1932

Abstract

Earthquake early warning (EEW) is the delivery of ground shaking alerts or warnings. It is distinguished from earthquake prediction in that the earthquake has nucleated to provide detectable ground motion when an EEW is issued. Here we review progress in the field in the last 10 years. We begin with EEW users, synthesizing what we now know about who uses EEW and what information they need and can digest. We summarize the approaches to EEW and gather information about currently existing EEW systems implemented in various countries while providing the context and stimulus for their creation and development. We survey important advances in methods, instrumentation, and algorithms that improve the quality and timeliness of EEW alerts. We also discuss the development of new, potentially transformative ideas and methodologies that could change how we provide alerts in the future.

  • ▪  Earthquake early warning (EEW) is the rapid detection and characterization of earthquakes and delivery of an alert so that protective actions can be taken.
  • ▪  EEW systems now provide public alerts in Mexico, Japan, South Korea, and Taiwan and alerts to select user groups in India, Turkey, Romania, and the United States.
  • ▪  EEW methodologies fall into three categories, point source, finite fault, and ground motion models, and we review the advantages of each of these approaches.
  • ▪  The wealth of information about EEW uses and user needs must be employed to focus future developments and improvements in EEW systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060457
2019-05-30
2024-07-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060457.html?itemId=/content/journals/10.1146/annurev-earth-053018-060457&mimeType=html&fmt=ahah

Literature Cited

  1. Allen RM 2011. Earthquakes, early and strong motion warning. Encyclopedia of Solid Earth Geophysics HK Gupta 226–33 Boston: Springer
    [Google Scholar]
  2. Allen RM, Cochran ES, Huggins T, Miles S, Otegui D 2017. Quake warnings, seismic culture. Science 358:1111
    [Google Scholar]
  3. Allen RM, Cochran ES, Huggins T, Miles S, Otegui D 2018. Lessons from Mexico's earthquake early warning system. Eos Trans. AGU99
    [Google Scholar]
  4. Allen RM, Gasparini P, Kamigaichi O, Böse M 2009. The status of earthquake early warning around the world: an introductory overview. Seismol. Res. Lett. 80:5682–93
    [Google Scholar]
  5. Allen RM, Kanamori H 2003. The potential for earthquake early warning in southern California. Science 300:786–89
    [Google Scholar]
  6. Allen RM, Ziv A 2011. Application of real‐time GPS to earthquake early warning. Geophys. Res. Lett. 38:16L16310
    [Google Scholar]
  7. Asano K, Iwata T 2012. Source model for strong ground motion generation in the frequency range 0.1–10 Hz during the 2011 Tohoku earthquake. Earth Planets Space 64:6
    [Google Scholar]
  8. Atik LA, Abrahamson N, Bommer JJ, Scherbaum F, Cotton F, Kuehn N 2010. The variability of ground-motion prediction models and its components. Seismol. Res. Lett. 81:5794–801
    [Google Scholar]
  9. Barbour AJ, Crowell BW 2017. Dynamic strains for earthquake source characterization. Seismol. Res. Lett. 88:2A354–70
    [Google Scholar]
  10. Barnes CR, Best MM, Pautet L, Pirenne B 2011. Understanding Earth–ocean processes using real-time data from NEPTUNE, Canada's widely distributed sensor networks, northeast Pacific. Geosci. Can. 38:121–30
    [Google Scholar]
  11. Bell SW, Forsyth DW, Ruan Y 2014. Removing noise from the vertical component records of ocean‐bottom seismometers: results from year one of the Cascadia Initiative. Bull. Seismol. Soc. Am. 105:1300–13
