1932

Abstract

The low permeability of clays, shales, and other argillaceous lithologies makes them key controls of transport and deformation processes in the crust but is known for being challenging to characterize. As muds are modified by compaction and diagenesis to low-porosity shales, permeability can decrease by six or more orders of magnitude, but at large scales it is often dramatically and unpredictably increased by fractures, faults, and other features. Testing and inverse modeling show that petrophysical properties and the geological environment are dominant controls of clay and shale matrix permeability and its scale dependence. Active sedimentation and tectonism on continental margins cause large-scale permeability to vary with time, but in stable continent interiors it is unclear how regional permeability of argillaceous formations changes over time or, in most cases, what controls it. Although rarely considered, it is also unknown whether Darcian permeability adequately describes flow in clay-rich materials.

  • ▪  Critical for problems in energy, water supply, waste isolation, and geologic hazards, clay and shale permeability remains problematic.
  • ▪  Test data and inverse model analyses are beginning to reveal where and how permeability of clay and shale changes with scale.
  • ▪  In clays and shales, causes of permeability scale effects, their time dependence, and even flow behavior continue to raise questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060437
2019-05-30
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060437.html?itemId=/content/journals/10.1146/annurev-earth-053018-060437&mimeType=html&fmt=ahah

Literature Cited

  1. Anandarajah A 2003. Mechanism controlling permeability change in clays due to changes in pore fluid. J. Geotech. Geoenvironmental Eng. 129:163–72
    [Google Scholar]
  2. Beauheim RL, Roberts RM 2002. Hydrology and hydraulic properties of a bedded evaporite formation. J. Hydrol. 259:66–88
    [Google Scholar]
  3. Beauheim RL, Roberts RM, Avis JD 2014. Hydraulic testing of low-permeability Silurian and Ordovician strata, Michigan Basin, southwestern Ontario. J. Hydrol. 509:163–78
    [Google Scholar]
  4. Bekele EB 1999. Anomalous pressures and fluid migration within the Alberta Basin, Canada PhD Thesis, Univ. Minn Minneapolis:
    [Google Scholar]
  5. Bekins BA, Matmon D, Screaton EJ, Brown KM 2011. Reanalysis of in situ permeability measurements in the Barbados décollement. Geofluids 11:57–70
    [Google Scholar]
  6. Bekins BA, McCaffrey AM, Dreiss SJ 1995. Episodic and constant flow models for the origin of low-chloride waters in a modern accretionary complex. Water Resour. Res. 31:3205–15
    [Google Scholar]
  7. Belitz K, Bredehoeft JD 1988. Hydrodynamics of Denver Basin: explanation of subnormal fluid pressures. AAPG Bull 72:1334–59
    [Google Scholar]
  8. Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J 2013. Fault zone hydrogeology. Earth-Sci. Rev. 127:171–92
    [Google Scholar]
  9. Best ME, Katsube TJ 1995. Shale permeability and its significance in hydrocarbon exploration. Leading Edge 14:165–70
    [Google Scholar]
  10. Bethke CM 1986. Inverse hydrologic analysis of the distribution and origin of Gulf Coast-type geopressured zones. J. Geophys. Res. 91:B66535–45
    [Google Scholar]
  11. Bethke CM, Zhao X, Torgersen T 1999. Groundwater flow and the 4He distribution in the Great Artesian Basin of Australia. J. Geophys. Res. 104:B612999–3011
    [Google Scholar]
  12. Bjørlykke K 1998. Clay mineral diagenesis in sedimentary basins—a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Miner 33:15–34
    [Google Scholar]
  13. Bock H, Dehandschutter B, Martin CD, Mazurek M, de Haller A et al. 2010. Self-sealing of fractures in argillaceous formations in the context of geological disposal of radioactive waste, review and synthesis NEA Rep. 6164, Nuclear Energy Agency, Paris
    [Google Scholar]
