. 57:2878–90
    [Google Scholar]
  90. Wu FY, Yang JH, Wilde SA, Zhang XO 2005b. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem. Geol. 221:127–56
    [Google Scholar]
  91. Xia QK, Hao YT, Li P, Deloule E, Coltorti M et al. 2010. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J. Geophys. Res. 115:B07207
    [Google Scholar]
  92. Xia QK, Hao YT, Liu SC, Gu XY, Feng M 2013a. Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton: peridotite xenolith constraints. Gondwana Res 23:108–18
    [Google Scholar]
  93. Xia QK, Liu J, Liu SC, Kovacs I, Feng M, Dang L 2013b. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet. Sci. Lett. 361:85–97
    [Google Scholar]
  94. Xu YG 2001. Thermo-tectonic destruction of the Archean lithospheric keel beneath eastern China: evidence, timing and mechanism. Phys. Chem. Earth A 26:747–57
    [Google Scholar]
  95. Xu YG, Li HY, Hong LB, Ma L, Ma Q, Sun MD 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Sci. China-Earth Sci. 61:869–86
    [Google Scholar]
  96. Yang JH, O'Reilly S, Walker R, Griffin WL, Wu FY et al. 2010. Diachronous decratonization of the Sino-Korean craton: geochemistry of mantle xenoliths from North Korea. Geology 38:799–802
    [Google Scholar]
  97. Yang JH, Wu FY, Chung SL, Lo CH, Wilde SA, Davis GA 2007a. Rapid exhumation and cooling of the Liaonan metamorphic core complex inferred from 40Ar/39Ar thermochronology: implications for the Late Mesozoic tectonic evolution of North China craton. Geol. Soc. Am. Bull. 119:1405–14
    [Google Scholar]
  98. Yang JH, Wu FY, Chung SL, Wilde SA, Chu MF 2004. Multiple sources for the origin of granites: geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochim. Cosmochim. Acta 68:4469–83
    [Google Scholar]
  99. Yang JH, Wu FY, Wilde SA, Belousova E, Griffin WL 2008. Mesozoic decratonization of the North China block. Geology 36:467–70
    [Google Scholar]
  100. Yang JH, Wu FY, Wilde SA, Liu XM 2007b. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem. Geol. 242:155–75
    [Google Scholar]
  101. Yonkee WA, Weil AB 2015. Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. Earth Sci. Rev. 150:531–93
    [Google Scholar]
  102. Yuen DA, Fleitout L 1985. Thinning of the lithosphere by small-scale convective destabilization. Nature 313:125–28
    [Google Scholar]
  103. Zhang HF 2005. Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth Planet. Sci. Lett. 237:768–80
    [Google Scholar]
  104. Zhang HF, Goldstein SL, Zhou XH, Sun M, Cai Y 2009. Comprehensive refertilization of lithospheric mantle beneath the North China Craton: further Os–Sr–Nd isotopic constraints. J. Geol. Soc. Lond. 166:249–59
    [Google Scholar]
  105. Zhang HF, Sun M, Zhou XH, Zhou MF, Fan WM, Zheng JP 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochim. Cosmochim. Acta 67:4373–87
    [Google Scholar]
  106. Zhang SH, Zhao Y, Song B, Hu JM, Liu SW et al. 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: geochronology, petrogenesis, and tectonic implications. Geol. Soc. Am. Bull. 121:181–200
    [Google Scholar]
  107. Zhao GC, Cawood PA, Wilde SA 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 59:125–62
    [Google Scholar]
  108. Zhao GC, Sun M, Wilde SA, Li SZ 2005. Late Archaean to Palaeoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136:177–202
    [Google Scholar]
  109. Zheng JP 1999. Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning, East China Wuhan, China: China Univ. Geosci. Press
    [Google Scholar]
  110. Zheng JP, Lee CTA, Lu JG, Zhao JH, Wu YB et al. 2015. Refertilization-driven destabilization of subcontinental mantle and the importance of initial lithospheric thickness for the fate of continents. Earth Planet. Sci. Lett. 409:225–31
    [Google Scholar]
  111. Zheng YF, Xu Z, Zhao ZF, Dai LQ 2018. Mesozoic mafic magmatism in North China: implications for thinning and destruction of cratonic lithosphere. Sci. China Earth Sci. 61:353–85
    [Google Scholar]
  112. Zhu G, Jiang DZ, Zhang BL, Chen Y 2012. Destruction of the eastern North China Craton in a backarc setting: evidence from crustal deformation kinematics. Gondwana Res 22:86–103
    [Google Scholar]
  113. Zhu RX, Chen L, Wu FY, Liu JL 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 54:789–97
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060342
Loading
/content/journals/10.1146/annurev-earth-053018-060342
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error