    [Google Scholar]
  12. Böse M, Felizardo C, Heaton TH 2015. Finite-fault rupture detector (FinDer): going real-time in Californian ShakeAlert warning system. Seismol. Res. Lett. 86:61692–704
    [Google Scholar]
  13. Böse M, Hauksson E, Solanki K, Kanamori H, Heaton T 2009. A new trigger criterion for improved real-time performance of onsite earthquake early warning in southern California. Bull. Seismol. Soc. Am. 99:897–905
    [Google Scholar]
  14. Böse M, Heaton TH, Hauksson E 2012. Real-time finite fault rupture detector (FinDer) for large earthquakes. Geophys. J. Int. 191:2803–12
    [Google Scholar]
  15. Böse M, Smith DE, Felizardo C, Meier MA, Heaton TH, Clinton JF 2017. FinDer v. 2: improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization. Geophys. J. Int. 212:1725–42
    [Google Scholar]
  16. Cauzzi C, Behr Y, Guenan TL, Douglas J, Auclair S et al. 2016. Earthquake early warning and operational earthquake forecasting as real-time hazard information to mitigate seismic risk at nuclear facilities. Bull. Earthq. Eng. 14:2495–512
    [Google Scholar]
  17. Chamoli BP, Kumar A, Chen D-Y, Gairola A, Jakka RS et al. 2019. A prototype earthquake early warning system for northern India. J. Earthq. Eng. In press
    [Google Scholar]
  18. Chen DY, Wu YM, Chin TL 2015. Incorporating low-cost seismometers into the Central Weather Bureau seismic network for earthquake early warning in Taiwan. Terr. Atmos. Ocean. Sci. 26:5503–13
    [Google Scholar]
  19. Chung AI, Cochran ES, Kaiser AE, Christensen CM, Yildirim B, Lawrence JF 2015. Improved rapid magnitude estimation for a community‐based, low‐cost MEMS accelerometer network. Bull. Seismol. Soc. Am. 105:31314–23
    [Google Scholar]
  20. Chung AI, Henson I, Allen RM 2019. Optimizing earthquake early warning performance: ElarmS-3. Seismol. Res. Lett. 90:2A727–43
    [Google Scholar]
  21. Clayton RW, Heaton T, Kohler M, Chandy M, Guy R, Bunn J 2015. Community seismic network: a dense array to sense earthquake strong motion. Seismol. Res. Lett. 86:51354–63
    [Google Scholar]
  22. Clinton J, Zollo A, Mărmureanu A, Zulfikar C, Parolai S 2016. State-of-the art and future of earthquake early warning in the European region. Bull. Earthq. Eng. 14:92441–58
    [Google Scholar]
  23. Cochran ES, Kohler MD, Given DD, Guiwits S, Andrews J et al. 2017. Earthquake early warning ShakeAlert system: testing and certification platform. Seismol. Res. Lett. 89:1108–17
    [Google Scholar]
  24. Colombelli S, Allen RM, Zollo A 2013. Application of real‐time GPS to earthquake early warning in subduction and strike‐slip environments. J. Geophys. Res. Solid Earth 118:73448–61
    [Google Scholar]
  25. Colombelli S, Zollo A 2015. Fast determination of earthquake magnitude and fault extent from real-time P-wave recordings. Geophys. J. Int. 202:21158–63
    [Google Scholar]
  26. Colombelli S, Zollo A, Festa G, Picozzi M 2014. Evidence for a difference in rupture initiation between small and large earthquakes. Nat. Commun. 5:3958
    [Google Scholar]
  27. Cooper JD 1868. Earthquake indicator San Franc. Bull. San Franc. Publ. Co San Francisco, CA:
    [Google Scholar]
  28. Crowell BW, Bock Y, Melgar D 2012. Real‐time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys. Res. Lett. 39:9L09305
    [Google Scholar]
  29. Crowell BW, Bock Y, Squibb MB 2009. Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks. Seismol. Res. Lett. 80:5772–82
    [Google Scholar]
  30. Crowell BW, Melgar D, Bock Y, Haase JS, Geng J 2013. Earthquake magnitude scaling using seismogeodetic data. Geophys. Res. Lett. 40:236089–94