  14. Boisson J-Y 2005. Clay Club Catalogue of Characteristics of Argillaceous Rocks Paris: OECD Publ.
    [Google Scholar]
  15. Boisson J-Y, Bertrand L, Heitz J-F, Moreau-Le Golvan Y 2001. In situ and laboratory investigations of fluid flow through an argillaceous formation at different scales of space and time, Tournemire tunnel, southern France. Hydrogeol. J. 9:108–23
    [Google Scholar]
  16. Bossart P, Bernier F, Birkholzer J, Bruggeman C, Connolly P et al. 2017. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss J. Geosci. 110:3–22
    [Google Scholar]
  17. Boţan A, Rotenberg B, Marry V, Turq P, Noetinger B 2011. Hydrodynamics in clay nanopores. J. Phys. Chem. C 115:16109–15
    [Google Scholar]
  18. Boulin PF, Bretonnier P, Gland N, Lombard JM 2010. Low water permeability measurements of clay sample. Contribution of steady state method compared to transient methods Paper presented at the International Symposium of the Society of Core Analysts Halifax, N.S: Oct 4–7
    [Google Scholar]
  19. Bourg IC 2015. Sealing shales versus brittle shales: a sharp threshold in the material properties and energy technology uses of fine-grained sedimentary rocks. Environ. Sci. Technol. Lett. 2:255–59
    [Google Scholar]
  20. Bourg IC, Steefel CI 2012. Molecular dynamics simulations of water structure and diffusion in silica nanopores. J. Phys. Chem. C 116:11556–64
    [Google Scholar]
  21. Bowker KA 2007. Barnett Shale gas production, Fort Worth Basin: issues and discussion. AAPG Bull 91:523–33
    [Google Scholar]
  22. Brasier FW, Kobelski BJ 1996. Injection of industrial wastes in the United States. Deep Injection Disposal of Hazardous and Industrial Waste, Scientific and Engineering Aspects JA Apps, C-F Tsang 1–8 New York: Academic
    [Google Scholar]
  23. Bredehoeft J 2005. The conceptualization model problem—surprise. Hydrogeol. J. 13:37–46
    [Google Scholar]
  24. Bredehoeft JD, Neuzil CE, Milly PCD 1983. Regional flow in the Dakota aquifer: a study of the role of confining layers. Surv. Water Supply Pap. 2237, US Geol. Surv Reston, VA:
    [Google Scholar]
  25. Brown KM, Bekins B, Clennell B, Dewhurst D, Westbrook G 1994. Heterogeneous hydrofracture development and accretionary fault dynamics. Geology 22:259–62
    [Google Scholar]
  26. Bryant WR 2002. Permeability of clays, silty-clays and clayey-silts. Gulf Coast Assoc. Geol. Soc. Trans. 52:1069–77
    [Google Scholar]
  27. Cartwright JA 1994. Episodic basin-wide hydrofracturing of overpressured Early Cenozoic mudrock sequences in the North Sea Basin. Mar. Pet. Geol. 11:587–607
    [Google Scholar]
  28. Cartwright JA, James D, Bolton A 2003. The genesis of polygonal fault systems: a review. Subsurface Sediment Mobilization P Van Rensbergen, RR Hillis, AJ Maltman, CK Morely 223–43 London: Geol. Soc.
    [Google Scholar]
  29. Castro MC, Goblet P, Ledoux E, Violette S, de Marsily G 1998. Noble gases as natural tracers of water circulation in the Paris Basin 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour. Res. 34:2467–83
    [Google Scholar]
  30. Clennell MB, Dewhurst DN, Brown KM, Westbrook GK 1999. Permeability anisotropy of consolidated clays. Muds and Mudstones: Physical and Fluid-Flow Properties AC Aplin, AJ Fleet, JHS Macquaker 79–96 London: Geol. Soc.
    [Google Scholar]
  31. Clennell MB, Knipe RJ, Fisher QJ 1998. Fault zones as barriers to, or conduits for, fluid flow in argillaceous formations: a microstructural and petrophysical perspective. Fluid Flow Through Faults and Fractures in Argillaceous Formations, Proceedings of a Joint NEA/EC Workshop, Berne, Switzerland, 10–12 June, 1996125–39 Paris: OECD Publ.
