1932

Abstract

The Human System is within the Earth System. They should be modeled bidirectionally coupled, as they are in reality. The Human System is rapidly expanding, mostly due to consumption of fossil fuels (approximately one million times faster than Nature accumulated them) and fossil water. This threatens not only other planetary subsystems but also the Human System itself. Carrying Capacity is an important tool to measure sustainability, but there is a widespread view that Carrying Capacity is not applicable to humans. Carrying Capacity has generally been prescribed , mostly using the logistic equation. However, the real dynamics of human population and consumption are not represented by this equation or its variants. We argue that Carrying Capacity should not be prescribed but should insteadbe dynamically derived from the bidirectional coupling of Earth System submodels with the Human System model. We demonstrate this approach with a minimal model of Human–Nature interaction (HANDY).

  • ▪   The Human System is a subsystem of the Earth System, with inputs (resources) from Earth System sources and outputs (waste, emissions) to Earth System sinks.
  • ▪   The Human System is growing rapidly due to nonrenewable stocks of fossil fuels and water and threatens the sustainability of the Human System and to overwhelm the Earth System.
  • ▪   Carrying Capacity has been prescribed and using the logistic equation, which does not represent the dynamics of the Human System.
  • ▪   Our new approach to human Carrying Capacity is derived from dynamically coupled Earth System–Human System models and can be used to estimate the sustainability of the Human System.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060428
2020-05-30
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-053018-060428.html?itemId=/content/journals/10.1146/annurev-earth-053018-060428&mimeType=html&fmt=ahah

Literature Cited

  1. Aeschbach-Hertig W, Gleeson T. 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5:853–61
    [Google Scholar]
  2. Al-Moqbali MKA, Al-Salti NS, Elmojtaba IM 2018. Prey–predator models with variable carrying capacity. Mathematics 6:102
    [Google Scholar]
  3. Arrow K, Bolin B, Costanza R, Dasgupta P, Folke Cet al 1995. Economic growth, carrying capacity, and the environment. Ecol. Econ. 15:91–95
    [Google Scholar]
  4. Bardi U 2014. Extracted: How the Quest for Mineral Wealth Is Plundering the Planet White River Junction, VT: Chelsea Green Publ.
    [Google Scholar]
  5. Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BDet al 2008. Human-induced changes in the hydrology of the western United States. Science 319:1080–83
    [Google Scholar]
  6. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JHet al 2012. Approaching a state shift in Earth's biosphere. Nature 486:52–58
    [Google Scholar]
  7. Bauch CT, Sigdel R, Pharaon J, Anand M 2016. Early warning signals of regime shifts in coupled human–environment systems. PNAS 113:14560–67
    [Google Scholar]
  8. Bierregaard RO, Lovejoy TE, Kapos V, dos Santos AA, Hutchings RW 1992. The biological dynamics of tropical rainforest fragments. BioScience 42:859–66
    [Google Scholar]
  9. Bolt J, van Zanden JL 2014. The Maddison Project: collaborative research on historical national accounts. Econ. Hist. Rev. 67:627–51
    [Google Scholar]
  10. Brandt G, Merico A 2015. The slow demise of Easter Island: insights from a modeling investigation. Front. Ecol. Evol. 3:13
    [Google Scholar]
  11. Cai WJ, Hu X, Huang WJ, Murrell MC, Lehrter JCet al 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4:766–70
    [Google Scholar]
  12. Cane MA, Zebiak SE, Dolan SC 1986. Experimental forecasts of El Niño. Nature 321:827–32
    [Google Scholar]
  13. Canfield DE, Glazer AN, Falkowski PG 2010. The evolution and future of Earth's nitrogen cycle. Science 330:192–96
    [Google Scholar]
  14. Carstensen J, Andersen JH, Gustafsson BG, Conley DJ 2014. Deoxygenation of the Baltic Sea during the last century. PNAS 111:5628–33
    [Google Scholar]
  15. Castle SL, Thomas BF, Reager JT, Rodell M, Swenson SC, Famiglietti JS 2014. Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett. 41:5904–11
    [Google Scholar]
  16. Castro R, Fritzson P, Cellier F, Motesharrei S, Rivas J 2014. Human-nature interaction in world modeling with Modelica. In Proceedings of the 10th International Modelica Conference, March 10–12, 2014, Lund, Sweden, pp. 477–88. Linköping, Swed.: Linköping Univ. Electron. Press
    [Google Scholar]
  17. Catton WR 1980. Overshoot: The Ecological Basis of Revolutionary Change Chicago: Univ. Illinois Press
    [Google Scholar]
  18. Ceballos G, Ehrlich PR, Dirzo R 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114(30):E6089–96
    [Google Scholar]
  19. Chase-Dunn C, Hall T 1997. Rise and Demise: Comparing World-Systems Boulder, CO: Westview
    [Google Scholar]
  20. Chu CYC, Lee RD 1994. Famine, revolt, and the dynastic cycle: population dynamics in historic China. J. Popul. Econ. 7:351–78
    [Google Scholar]
  21. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 465–570. New York: Cambridge Univ. Press
    [Google Scholar]