    [Google Scholar]
  31. Crowell BW, Melgar D, Geng J 2018a. Hypothetical real‐time GNSS modeling of the 2016 Mw 7.8 Kaikōura earthquake: perspectives from ground motion and tsunami inundation prediction. Bull. Seismol. Soc. Am. 108:1736–45
    [Google Scholar]
  32. Crowell BW, Schmidt DA, Bodin P, Vidale JE, Baker B et al. 2018b. G‐FAST earthquake early warning potential for great earthquakes in Chile. Seismol. Res. Lett. 89:2A542–56
    [Google Scholar]
  33. Crowell BW, Schmidt DA, Bodin P, Vidale JE, Gomberg J et al. 2016. Demonstration of the Cascadia G‐FAST geodetic earthquake early warning system for the Nisqually, Washington, earthquake. Seismol. Res. Lett. 87:4930–43
    [Google Scholar]
  34. Cua G, Heaton T 2007. The virtual seismologist (VS) method: a Bayesian approach to earthquake early warning. Earthquake Early Warning Systems P Gasparini, G Manfredi, J Zschau 85–132 Berlin: Springer
    [Google Scholar]
  35. Cuéllar A, Espinosa-Aranda JM, Suarez R, Ibarrola G, Uribe A et al. 2014. The Mexican seismic alert system (SASMEX): its alert signals, broadcast results and performance during the M 7.4 Punta Maldonado earthquake of March 20th, 2012. Early Warning for Geological Disasters F Wenzel, Z Zschau 71–87 Berlin: Springer-Verlag
    [Google Scholar]
  36. Cuéllar A, Suarez G, Espinosa-Aranda J 2018. A fast earthquake early warning algorithm based on the first 3 s of the P-wave coda. Bull. Seismol. Soc. Am. 108:2068–79
    [Google Scholar]
  37. Ellsworth WL, Beroza GC 1995. Seismic evidence for an earthquake nucleation phase. Science 268:5212851–55
    [Google Scholar]
  38. Espinosa-Aranda JM, Jimenez A, Ibarrola G, Alcantar F, Aguilar A et al. 1995. Mexico City seismic alert system. Seismol. Res. Lett. 66:42–52
    [Google Scholar]
  39. Evans JR, Allen RM, Chung AI, Cochran ES, Guy R et al. 2014. Performance of several low‐cost accelerometers. Seismol. Res. Lett. 85:1147–58
    [Google Scholar]
  40. Given DD, Cochran ES, Heaton T, Hauksson E, Allen RM et al. 2014. Technical implementation plan for the ShakeAlert production system—an earthquake early warning system for the West Coast of the United States Open-File Rep. 2014-1097, US Geol. Surv Reston, VA: https://doi.org/10.3133/ofr20141097
    [Crossref] [Google Scholar]
  41. Goldberg DE, Melgar D, Bock Y, Allen RM 2018. Geodetic observations of weak determinism in rupture evolution of large earthquakes. J. Geophys. Res. Solid Earth 123:9950–62
    [Google Scholar]
  42. Grapenthin R, Johanson IA, Allen RM 2014a. Operational real‐time GPS‐enhanced earthquake early warning. J. Geophys. Res. Solid Earth 119:107944–65
    [Google Scholar]
  43. Grapenthin R, Johanson IA, Allen RM 2014b. The 2014 Mw 6.0 Napa earthquake, California: observations from real‐time GPS‐enhanced earthquake early warning. Geophys. Res. Lett. 41:238269–76
    [Google Scholar]
  44. Hoshiba M 2013. Real-time prediction of ground motion by Kirchhoff Fresnel boundary integral equation method: extended front detection method for earthquake early warning. J. Geophys. Res. Solid Earth 118:1038–50
    [Google Scholar]
  45. Hoshiba M 2014. Review of the nationwide earthquake early warning in Japan during its first five years. Earthquake Hazard, Risk, and Disasters JF Shroder, M Wyss 505–29 Waltham, MA: Academic
    [Google Scholar]
  46. Hoshiba M, Aoki S 2015. Numerical shake prediction for earthquake early warning: data assimilation, real-time shake mapping, and simulation of wave propagation. Bull. Seismol. Soc. Am. 105:1324–38