    [Google Scholar]
  32. Constantin J, Peyaud JB, Vergély P, Pagel M, Cabrera J 2004. Evolution of the structural fault permeability in argillaceous rocks in a polyphased tectonic context. Phys. Chem. Earth 29:25–41
    [Google Scholar]
  33. Corbet TF, Bethke CH 1992. Disequilibrium fluid pressures and groundwater flow in the Western Canada Sedimentary Basin. J. Geophys. Res. 97:B57203–17
    [Google Scholar]
  34. Croisé J, Schlickenrieder L, Marschall P, Boisson J-Y, Vogel P, Yamamoto S 2004. Hydrogeological investigations in a low permeability claystone formation: the Mont Terri Rock Laboratory. Phys. Chem. Earth 29:3–15
    [Google Scholar]
  35. Daigle H, Screaton EJ 2015. Evolution of sediment permeability during burial and subduction. Geofluids 15:84–105
    [Google Scholar]
  36. Davis EE, Horel GC, MacDonald RD, Villinger H, Bennett RH, Li H 1991. Pore pressures and permeabilities measured in marine sediments with a tethered probe. J. Geophys. Res. 96:B45975–84
    [Google Scholar]
  37. Delay J, Trouiller A, Lavanchy J-M 2006. Propriétés hydrodynamiques du Callovo-Oxfordien dans l'Est du bassin de Paris: comparaison des résultats obtenus selon différentes approches. C. R. Geosci. 338:892–907
    [Google Scholar]
  38. Dewhurst DN, Aplin AC, Sarda J-P 1999. Influence of clay fraction on pore-sale properties and hydraulic conductivity of experimentally compacted mudstones. J. Geophys. Res. 104:B1229261–74
    [Google Scholar]
  39. Dixon DA, Graham J, Gray MN 1999. Hydraulic conductivity of clays in confined tests under low hydraulic gradients. Can. Geotech. J. 36:815–25
    [Google Scholar]
  40. Dugan B, Flemings PB 2000. Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science 289:288–91
    [Google Scholar]
  41. Dugan B, Sheahan TC 2012. Offshore sediment overpressures of passive margins: mechanisms, measurement, and models. Rev. Geophys. 50:RG3001
    [Google Scholar]
  42. Eaton TT, Anderson MP, Bradbury KR 2007. Fracture control of ground water flow and water chemistry in a rock aquitard. Ground Water 45:601–15
    [Google Scholar]
  43. Engelder T 1993. Stress Regimes in the Lithosphere Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  44. Fertl WH 1976. Abnormal Formation Pressures Amsterdam: Elsevier
    [Google Scholar]
  45. Finkbeiner T, Zoback M, Flemings P, Stump B 2001. Stress, pore pressure, and dynamically constrained hydrocarbon columns in the South Eugene Island 330 field, northern Gulf of Mexico. AAPG Bull 85:1007–31
    [Google Scholar]
  46. Fisher AT, Zwart G 1997. Packer experiments along the decollement of the Barbados accretionary complex: measurements of in situ permeability. Proceedings of the Ocean Drilling Program Scientific Results 156 TH Shipley, Y Ogawa, P Blum, JM Bahr 199–218 College Station, TX: Ocean Drill. Program
    [Google Scholar]
  47. Freeze RA, Cherry JA 1979. Groundwater Englewood Cliffs, NJ: Prentice-Hall
    [Google Scholar]
  48. Gamage K, Screaton E, Bekins B, Aiello I 2011. Permeability-porosity relations of subduction zone sediments. Mar. Geol. 279:19–36
    [Google Scholar]
  49. Giot R, Giraud A, Auvray C 2014. Assessing the permeability in anisotropic and weakly permeable porous rocks using radial pulse tests. Oil Gas Sci. Technol Rev. IFP Energ. Nouv. 69:1171–89
    [Google Scholar]
  50. Gonçalvès J, Violette S, Wendling J 2004. Analytical and numerical solutions for alternative overpressuring processes: application to the Callovo-Oxfordian sedimentary sequence in the Paris basin, France. J. Geophys. Res. 109:B02110
    [Google Scholar]
  51. Grasby S, Osadetz K, Betcher R, Render F 2000. Reversal of the regional-scale flow system of the Williston Basin in response to Pleistocene glaciation. Geology 28:635–38
    [Google Scholar]
  52. Gupta N, Bair ES 1997. Variable-density flow in the midcontinent basins and arches region of the United States. Water Resour. Res. 33:1785–802
    [Google Scholar]
  53. Harrison WJ, Summa LL 1991. Paleohydrology of the Gulf of Mexico Basin. Am. J. Sci. 291:109–76
    [Google Scholar]
  54. Hart DJ, Bradbury KR, Feinstein DT 2006. The vertical hydraulic conductivity of an aquitard at two spatial scales. Ground Water 44:201–11
    [Google Scholar]