  22. Cohen JE 1995a. How Many People Can the Earth Support? New York: W.W. Norton & Co.
    [Google Scholar]
  23. Cohen JE 1995b. Population growth and Earth's human carrying capacity. Science 269:341–46
    [Google Scholar]
  24. Crutzen PJ 2002. Geology of mankind. Nature 415:23
    [Google Scholar]
  25. Crutzen PJ 2006. The “Anthropocene.” In Earth System Science in the Anthropocene, ed. PDE Ehlers, DT Krafft, pp. 13–18. Berlin: Springer
    [Google Scholar]
  26. Daly HE, Farley J 2003. Ecological Economics: Principles and Applications Washington, DC: Island. 1st ed.
    [Google Scholar]
  27. Diamond JM 1994. Ecological collapses of past civilizations. Proc. Am. Philos. Soc. 138:363–70
    [Google Scholar]
  28. Diamond JM 2005. Collapse: How Societies Choose to Fail or Succeed New York: Viking
    [Google Scholar]
  29. Dockstader Z, Bauch CT, Anand M 2019. Interconnections accelerate collapse in a socio-ecological metapopulation. Sustainability 11:1852
    [Google Scholar]
  30. D'Odorico P, Laio F, Porporato A, Ridolfi L, Rinaldo A, Rodriguez-Iturbe I 2010. Ecohydrology of terrestrial ecosystems. BioScience 60:898–907
    [Google Scholar]
  31. D'Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW 2013. Global desertification: drivers and feedbacks. Adv. Water Resour. 51:326–344
    [Google Scholar]
  32. Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A 2014. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50:5698–720
    [Google Scholar]
  33. Downey SS, Haas WR, Shennan SJ 2016. European Neolithic societies showed early warning signals of population collapse. PNAS 113:9751–56
    [Google Scholar]
  34. Ehrlich PR, Ehrlich AH 2013. Can a collapse of global civilization be avoided?. Proc R. Soc. B: Biol. Sci. 280:20122845
    [Google Scholar]
  35. Ekstrom JA, Suatoni L, Cooley SR, Pendleton LH, Waldbusser GGet al 2015. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5:207–14
    [Google Scholar]
  36. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W 2008. How a century of ammonia synthesis changed the world. Nat. Geosci. 1:636–39
    [Google Scholar]
  37. Famiglietti JS 2014. The global groundwater crisis. Nat. Clim. Change 4:945–48
    [Google Scholar]
  38. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJet al 2011. Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophys. Res. Lett. 38:L03403
    [Google Scholar]
  39. Famiglietti JS, Rodell M 2013. Water in the balance. Science 340:1300–1
    [Google Scholar]
  40. Ferraz G, Russell GJ, Stouffer PC, Bierregaard RO, Pimm SL, Lovejoy TE 2003. Rates of species loss from Amazonian forest fragments. PNAS 100:14069–73
    [Google Scholar]
  41. Foley JA, DeFries R, Asner GP, Barford C, Bonan Get al 2005. Global consequences of land use. Science 309:570–74
    [Google Scholar]
  42. Fu B, Li Y 2016. Bidirectional coupling between the Earth and human systems is essential for modeling sustainability. Natl. Sci. Rev. 3:397–98
    [Google Scholar]
  43. Gabriel JP, Saucy F, Bersier LF 2005. Paradoxes in the logistic equation?. Ecol Model. 185:147–51
    [Google Scholar]
  44. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RWet al 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226
    [Google Scholar]
  45. Gibson L, Lynam AJ, Bradshaw CJA, He F, Bickford DPet al 2013. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341:1508–10
    [Google Scholar]
  46. Ginzburg LR 1992. Evolutionary consequences of basic growth equations. Trends Ecol. Evol. 7:133
    [Google Scholar]
  47. Goldberg A, Mychajliw AM, Hadly EA 2016. Post-invasion demography of prehistoric humans in South America. Nature 532:232–35
    [Google Scholar]
  48. Goldstein J 1988. Long Cycles: Prosperity and War in the Modern Age New Haven, CT: Yale Univ. Press
    [Google Scholar]
  49. Gordon LJ, Peterson GD, Bennett EM 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 23:211–19
    [Google Scholar]