    [Google Scholar]
  47. Hoshiba M, Iwakiri K 2011. Initial 30 seconds of the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0)—amplitude and τc for magnitude estimation for earthquake early warning. Earth Planets Space 63:553–57
    [Google Scholar]
  48. Hoshiba M, Ozaki T 2014. Earthquake early warning and tsunami warning of the Japan Meteorological Agency, and their performance in the 2011 off the Pacific coast of Tohoku earthquake (M9.0). Early Warning for Geological Disasters F Wenzel, J Zschau 1–28 Berlin: Springer-Verlag
    [Google Scholar]
  49. Hsu TY, Lin PY, Wang HH, Chiang HW, Chang YW et al. 2018. Comparing the performance of the NEEWS earthquake early warning system against the CWB system during the 6 February 2018 Mw 6.2 Hualien earthquake. Geophys. Res. Lett. 45:6001–7
    [Google Scholar]
  50. Hsu TY, Wang HH, Lin PY, Lin CM, Kuo CH, Wen KL 2016. Performance of the NCREE's on-site warning system during the 5 February 2016 Mw 6.53 Meinong earthquake. Geophys. Res. Lett 43:8954–59
    [Google Scholar]
  51. Johnson L, Rabinovici S, Kang G, Mahin SA 2016. California earthquake early warning system benefit study CSSC Publ.16-04 PEER Rep. 2016/06, Pac Earthq. Eng. Res. Cent Berkeley, CA:
    [Google Scholar]
  52. Kanazawa T, Uehira K, Mochizuki M, Shinbo T, Fujimoto H et al. 2016. S-NET project, cabled observation network for earthquakes and tsunamis Paper presented at the 9th Conference in the SubOptic Series, Dubai, Apr 18–21
    [Google Scholar]
  53. Kawamoto S, Hiyama Y, Ohta Y, Nishimura T 2016. First result from the GEONET real-time analysis system (REGARD): the case of the 2016 Kumamoto earthquakes. Earth Planets Space 68:1190
    [Google Scholar]
  54. Kawamoto S, Ohta Y, Hiyama Y, Todoriki M, Nishimura T et al. 2017. REGARD: a new GNSS‐based real‐time finite fault modeling system for GEONET. J. Geophys. Res. Solid Earth 122:21324–49
    [Google Scholar]
  55. Kodera Y 2018. Real‐time detection of rupture development: earthquake early warning using P waves from growing ruptures. Geophys. Res. Lett. 45:1156–65
    [Google Scholar]
  56. Kodera Y, Saitou J, Hayashimoto N, Adachi S, Morimoto M et al. 2016. Earthquake early warning for the 2016 Kumamoto earthquake: performance evaluation of the current system and the next-generation methods of the Japan Meteorological Agency. Earth Planets Space 68:1202
    [Google Scholar]
  57. Kodera Y, Yamada Y, Hirano K, Tamaribuchi K, Adachi S et al. 2018. The propagation of local undamped motion (PLUM) method: a simple and robust seismic wavefield estimation approach for earthquake early warning. Bull. Seismol. Soc. Am. 108:2983–1003
    [Google Scholar]
  58. Kohler M, Cochran E, Given D, Guiwits S, Neuhauser D et al. 2017. Earthquake early warning ShakeAlert system: West Coast wide production prototype. Seismol. Res. Lett. 89:199–107
    [Google Scholar]
  59. Kong Q, Allen RM, Schreier L 2016a. MyShake: initial observations from a global smartphone seismic network. Geophys. Res. Lett. 43:189588–94
    [Google Scholar]
  60. Kong Q, Allen RM, Schreier L, Kwon YW 2016b. MyShake: a smartphone seismic network for earthquake early warning and beyond. Sci. Adv. 2:2e1501055
    [Google Scholar]
  61. Kuyuk HS, Allen RM 2013. Optimal seismic network density for earthquake early warning: a case study from California. Seismol. Res. Lett. 84:6946–54
    [Google Scholar]
  62. Kuyuk HS, Allen RM, Brown H, Hellweg M, Henson I, Neuhauser D 2014. Designing a network‐based earthquake early warning algorithm for California: ElarmS‐2. Bull. Seismol. Soc. Am. 104:162–73
    [Google Scholar]