  55. Heitzmann P 2004. Mont Terri Project—Hydrogeological Synthesis, Osmotic Flow Bern, Switz.:: Bundesamt Wasser Geol.
    [Google Scholar]
  56. Horsrud P, Sønstebø EF, Bøe R 1998. Mechanical and petrophysical properties of North Sea shales. Int. J. Rock Mech. Min. Sci. 35:1009–20
    [Google Scholar]
  57. Ingebritsen SE, Gleeson T 2015. Crustal permeability: introduction to the special issue. Geofluids 15:1–10
    [Google Scholar]
  58. Ingebritsen SE, Manning CE 1999. Geological implications of a permeability-depth curve for the continental crust. Geology 27:1107–10
    [Google Scholar]
  59. Ingebritsen SE, Manning CE 2010. Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10:193–205
    [Google Scholar]
  60. Ingebritsen SE, Sanford WE, Neuzil CE 2006. Groundwater in Geologic Processes Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  61. Intera Eng. Ltd. 2011. Descriptive Geosphere Site Model Toronto: Intera Eng. Ltd.
    [Google Scholar]
  62. Intergov. Panel Clim. Change. 2005. Carbon Dioxide Capture and Storage B Metz, O Davidson, H de Coninck, M Loos, L Meyer New York: Cambridge Univ. Press
    [Google Scholar]
  63. Johnson KS 1997. Evaporite karst in the United States. Carbonates Evaporites 12:2–4
    [Google Scholar]
  64. Katsube TJ, Williamson MA 1994. Effects of diagenesis on shale nano-pore structure and implications for sealing capacity. Clay Miner 29:451–61
    [Google Scholar]
  65. Katsuki D, Gutierrez M, Tutuncu AN 2014. Improved constant rate of strain consolidation test on stiff shale Paper presented at the Unconventional Resources Technology Conference Denver, CO: Aug 25–27
    [Google Scholar]
  66. Kitajima H, Chester FM, Biscontin G 2012. Mechanical and hydraulic properties of Nankai accretionary prism sediments: effect of stress path. Geochem. Geophys. Geosyst. 13:Q0AD27
    [Google Scholar]
  67. Koltermann CE, Gorelick SM 1995. Fractional packing model for hydraulic conductivity derived from sediment mixtures. Water Resour. Res. 31:3283–97
    [Google Scholar]
  68. Kufner S-K, Hüpers A, Kopf AJ 2014. Constraints on fluid flow processes in the Hellenic Accretionary Complex (eastern Mediterranean Sea) from numerical modeling. J. Geophys. Res. Solid Earth 119:3601–26
    [Google Scholar]
  69. Kurikame H, Takeuchi R, Yabuuchi S 2008. Scale effect and heterogeneity of hydraulic conductivity of sedimentary rocks at Horonobe URL site. Phys. Chem. Earth 33:S37–44
    [Google Scholar]
  70. Kwon O, Kronenberg AK, Gangi AF, Johnson B, Herbert BE 2004. Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading. J. Geophys. Res. 109:B10B10205
    [Google Scholar]
  71. Laske G, Masters G 2018. A global digital map of sediment thickness Map, 1 × 1° scale, Univ. Calif San Diego: http://igppweb.ucsd.edu/∼gabi/sediment.html#ftp
    [Google Scholar]
  72. Lecampion B, Constantinescu A, Malinsky L 2006. Identification of poroelastic constants of “tight” rocks from laboratory tests. Int. J. Geomech. 6:201–8
    [Google Scholar]
  73. Lee Y, Deming D 2002. Overpressures in the Anadarko basin, southwestern Oklahoma: static or dynamic?. AAPG Bull 86:145–60
    [Google Scholar]
  74. Liao X, Wang C-Y, Liu C-P 2015. Disruption of groundwater systems by earthquakes. Geophys. Res. Lett. 42:9758–63
    [Google Scholar]
  75. Liu H-H, Li L, Birkholzer J 2012. Unsaturated properties for non-Darcian water flow in clay. J. Hydrol. 430–31:173–78
    [Google Scholar]
  76. Luijendijk E, Gleeson T 2015. How well can we predict permeability in sedimentary basins? Deriving and evaluating porosity-permeability equations for noncemented sand and clay mixtures. Geofluids 15:67–83