  50. Grasby S 2004. World water resources at the beginning of the 21st century. Geosci. Can. 31:138–39
    [Google Scholar]
  51. Gruber N, Galloway JN 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:293–96
    [Google Scholar]
  52. Haberl H, Erb KH, Krausmann F, Bondeau A, Lauk Cet al 2011. Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass Bioenergy 35:4753–69
    [Google Scholar]
  53. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau Aet al 2007. Quantifying and mapping the human appropriation of net primary production in Earth's terrestrial ecosystems. PNAS 104:12942–47
    [Google Scholar]
  54. Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman Fet al 2013. Assessing “dangerous climate change”: required reduction of carbon emissions to protect young people, future generations and nature. PLOS ONE 8:e81648
    [Google Scholar]
  55. Hanski I, Zurita GA, Bellocq MI, Rybicki J 2013. Species–fragmented area relationship. PNAS 110:12715–20
    [Google Scholar]
  56. Henderson K, Loreau M 2018. How ecological feedbacks between human population and land cover influence sustainability. PLOS Comput. Biol. 14:e1006389
    [Google Scholar]
  57. Henderson K, Loreau M 2019. An ecological theory of changing human population dynamics. People Nat. 1:31–43
    [Google Scholar]
  58. Hixon MA 2008. Carrying capacity. In Encyclopedia of Ecology, ed. SE Jørgensen, BD Fath, pp. 528–30. Oxford, UK: Academic
    [Google Scholar]
  59. Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJet al 2011. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334:1545–48
    [Google Scholar]
  60. Hopfenberg R 2003. Human carrying capacity is determined by food availability. Popul. Environ. 25:109–17
    [Google Scholar]
  61. Howarth R, Swaney D, Billen G, Garnier J, Hong Bet al 2012. Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front. Ecol. Environ. 10:37–43
    [Google Scholar]
  62. Hsiang SM, Burke M, Miguel E 2013. Quantifying the influence of climate on human conflict. Science 341:1235367
    [Google Scholar]
  63. Hsiang SM, Meng KC, Cane MA 2011. Civil conflicts are associated with the global climate. Nature 476:438–41
    [Google Scholar]
  64. Hui C 2006. Carrying capacity, population equilibrium, and environment's maximal load. Ecol. Model. 192:317–20
    [Google Scholar]
  65. Imhoff ML, Bounoua L, Ricketts T, Loucks C, Harriss R, Lawrence WT 2004. Global patterns in human consumption of net primary production. Nature 429:870–73
    [Google Scholar]
  66. Imhoff ML, Tucker C, Lawrence W, Stutzer D 2000. The use of multisource satellite and geospatial data to study the effect of urbanization on primary productivity in the United States. IEEE Trans. Geosci. Remote Sens. 38:2549–56
    [Google Scholar]
  67. IPBES (Intergov. Sci. Policy Platf. Biodivers. Ecosyst. Serv.) 2019. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Bonn, Ger.: IPBES
    [Google Scholar]
  68. Isbell F, Gonzalez A, Loreau M, Cowles J, Díaz Set al 2017. Linking the influence and dependence of people on biodiversity across scales. Nature 546:65–72
    [Google Scholar]
  69. Jacobson MZ, Delucchi MA, Cameron MA, Frew BA 2015. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. PNAS 112:15060
    [Google Scholar]
  70. Jacobson MZ, Delucchi MA, Cameron MA, Mathiesen BV 2018. Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes. Renew. Energy 123:236–48
    [Google Scholar]
  71. Kareiva P, Watts S, McDonald R, Boucher T 2007. Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866–69
    [Google Scholar]
  72. Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y 2015. Climate change in the Fertile Crescent and implications of the recent Syrian drought. PNAS 112:3241–46
    [Google Scholar]
  73. King CW 2020. An integrated biophysical and economic modeling framework for long-term sustainability analysis: the HARMONEY model. Ecol. Econ. 169:106464
    [Google Scholar]