  63. Li S 2018. Approaching earthquake early-warning. Overv. Disaster Prev. 2:14–24
    [Google Scholar]
  64. Liu A, Yamada M 2014. Bayesian approach for identification of multiple events in an early warning system. Bull. Seismol. Soc. Am. 104:31111–21
    [Google Scholar]
  65. Lu C, Zhou L, Zhang Z 2016. Research and test on China high-speed railway earthquake early-warning system. Sci. Technol. Rev. 34:18258–64
    [Google Scholar]
  66. Mărmureanu A, Ionescu C, Cioflan CO 2010. Advanced real-time acquisition of the Vrancea earthquake early warning system. Soil Dyn. Earthq. Eng. 31:163–69
    [Google Scholar]
  67. Meier MA 2017. How “good” are real‐time ground motion predictions from earthquake early warning systems?. J. Geophys. Res. Solid Earth 122:75561–77
    [Google Scholar]
  68. Meier MA, Ampuero JP, Heaton TH 2017. The hidden simplicity of subduction megathrust earthquakes. Science 357:63571277–81
    [Google Scholar]
  69. Meier MA, Heaton T, Clinton J 2015. The Gutenberg algorithm: evolutionary Bayesian magnitude estimates for earthquake early warning with a filter bank. Bull. Seismol. Soc. Am. 105:52774–86
    [Google Scholar]
  70. Meier MA, Heaton T, Clinton J 2016. Evidence for universal earthquake rupture initiation behavior. Geophys. Res. Lett. 43:157991–96
    [Google Scholar]
  71. Melgar D, Bock Y, Crowell BW 2012. Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records. Geophys. J. Int. 188:2703–18
    [Google Scholar]
  72. Melgar D, Crowell BW, Bock Y, Haase JS 2013. Rapid modeling of the 2011 Mw 9.0 Tohoku‐Oki earthquake with seismogeodesy. Geophys. Res. Lett. 40:122963–68
    [Google Scholar]
  73. Melgar D, Crowell BW, Geng J, Allen RM, Bock Y et al. 2015. Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophys. Res. Lett. 42:135197–205
    [Google Scholar]
  74. Melgar D, Hayes GP 2017. Systematic observations of the slip pulse properties of large earthquake ruptures. Geophys. Res. Lett. 44:199691–98
    [Google Scholar]
  75. Melgar D, LeVeque RJ, Dreger DS, Allen RM 2016. Kinematic rupture scenarios and synthetic displacement data: an example application to the Cascadia subduction zone. J. Geophys. Res. Solid Earth 121:96658–74
    [Google Scholar]
  76. Minson SE, Brooks BA, Glennie CL, Murray JR, Langbein JO et al. 2015. Crowdsourced earthquake early warning. Sci. Adv. 1:3e1500036
    [Google Scholar]
  77. Minson SE, Meier MA, Baltay AS, Hanks TC, Cochran ES 2018. The limits of earthquake early warning: timeliness of ground motion estimates. Sci. Adv. 4:3eaaq0504
    [Google Scholar]
  78. Minson SE, Murray JR, Langbein JO, Gomberg JS 2014. Real‐time inversions for finite fault slip models and rupture geometry based on high‐rate GPS data. J. Geophys. Res. Solid Earth 119:43201–31
    [Google Scholar]
  79. Minson SE, Wu S, Beck JL, Heaton TH 2017. Combining multiple earthquake models in real time for earthquake early warning. Bull. Seismol. Soc. Am. 107:41868–82
    [Google Scholar]
  80. Montagner JP, Juhel K, Barsuglia M, Ampuero JP, Chassande-Mottin E et al. 2016. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake. Nat. Commun. 7:13349
    [Google Scholar]
  81. Murray JR, Crowell BW, Grapenthin R, Hodgkinson K, Langbein JO et al. 2018. Development of a geodetic component for the US West Coast earthquake early warning system. Seismol. Res. Lett. 892322–36
    [Google Scholar]
  82. Nakamura Y 1988. On the urgent earthquake detection and alarm system (UrEDAS). Proceedings of the 9th World Conference on Earthquake Engineering Vol 7673–78 Tokyo-Kyoto, Japan: Jpn. Assoc. Earthq. Disaster Prev.