    [Google Scholar]
  77. Mallon AJ, Swarbrick RE, Katsube TJ 2005. Permeability of fine-grained rocks: new evidence from chalks. Geology 33:21–24
    [Google Scholar]
  78. Manga M, Beresnev I, Brodsky EE, Elkhoury JE, Elsworth D et al. 2012. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys. 50:RG2004
    [Google Scholar]
  79. Manning CE, Ingebritsen SE 1999. Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev. Geophys. 37:127–50
    [Google Scholar]
  80. Mase CW, Smith L 1987. The role of pore fluids in tectonic processes. Rev. Geophys. 25:1348–58
    [Google Scholar]
  81. McPherson BJOL, Bredehoeft JD 2001. Overpressures in the Uinta basin, Utah: analysis using a three-dimensional basin evolution model. Water Resour. Res. 37:857–91
    [Google Scholar]
  82. McPherson BJOL, Lichtner PC, Forster CB, Cole BS 2001. Regional-scale permeability by heat flow calibration in the Powder River Basin, Wyoming. Geophys. Res. Lett. 28:3211–14
    [Google Scholar]
  83. Mesri G, Olson RE 1971. Mechanisms controlling the permeability of clays. Clays Clay Miner 19:151–58
    [Google Scholar]
  84. Mitchell JK 1993. Fundamentals of Soil Behavior New York: Wiley. , 2nd ed..
    [Google Scholar]
  85. Moore JC, Shipley TH, Goldberg D, Ogawa Y, Filice F et al. 1995. Abnormal fluid pressures and fault-zone dilation in the Barbados accretionary prism: evidence from logging while drilling. Geology 23:605–8
    [Google Scholar]
  86. Mossop GD, Shetsen I, eds. 1994. Geological Atlas of the Western Canada Sedimentary Basin Calgary: Can. Soc. Pet. Geol.
    [Google Scholar]
  87. Natl. Ocean. Atmos. Admin. 2018. Total sediment thickness of the world's oceans and marginal seas, version 2 Data Sheet, Natl. Ocean. Atmos. Admin Washington, DC: http://www.ngdc.noaa.gov/mgg/sedthick/
    [Google Scholar]
  88. Natl. Genoss. Lager. Radioakt. Abfälle. 2002. Projekt Opalinuston, Synthese der geowissenschaftlichen Untersuchungsergebnisse NAGRA Tech. Bericht NTB 02-03, Natl. Genoss Lager. Radioakt. Abfälle, Wettingen Switz.:
    [Google Scholar]
  89. Neuzil CE 1986. Groundwater flow in low-permeability environments. Water Resour. Res. 22:1163–95
    [Google Scholar]
  90. Neuzil CE 1993. Low fluid pressure within the Pierre Shale: a transient response to erosion. Water Resour. Res. 29:2007–20
    [Google Scholar]
  91. Neuzil CE 1994. How permeable are clays and shales?. Water Resour. Res. 30:145–50
    [Google Scholar]
  92. Neuzil CE 1995. Abnormal pressures as hydrodynamic phenomena. Am. J. Sci. 295:742–86
    [Google Scholar]
  93. Neuzil CE 2011. Hydromechanical effects of continental glaciation on groundwater systems. Geofluids 12:22–37
    [Google Scholar]
  94. Neuzil CE 2013. Can shale safely host U.S. nuclear waste?. Eos Trans. AGU 94:261–62
    [Google Scholar]
  95. Neuzil CE 2015. Interpreting fluid pressure anomalies in shallow intraplate argillaceous formations. Geophys. Res. Lett. 42:4801–8
    [Google Scholar]
  96. Neuzil CE, Provost AM 2009. Recent experimental data may point to a greater role for osmotic pressures in the subsurface. Water Resour. Res. 45:W03410
    [Google Scholar]
  97. Nordbotten JM, Celia MA, Bachu S 2004. Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40:W04204
    [Google Scholar]
  98. Ota K, Abe H, Yamaguchi T, Kunimaru T, Ishii E et al. 2007. Horonobe Underground Research Laboratory Project, synthesis of phase I investigations 2001–2004, volume “Geoscientific Research.” JAEA-Research 2007-044, Jpn At. Energy Agency, Ibaraki Jpn:.