  74. Kolbert E 2014. The Sixth Extinction: An Unnatural History New York: Henry Holt & Co. 1st ed.
    [Google Scholar]
  75. Kondratieff ND 1984. The Long Wave Cycle New York: Richardson & Snyder
    [Google Scholar]
  76. Konikow LF 2013. Groundwater Depletion in the United States (1900–2008) Reston, VA: US Geol. Surv.
    [Google Scholar]
  77. Koster RD, Guo Z, Yang R, Dirmeyer PA, Mitchell K, Puma MJ 2009. On the nature of soil moisture in land surface models. J. Clim. 22:4322–35
    [Google Scholar]
  78. Krausmann F, Erb KH, Gingrich S, Haberl H, Bondeau Aet al 2013. Global human appropriation of net primary production doubled in the 20th century. PNAS 110:10324–29
    [Google Scholar]
  79. Krausmann F, Gingrich S, Eisenmenger N, Erb KH, Haberl H, Fischer-Kowalski M 2009. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68:2696–705
    [Google Scholar]
  80. Kuil L, Carr G, Prskawetz A, Salinas JL, Viglione A, Blöschl G 2019. Learning from the ancient Maya: exploring the impact of drought on population dynamics. Ecol. Econ. 157:1–16
    [Google Scholar]
  81. Lafuite AS, de Mazancourt C, Loreau M 2017. Delayed behavioural shifts undermine the sustainability of social–ecological systems. Proc. R. Soc. B: Biol. Sci. 284:20171192
    [Google Scholar]
  82. Lafuite AS, Denise G, Loreau M 2018. Sustainable land-use management under biodiversity lag effects. Ecol. Econ. 154:272–281
    [Google Scholar]
  83. Lauk C, Erb KH 2009. Biomass consumed in anthropogenic vegetation fires: global patterns and processes. Ecol. Econ. 69:301–9
    [Google Scholar]
  84. Laurance WF 2004. Rapid land-use change and its impacts on tropical biodiversity. In Ecosystems and Land Use Change, ed. RS Defries, GP Asner, RA Houghton, pp. 189–99. Washington, DC: Am. Geophys. Union
    [Google Scholar]
  85. Laurance WF, Laurance SG, Ferreira LV, Rankin-de Merona JM, Gascon C, Lovejoy TE 1997. Biomass collapse in Amazonian forest fragments. Science 278:1117–18
    [Google Scholar]
  86. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RKet al 2002. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16:605–18
    [Google Scholar]
  87. Laurance WF, Vasconcelos HL, Lovejoy TE 2000. Forest loss and fragmentation in the Amazon: implications for wildlife conservation. Oryx 34:39–45
    [Google Scholar]
  88. Lewis SL, Edwards DP, Galbraith D 2015. Increasing human dominance of tropical forests. Science 349:827–32
    [Google Scholar]
  89. Li Y, De Noblet-Ducoudré N, Davin EL, Motesharrei S, Zeng Net al 2016. The role of spatial scale and background climate in the latitudinal temperature response to deforestation. Earth Syst. Dyn. 7:167–81
    [Google Scholar]
  90. Li Y, Kalnay E, Motesharrei S, Rivas J, Kucharski Fet al 2018. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361:1019–22
    [Google Scholar]
  91. Li Y, Zhao M, Motesharrei S, Mu Q, Kalnay E, Li S 2015. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6:6603
    [Google Scholar]
  92. Lin D, Hanscom L, Murthy A, Galli A, Evans Met al 2018. Ecological footprint accounting for countries: updates and results of the national footprint accounts, 2012–2018. Resources 7:58
    [Google Scholar]
  93. Liu Y, Li Y, Li S, Motesharrei S 2015. Spatial and temporal patterns of global NDVI trends: correlations with climate and human factors. Remote Sens. 7:13233–50
    [Google Scholar]
  94. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JPet al 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–8
    [Google Scholar]
  95. Mace GM, Masundire H, Baillie J 2005. Biodiversity. In Ecosystems and Human Well-Being: Current State and Trends, Vol. 1, ed. R Hassan, RJ Scholes, N Ash, pp. 77–122 Washington, DC: Island
    [Google Scholar]