    [Google Scholar]
  83. Nakamura Y, Tucker B 1988. Japan's earthquake early warning system: Should it be imported to California?. Calif. Geol. 41:33–40
    [Google Scholar]
  84. Noda S, Ellsworth WL 2016. Scaling relation between earthquake magnitude and the departure time from P wave similar growth. Geophys. Res. Lett. 43:179053–60
    [Google Scholar]
  85. Noda S, Ellsworth WL 2017. Determination of earthquake magnitude for early warning from the time dependence of P‐wave amplitudes. Bull. Seismol. Soc. Am. 107:41860–67
    [Google Scholar]
  86. Noda S, Yamamoto S, Ellsworth WL 2016. Rapid estimation of earthquake magnitude from the arrival time of the peak high‐frequency amplitude. Bull. Seismol. Soc. Am. 106:1232–41
    [Google Scholar]
  87. Nof RN, Allen RM 2016. Implementing the ElarmS earthquake early warning algorithm on the Israeli Seismic Network. Bull. Seismol. Soc. Am. 106:2332–44
    [Google Scholar]
  88. Ohta Y, Kobayashi T, Tsushima H, Miura S, Hino R et al. 2012. Quasi real‐time fault model estimation for near‐field tsunami forecasting based on RTK‐GPS analysis: application to the 2011 Tohoku‐Oki earthquake (Mw 9.0). J. Geophys. Res. Solid Earth 117:B2B02311
    [Google Scholar]
  89. Olson EL, Allen RM 2005. The deterministic nature of earthquake rupture. Nature 438:7065212–15
    [Google Scholar]
  90. Perol T, Gharbi M, Denolle M 2018. Convolutional neural network for earthquake detection and location. Sci. Adv. 4:2e1700578
    [Google Scholar]
  91. Porter K, Shoaf K, Seligson H 2006. Value of injuries in the Northridge earthquake. Earthq. Spectra 22:555–63
    [Google Scholar]
  92. Ross ZE, Meier MA, Hauksson E, Heaton TH 2018. Generalized seismic phase detection with deep learning. Bull. Seismol. Soc. Am 108:2894–901
    [Google Scholar]
  93. Ruhl CJ, Melgar D, Chung AI, Grapenthin R, Allen RM 2019a. Quantifying the value of real-time geodetic constraints on earthquake early warning using a global seismic and geodetic dataset. arXiv:1901.11124 [physics.geo-ph]
  94. Ruhl CJ, Melgar D, Geng J, Goldberg DE, Crowell BW et al. 2019b. A global database of strong‐motion displacement GNSS recordings and an example application to PGD scaling. Seismol. Res. Lett 90:1271–79
    [Google Scholar]
  95. Ruhl CJ, Melgar D, Grapenthin R, Allen RM 2017. The value of real‐time GNSS to earthquake early warning. Geophys. Res. Lett. 44:168311–19
    [Google Scholar]
  96. Rydelek P, Horiuchi S 2006. Earth science: Is earthquake rupture deterministic. ? Nature 442:7100E5
    [Google Scholar]
  97. Satriano C, Elia L, Martino C, Lancieri M, Zollo A, Iannaccone G 2010. PRESTo, the earthquake early warning system for southern Italy: concepts, capabilities and future perspectives. Soil Dyn. Earthq. Eng. 31:137–53
    [Google Scholar]