    [Google Scholar]
  99. Parker BL, Cherry JA, Chapman SW 2004. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity. J. Contam. Hydrol. 74:197–230
    [Google Scholar]
  100. Phillips FM, Tansey MK, Peeters LA, Cheng S, Long A 1989. An isotopic investigation of groundwater in the central San Juan Basin, New Mexico: carbon 14 dating as a basis for numerical flow modeling. Water Resour. Res. 25:2259–73
    [Google Scholar]
  101. Pickens JF, Grisak GE, Avis JD, Belanger DW, Thury M 1987. Analysis and interpretation of borehole hydraulic tests in deep boreholes: principles, model development, and applications. Water Resour. Res. 23:1341–75
    [Google Scholar]
  102. Potter PE, Maynard JB, Depetris PJ 2005. Mud and Mudstones: Introduction and Overview New York: Springer
    [Google Scholar]
  103. Ranjram M, Gleeson T, Luijendijk E 2015. Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting?. Geofluids 15:106–19
    [Google Scholar]
  104. Reece JS, Flemings PB, Dugan B, Long H, Germaine JT 2012. Permeability-porosity relationships of shallow mudstones in the Ursa Basin, northern deepwater Gulf of Mexico. J. Geophys. Res. 117:B12102
    [Google Scholar]
  105. Reisdorf AG, Hostettler B, Jaeggi D, Deplazes G, Bläsi H et al. 2016. Litho- and biostratigraphy of the 250 m-deep Mont Terri BDB-1 borehole through the Opalinus Clay and bounding formations, St-Ursanne, Switzerland Rep., Mont Terri Proj., Swiss Geol. Surv Wabern, Switz:.
    [Google Scholar]
  106. Revil A, Grauls D, Brévart O 2002. Mechanical compaction of sand/clay mixtures. J. Geophys. Res. 107:B112293
    [Google Scholar]
  107. Roberts R, Chace D, Beauheim R, Avis J 2011. Analysis of straddle-packer tests in DGR boreholes Tech. Rep. TR-08-32, Geofirma Eng Ltd, Ottawa, Can:.