  96. Maddison A 2001. The World Economy: A Millennial Perspective Paris: OECD Publ.
    [Google Scholar]
  97. Manabe S, Smagorinsky J, Strickler RF 1965. Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Weather Rev. 93:769–98
    [Google Scholar]
  98. McBain B, Lenzen M, Wackernagel M, Albrecht G 2017. How long can global ecological overshoot last?. Glob Planet. Change 155:13–19
    [Google Scholar]
  99. McLeod SR 1997. Is the concept of carrying capacity useful in variable environments?. Oikos 79:529–42
    [Google Scholar]
  100. Meadows DH, Meadows DL, Randers J, Behrens WWB III 1972. The Limits to Growth New York: Universe Books
    [Google Scholar]
  101. Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MAet al 2012. Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar. Biol. 160:1875–88
    [Google Scholar]
  102. Meybeck M 2003. Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 358:1935–55
    [Google Scholar]
  103. Meyer PS, Ausubel JH 1999. Carrying capacity: a model with logistically varying limits. Technol. Forecast. Soc. Change 61:209–14
    [Google Scholar]
  104. Milanovic B 2013. Global income inequality in numbers: in history and now. Glob. Policy 4:198–208
    [Google Scholar]
  105. Milanovic B 2016. Global Inequality: A New Approach for the Age of Globalization Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  106. Millenn. Ecosyst. Assess 2005. Ecosystems and Human Well-Being, Vol. 5: Synthesis Washington, DC: Island
    [Google Scholar]
  107. Modelski G 1987. Exploring Long Cycles Boulder, CO: L. Rienner Publ.
    [Google Scholar]
  108. Molden D 2007. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture Sterling, VA: Earthscan
    [Google Scholar]
  109. Molle F, Wester P, Hirsch P 2010. River basin closure: processes, implications and responses. Agric. Water Manag. 97:569–77
    [Google Scholar]
  110. Motesharrei S, Rivas J, Kalnay E 2014. Human and nature dynamics (HANDY): modeling inequality and use of resources in the collapse or sustainability of societies. Ecol. Econ. 101:90–102
    [Google Scholar]
  111. Motesharrei S, Rivas J, Kalnay E, Asrar GR, Busalacchi AJet al 2016. Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and human systems. Natl. Sci. Rev. 3:470–94
    [Google Scholar]
  112. Natl. Res. Counc 2014. Can Earth's and Society's Systems Meet the Needs of 10 Billion People?: Summary of a Workshop Washington, DC: Natl. Acad.
    [Google Scholar]
  113. Navarro A, Moreno R, Tapiador FJ 2018. Improving the representation of anthropogenic CO2 emissions in climate models: impact of a new parameterization for the Community Earth System Model (CESM). Earth Syst. Dyn. 9:1045–1062
    [Google Scholar]
  114. Navarro A, Tapiador FJ 2019. RUSEM: a numerical model for policymaking and climate applications. Ecol. Econ. 165:106403
    [Google Scholar]
  115. Needham J, Wang L 1956. Science and Civilisation in China: Introductory Orientations New York: Cambridge Univ. Press
    [Google Scholar]
  116. Odum EP 1953. Fundamentals of Ecology Philadelphia, PA: Saunders
    [Google Scholar]
  117. Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman KN, Foufoula-Georgiou Eet al 2010. Mountaintop mining consequences. Science 327:148–49
    [Google Scholar]
  118. Pearl R, Reed LJ 1920. On the rate of growth of the population of the United States since 1790 and its mathematical representation. PNAS 6:275–88
    [Google Scholar]
  119. Piketty T 2014. Capital in the Twenty-First Century Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  120. Powell LL, Zurita G, Wolfe JD, Johnson EI, Stouffer PC 2015. Changes in habitat use at rain forest edges through succession: a case study of understory birds in the Brazilian Amazon. Biotropica 47:723–32
    [Google Scholar]
  121. Rabotyagov SS, Kling CL, Gassman PW, Rabalais NN, Turner RE 2014. The economics of dead zones: causes, impacts, policy challenges, and a model of the Gulf of Mexico hypoxic zone. Rev. Environ. Econ. Policy 8:58–79
    [Google Scholar]
  122. Ramankutty N, Foley JA, Olejniczak NJ 2002. People on the land: changes in global population and croplands during the 20th century. AMBIO: J. Hum. Environ. 31:251–57
    [Google Scholar]
  123. Rees WE 1992. Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ. Urban. 4:121–30
    [Google Scholar]
  124. Regan HM, Lupia R, Drinnan AN, Burgman MA 2001. The currency and tempo of extinction. Am. Nat. 157:1–10