  98. Saunders JK, Goldberg DE, Haase JS, Bock Y, Offield DG et al. 2016. Seismogeodesy using GPS and low-cost MEMS accelerometers: perspectives for earthquake early warning and rapid response. Bull. Seismol. Soc. Am. 106:2469–89
    [Google Scholar]
  99. Seki T, Okada T, Ikeda M, Sugano T 2008. Early warning “area mail. NTT Tech. Rev. 6:121–6
    [Google Scholar]
  100. Sheen D-H, Park J-H, Chi H-C, Hwang E-H, Lim I-S et al. 2017. The first stage of an earthquake early warning system in South Korea. Seismol. Res. Lett. 88:61491–98
    [Google Scholar]
  101. Shoaf KI, Nguyen LH, Sareen HR, Bourque LB 1998. Injuries as a result of California earthquakes in the past decade. Disasters 22:218–35
    [Google Scholar]
  102. Strauss JA, Allen RM 2016. Benefits and costs of earthquake early warning. Seismol. Res. Lett. 87:3765–72
    [Google Scholar]
  103. Tréhu AM, Wilcock WS, Hilmo R, Bodin P, Connolly J et al. 2018. The role of the Ocean Observatories Initiative in monitoring the offshore earthquake activity of the Cascadia subduction zone. Oceanography 31:1104–13
    [Google Scholar]
  104. Vallée M, Ampuero JP, Juhel K, Bernard P, Montagner JP, Barsuglia M 2017. Observations and modeling of the elastogravity signals preceding direct seismic waves. Science 358:63671164–68
    [Google Scholar]
  105. Webb SC 1998. Broadband seismology and noise under the ocean. Rev. Geophys. 36:1105–42
    [Google Scholar]
  106. Wood MM, Mileti DS, Kano M, Kelley MM, Regan R, Bourque LB 2012. Communicating actionable risk for terrorism and other hazards. Risk Anal 32:4601–15
    [Google Scholar]
  107. Worden CB, Wald DJ, Allen TI, Lin K, Garcia D, Cua G 2010. A revised ground-motion and intensity interpolation scheme for ShakeMap. Bull. Seismol. Soc. Am. 100:63083–96
    [Google Scholar]
  108. Wright TJ, Houlié N, Hildyard M, Iwabuchi T 2012. Real‐time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: the 2011 Tohoku‐Oki (Japan) earthquake. Geophys. Res. Lett. 39:12L12302
    [Google Scholar]
  109. Wu Y-M, Hsiao N-C, Chin T-L, Chen D-Y, Chan Y-T, Wang K-S 2014. Earthquake early warning system in Taiwan. Encyclopedia of Earthquake Engineering M Beer, IA Kougioumtzoglou, E Patelli, S-K Au Berlin: Springer https://doi.org/10.1007/978-3-642-36197-5_99-1
    [Crossref] [Google Scholar]
  110. Wu Y-M, Mittal H, Huang T-C, Yang BM, Jan J-C, Chen SK 2018. Performance of a low-cost earthquake early warning system (P-alert) and shake map production during the 2018 Mw 6.4 Hualien, Taiwan, earthquake. Seismol. Res. Lett. 90:119–29
    [Google Scholar]
  111. Yin L, Andrews J, Heaton T 2018. Rapid earthquake discrimination for earthquake early warning: a Bayesian probabilistic approach using three‐component single‐station waveforms and seismicity forecast. Bull. Seismol. Soc. Am. 108:2054–67
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060457
Loading
/content/journals/10.1146/annurev-earth-053018-060457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error