    [Google Scholar]
  108. Roberts SJ, Nunn JA, Cathles L, Cipriani F-D 1996. Expulsion of abnormally pressured fluids along faults. J. Geophys. Res. 101:B1228231–52
    [Google Scholar]
  109. Saar MO, Manga M 2004. Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J. Geophys. Res. 109:B04204
    [Google Scholar]
  110. Saffer DM 2015. The permeability of active subduction plate boundary faults. Geofluids 15:193–215
    [Google Scholar]
  111. Saffer DM, Bekins BA 1998. Episodic flow in the Nankai accretionary complex: timescale, geochemistry, flow rates, and fluid budget. J. Geophys. Res. 103:B1230351–70
    [Google Scholar]
  112. Saffer DM, Bekins BA 2006. An evaluation of factors influencing pore pressure in accretionary complexes: implications for taper angle and wedge mechanics. J. Geophys. Res. 111:B04101
    [Google Scholar]
  113. Saffer DM, Tobin HJ 2011. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39:157–86
    [Google Scholar]
  114. Sanada H, Niunoya S, Matsui H, Fujii Y 2009. Influences of sedimentary history on the mechanical properties and microscopic structure change of Horonobe siliceous rocks. J. Min. Mater. Process. Inst. Jpn. 125:521–29
    [Google Scholar]
  115. Sawatzky HB 1977. Buried impact craters in the Williston Basin and adjacent area. Impact and Explosion Cratering DJ Roddy, RO Pepin, RB Merrill 461–80 New York: Pergamon
    [Google Scholar]
  116. Schlömer S, Krooss BM 1997. Experimental characterization of the hydrocarbon sealing efficiency of cap rocks. Mar. Pet. Geol. 14:565–80
    [Google Scholar]
  117. Schneider J, Flemings PB, Day-Stirrat RJ, Germaine JT 2011. Insights into pore-scale controls on mudstone permeability through resedimentation experiments. Geology 39:1011–14
    [Google Scholar]
  118. SD Dep. Environ. Nat. Resour. 2018. Abandoned wells in South Dakota Rep., SD Dep. Environ. Nat. Resour Pierre: http://denr.sd.gov/des/wr/abandonedwell.aspx
    [Google Scholar]
  119. Shi Z, Wang G 2016. Aquifers switched from confined to semiconfined by earthquakes. Geophys. Res. Lett. 43:11166–72
    [Google Scholar]
  120. Smerdon BD, Smith LA, Harrington GA, Gardner WP, Delle Piane C, Sarout J 2014. Estimating the hydraulic properties of an aquitard from in situ pore pressure measurements. Hydrogeol. J. 22:1875–87
    [Google Scholar]
  121. Spinelli GA, Giambalvo ER, Fisher AT 2004. Sediment permeability, distribution, and influence on fluxes in oceanic basement. Hydrogeology of the Oceanic Lithosphere EE Davis, H Elderfield 151–88 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  122. Stack AG 2015. Precipitation in pores: a geochemical frontier. Rev. Mineral. Geochem. 80:165–90
    [Google Scholar]
  123. Szmigielski JT, Hendry MJ 2017. Secondary rock structures and the regional hydrogeology of claystone-rich Cretaceous strata, Williston Basin, Saskatchewan, Canada. Can. J. Earth Sci. 54:902–18
    [Google Scholar]
  124. Tachi Y, Yotsuji K, Seida Y, Yui M 2011. Diffusion and sorption of Cs+, I and HTO in samples of the argillaceous Wakkanai Formation from the Horonobe URL, Japan: clay-based modeling approach. Geochim. Cosmochim. Acta 75:6742–59
    [Google Scholar]
  125. Thyberg B, Jahren J, Winje T, Bjørlykke K, Faleide JI, Marcussen Ø 2010. Quartz cementation in Late Cretaceous mudstones, northern North Sea: changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals. Mar. Pet. Geol. 27:1752–64
    [Google Scholar]
  126. Townend J, Zoback MD 2000. How faulting keeps the crust strong. Geology 28:399–402
    [Google Scholar]
  127. Trimmer D, Bonner B, Heard HC, Duba A 1980. Effect of pressure and stress on water transport in intact and fractured gabbro and granite. J. Geophys. Res. 85:B127059–71
    [Google Scholar]
  128. US Energy Inf. Admin. 2015. World shale resource assessments Rep., US Energy Inf. Admin Washington, DC: https://www.eia.gov/analysis/studies/worldshalegas/
    [Google Scholar]
  129. van der Kamp G 2001. Methods for determining the in situ hydraulic conductivity of shallow aquitards—an overview. Hydrogeol. J. 9:5–16
    [Google Scholar]
  130. Vinard P, Bobet A, Einstein HH 2001. Generation and evolution of hydraulic underpressures at Wellenberg, Switzerland. J. Geophys. Res. 106:B1230593–605
    [Google Scholar]
  131. Vinsot A, Delay J, de la Vaissière R, Cruchaudet M 2011. Pumping tests in a low permeability rock: results and interpretation of a four-year long monitoring of water production flow rates in the Callovo-Oxfordian argillaceous rock. Phys. Chem. Earth 36:1679–87
    [Google Scholar]
  132. Vyssotski AV, Vyssotski VN, Nezhdanov AA 2006. Evolution of the West Siberian Basin. Mar. Pet. Geol. 23:93–126
    [Google Scholar]
  133. Walsh R 2011. Compilation and consolidation of field and laboratory data for hydrogeological properties DGR Site Charact. Doc. Geofirma Eng. Proj. 08-200, TR-08-10 Geofirma Eng. Ltd Ottawa, Can:.