    [Google Scholar]
  125. Ridolfi L, D'Odorico P, Laio F 2015. Indicators of collapse in systems undergoing unsustainable growth. Bull. Math. Biol. 77:339–47
    [Google Scholar]
  126. Rockström J, Steffen W, Noone K, Persson Å, Chapin Fet al 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14:32
    [Google Scholar]
  127. Rodell M, Velicogna I, Famiglietti JS 2009. Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002
    [Google Scholar]
  128. Rojstaczer S, Sterling SM, Moore NJ 2001. Human appropriation of photosynthesis products. Science 294:2549–52
    [Google Scholar]
  129. Roman S, Bullock S, Brede M 2017. Coupled societies are more robust against collapse: a hypothetical look at Easter Island. Ecol. Econ. 132:264–78
    [Google Scholar]
  130. Roman S, Palmer E, Brede M 2018. The dynamics of human–environment interactions in the collapse of the classic Maya. Ecol. Econ. 146:312–24
    [Google Scholar]
  131. Ruddiman WF 2003. The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61:261–93
    [Google Scholar]
  132. Ruddiman WF 2005. Plows, Plagues, and Petroleum: How Humans Took Control of Climate Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  133. Safuan HM, Towers I, Jovanoski Z, Sidhu H 2011. Coupled logistic carrying capacity model. ANZIAM J. 53:172–84
    [Google Scholar]
  134. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WMet al 2012. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. PNAS 109:9320–25
    [Google Scholar]
  135. Scholes MC, Scholes RJ 2013. Dust unto dust. Science 342:565–66
    [Google Scholar]
  136. Shennan S, Downey SS, Timpson A, Edinborough K, Colledge Set al 2013. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4:2486
    [Google Scholar]
  137. Shepherd JJ, Stojkov L 2005. The logistic population model with slowly varying carrying capacity. ANZIAM J. 47:492–506
    [Google Scholar]
  138. Smil V 2004. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production Cambridge, MA: MIT Press
    [Google Scholar]
  139. Smil V 2011. Nitrogen cycle and world food production. World Agric. 2:9–13
    [Google Scholar]
  140. Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C 2015a. The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev. 2:81–98
    [Google Scholar]
  141. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer Iet al 2015b. Planetary boundaries: guiding human development on a changing planet. Science 347:1259855
    [Google Scholar]
  142. Steffen W, Sanderson RA, Tyson PD, Jäger J, Matson PAet al 2006. Global Change and the Earth System: A Planet Under Pressure Berlin: Springer-Verlag
    [Google Scholar]
  143. Tainter JA 1988. The Collapse of Complex Societies New York: Cambridge Univ. Press
    [Google Scholar]
  144. Tenza A, Martínez-Fernández J, Pérez-Ibarra I, Giménez A 2019. Sustainability of small-scale social-ecological systems in arid environments: trade-off and synergies of global and regional changes. Sustain. Sci. 14:791–807
    [Google Scholar]
  145. Thornley JHM, France J 2005. An open-ended logistic-based growth function. Ecol. Model. 184:257–61
    [Google Scholar]
  146. Tilman D, Balzer C, Hill J, Befort BL 2011. Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–64
    [Google Scholar]
  147. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S 2002. Agricultural sustainability and intensive production practices. Nature 418:671–77
    [Google Scholar]
  148. Tilman D, Fargione J, Wolff B, D'Antonio C, Dobson Aet al 2001. Forecasting agriculturally driven global environmental change. Science 292:281–84
    [Google Scholar]
  149. Tripati AK, Roberts CD, Eagle RA 2009. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326:1394–97
    [Google Scholar]
  150. Tsoularis A, Wallace J 2002. Analysis of logistic growth models. Math. Biosci. 179:21–55
    [Google Scholar]
  151. Turchin P 2005. Dynamical feedbacks between population growth and sociopolitical instability in agrarian states. Struct. Dyn. 1:1 https://escholarship.org/uc/item/0d17g8g9
    [Google Scholar]
  152. Turchin P 2009. Long-term population cycles in human societies. Ann. N. Y. Acad. Sci. 1162:1–17
    [Google Scholar]
  153. Turchin P, Nefedov SA 2009. Secular Cycles Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  154. United Nations 2013a. World population prospects: the 2012 revision, DVD edition. Work. Pap. ESA/P/WP.228, Dep. Econ. Soc. Aff., Popul. Div., U. N.
    [Google Scholar]
  155. United Nations 2013b. World population prospects: the 2012 revision, highlights and advance tables. Work. Pap. ESA/P/WP.228, Dep. Econ. Soc. Aff., Popul. Div., U. N.
    [Google Scholar]
  156. United Nations 2015. World population prospects: the 2015 revision, key findings and advance tables. Work. Pap. ESA/P/WP.241, Dep. Econ. Soc. Aff., Popul. Div., U. N.
    [Google Scholar]
  157. USGCRP (US Glob. Change Res. Program) 2017. Climate Science Special Report: Fourth National Climate Assessment, Vol. I Washington, DC: US Glob. Change Res. Program
    [Google Scholar]
  158. Vaquer-Sunyer R, Duarte CM 2008. Thresholds of hypoxia for marine biodiversity. PNAS 105:15452–57
    [Google Scholar]
  159. Verhulst PF 1838. Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10:113–26
    [Google Scholar]
  160. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PAet al 1997a. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–50
    [Google Scholar]
  161. Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA 1986. Human appropriation of the products of photosynthesis. BioScience 36:368–73
    [Google Scholar]
  162. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM 1997b. Human domination of Earth's ecosystems. Science 277:494–99
    [Google Scholar]
  163. Vörösmarty CJ, Green P, Salisbury J, Lammers RB 2000. Global water resources: vulnerability from climate change and population growth. Science 289:284–88
    [Google Scholar]
  164. Voss KA, Famiglietti JS, Lo M, de Linage C, Rodell M, Swenson SC 2013. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 49:904–14
    [Google Scholar]
  165. Wackernagel M, Lin D, Hanscom L, Galli A, Iha K 2019. Ecological footprint. In Encyclopedia of Ecology, ed. B Fath, pp. 270–82 Oxford, UK: Elsevier. 2nd ed.
    [Google Scholar]
  166. Wackernagel M, Rees W 1996. Our Ecological Footprint: Reducing Human Impact on the Earth Gabriola Island, Can.: New Soc. Publ.
    [Google Scholar]
  167. Wackernagel M, Schulz NB, Deumling D, Linares AC, Jenkins Met al 2002. Tracking the ecological overshoot of the human economy. PNAS 99:9266–71
    [Google Scholar]
  168. Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJet al 2010. The future of hydrology: an evolving science for a changing world. Water Resour. Res. 46:W05301
    [Google Scholar]
  169. Warren SG 2015. Can human populations be stabilized?. Earth's Future 3:82–94
    [Google Scholar]
  170. WWF (World Wildl. Fund) 2016. Living Planet Report 2016. Risk and Resilience in a New Era Gland, Switz.: WWF
    [Google Scholar]
  171. Yoffee N, Cowgill GL 1988. The Collapse of Ancient States and Civilizations Tucson: Univ. Arizona Press
    [Google Scholar]
  172. Zebiak SE, Cane MA 1987. A model El Niño–Southern Oscillation. Mon. Weather Rev. 115:2262–78
    [Google Scholar]
  173. Zeng N, Yoon J 2009. Expansion of the world's deserts due to vegetation-albedo feedback under global warming. Geophys. Res. Lett. 36:L17401
    [Google Scholar]
  174. Zeng N, Zhao F, Collatz GJ, Kalnay E, Salawitch RJet al 2014. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 515:394–97
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060428
Loading
/content/journals/10.1146/annurev-earth-053018-060428
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error