    [Google Scholar]
  134. Wang C-Y, Liao X, Wang L-P, Wang C-H, Manga M 2016. Large earthquakes create vertical permeability by breaching aquitards. Water Resour. Res. 52:5923–37
    [Google Scholar]
  135. Wangen M, Souche A, Johansen H 2015. A model for underpressure development in a glacial valley, an example from Adventdalen, Svalbard. Basin Res 28:752–69
    [Google Scholar]
  136. Wei HF, Ledoux E, de Marsily G 1990. Regional modelling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris Basin. J. Hydrol. 120:341–58
    [Google Scholar]
  137. Westbrook GK, Smith MJ 1983. Long decollements and mud volcanoes: evidence from the Barbados Ridge Complex for the role of high pore-fluid pressure in the development of an accretionary complex. Geology 11:279–83
    [Google Scholar]
  138. White JA, Chiaramonte L, Ezzedine S, Foxall W, Hao Y et al. 2014. Geomechanical behavior of the reservoir and caprock system at the Salah CO2 storage project. PNAS 111:8747–52
    [Google Scholar]
  139. Winkler KW 2005. Borehole damage indicator from stress-induced velocity variations. Geophysics 70:F11–16
    [Google Scholar]
  140. Wood LJ 2010. Shale tectonics: a preface. Shale Tectonics LJ Wood 1–4 Tulsa: Am. Assoc. Pet. Geol.
    [Google Scholar]
  141. Yang Y, Aplin AC 2007. Permeability and petrophysical properties of 30 natural mudstones. J. Geophys. Res. 112:B03206
    [Google Scholar]
  142. Yang Y, Aplin AC 2010. A permeability-porosity relationship for mudstones. Mar. Pet. Geol. 27:1692–97
    [Google Scholar]
  143. Yu C, Matray J-M, Gonçalvès J, Jaeggi D, Gräsle W et al. 2017. Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland). Swiss J. Geosci. 110:85–104
    [Google Scholar]
  144. Yu L, Rogiers B, Gedeon M, Marivoet J, De Craen M, Mallants D 2013. A critical review of laboratory and in-situ hydraulic conductivity measurements for the Boom Clay in Belgium. Appl. Clay Sci. 75–76:1–12
    [Google Scholar]
  145. Yven B, Sammartino S, Géraud Y, Homand F, Villiéras F 2007. Mineralogy, texture and porosity of Callovo-Oxfordian argillites of the Meuse/Haute-Marne region (eastern Paris Basin). Mém. Soc. Géol. Fr. 178:73–90
    [Google Scholar]
  146. Zhang J, Scherer GW 2012. Permeability of shale by the beam-bending method. Int. J. Rock Mech. Min. Sci. 53:179–91
    [Google Scholar]
  147. Zhang M, Takahashi M, Morin RH, Endo H, Esaki T 2002. Determining the hydraulic properties of saturated, low-permeability geological materials in the laboratory: advances in theory and practice. Evaluation and Remediation of Low Permeability and Dual Porosity Environments MN Sara, LG Everett 83–98 West Conshohocken, PA: ASTM Int.
    [Google Scholar]
  148. Zoback MD, Townend J 2001. Implications of hydrostatic pore pressure and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics 336:19–30
    [Google Scholar]
  149. Zwart G, Brukmann W, Moran K, MacKillop AK, Maltman AJ et al. 1997. Evaluation of hydrogeologic properties of the Barbados accretionary prism: a synthesis of Leg 156 results. Proceedings of the Ocean Drilling Program Scientific Results 156 TH Shipley, Y Ogawa, P Blum, JM Bahr 303–10 College Station, TX: Ocean Drill. Program
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060437
Loading
/content/journals/10.1146/annurev-earth-053018-060437
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error